1932

Abstract

Intake of whole foods, such as fruits and vegetables, may confer health benefits to the host. The beneficial effects of fruits and vegetables were mainly attributed to their richness in polyphenols and microbiota-accessible carbohydrates (MACs). Components in fruits and vegetables modulate composition and associated functions of the gut microbiota, whereas gut microbiota can transform components in fruits and vegetables to produce metabolites that are bioactive and important for health. The progression of multiple diseases, such as obesity and inflammatory bowel disease, is associated with diet and gut microbiota. Although the exact causality between these diseases and specific members of gut microbiota has not been well characterized, accumulating evidence supported the role of fruits and vegetables in modulating gut microbiota and decreasing the risks of microbiota-associated diseases. This review summarizes the latest findings on the effects of whole fruits and vegetables on gut microbiota and associated diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-111519-014337
2020-03-25
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/food/11/1/annurev-food-111519-014337.html?itemId=/content/journals/10.1146/annurev-food-111519-014337&mimeType=html&fmt=ahah

Literature Cited

  1. Alonso VR, Guarner F. 2013. Linking the gut microbiota to human health. Br. J. Nutr. 109:S21–26
    [Google Scholar]
  2. Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M et al. 2009. Health benefits of dietary fiber. Nutr. Rev. 67:188–205
    [Google Scholar]
  3. Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa M-T 2001. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J. Agric. Food Chem. 49:5679–84
    [Google Scholar]
  4. Aura A-M. 2008. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 7:407–29
    [Google Scholar]
  5. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–23
    [Google Scholar]
  6. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. PNAS 104:979–84
    [Google Scholar]
  7. Bai J, Zhu Y, Dong Y 2016. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J. Ethnopharmacol. 194:717–26
    [Google Scholar]
  8. Bai J, Zhu Y, Dong Y 2018. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. J. Funct. Foods 41:127–34
    [Google Scholar]
  9. Baldwin J, Collins B, Wolf PG, Martinez K, Shen W et al. 2016. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J. Nutr. Biochem. 27:123–35
    [Google Scholar]
  10. Barnes RC, Kim H, Fang C, Bennett W, Nemec M et al. 2019. Body mass index as a determinant of systemic exposure to gallotannin metabolites during 6‐week consumption of mango (Mangifera indica L.) and modulation of intestinal microbiota in lean and obese individuals. Mol. Nutr. Food Res. 63:1800512
    [Google Scholar]
  11. Brasili E, Hassimotto NMA, Del Chierico F, Marini F, Quagliariello A et al. 2019. Daily consumption of orange juice from Citrus sinensis L. Osbeck cv. Cara Cara and cv. Bahia differently affects gut microbiota profiling as unveiled by an integrated meta-omics approach. J. Agric. Food Chem. 67:1381–91
    [Google Scholar]
  12. Brinkworth GD, Noakes M, Clifton PM, Bird AR 2009. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr. 101:1493–502
    [Google Scholar]
  13. Cai X, Han Y, Gu M, Song M, Wu X et al. 2019. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct 10:6331–41
    [Google Scholar]
  14. Casanova-Martí À, Serrano J, Portune KJ, Sanz Y, Blay MT et al. 2018. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct 9:1672–82
    [Google Scholar]
  15. Cerf-Bensussan N, Gaboriau-Routhiau V. 2010. The immune system and the gut microbiota: friends or foes. ? Nat. Rev. Immunol. 10:735
    [Google Scholar]
  16. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–54
    [Google Scholar]
  17. Chen WB, Cheng MJ, Tian YB, Wang QH, Wang B et al. 2017. Effects of Armillariella tabescens mycelia on the growth performance and intestinal immune response and microflora of early‐weaned pigs. Anim. Sci. J. 88:1388–97
    [Google Scholar]
  18. Cheng J-R, Liu X-M, Chen Z-Y, Zhang Y-S, Zhang Y-H 2016. Mulberry anthocyanin biotransformation by intestinal probiotics. Food Chem 213:721–27
    [Google Scholar]
  19. Chockchaisawasdee S, Poosaran N. 2013. Production of isomaltooligosaccharides from banana flour. J. Sci. Food Agric. 93:180–86
    [Google Scholar]
  20. Choy YY, Quifer-Rada P, Holstege DM, Frese SA, Calvert CC et al. 2014. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct 5:2298–308
    [Google Scholar]
  21. Clavel T, Fallani M, Lepage P, Levenez F, Mathey J et al. 2005a. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J. Nutr. 135:2786–92
    [Google Scholar]
  22. Clavel T, Henderson G, Alpert C-A, Philippe C, Rigottier-Gois L et al. 2005b. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl. Environ. Microbiol. 71:6077–85
    [Google Scholar]
  23. Clavel T, Henderson G, Engst W, Doré J, Blaut M 2006. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol. Ecol. 55:471–78
    [Google Scholar]
  24. Couteau D, McCartney A, Gibson G, Williamson G, Faulds C 2001. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J. Appl. Microbiol. 90:873–81
    [Google Scholar]
  25. Damaskos D, Kolios G. 2008. Probiotics and prebiotics in inflammatory bowel disease: microflora “on the scope. .” Br. J. Clin. Pharmacol. 65:453–67
    [Google Scholar]
  26. Danilova N, Abdulkhakov S, Grigoryeva T, Markelova M, Vasilyev IY et al. 2019. Markers of dysbiosis in patients with ulcerative colitis and Crohn's disease. Ter. Arkhiv 91:17–24
    [Google Scholar]
  27. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–36
    [Google Scholar]
  28. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107:14691–96
    [Google Scholar]
  29. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A 2013. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18:141818–92
    [Google Scholar]
  30. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–53.e21
    [Google Scholar]
  31. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE 2007. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73:1073–78
    [Google Scholar]
  32. Duncan SH, Louis P, Thomson JM, Flint HJ 2009. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11:2112–22
    [Google Scholar]
  33. Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S et al. 2013. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62:1745–52
    [Google Scholar]
  34. Eichner M, Augustin C, Fromm A, Piontek A, Walther W et al. 2017. In colon epithelia, Clostridium perfringens enterotoxin causes focal leaks by targeting claudins which are apically accessible due to tight junction derangement. J. Infect. Dis. 217:147–57
    [Google Scholar]
  35. Elvira-Torales L, Periago M, González-Barrio R, Hidalgo N, Navarro-González I et al. 2019. Spinach consumption ameliorates the gut microbiota and dislipaemia in rats with diet-induced non-alcoholic fatty liver disease (NAFLD). Food Funct 10:2148–60
    [Google Scholar]
  36. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:9066–71
    [Google Scholar]
  37. Feliciano R, Istas G, Heiss C, Rodriguez-Mateos A 2016. Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry. Molecules 21:E1120
    [Google Scholar]
  38. Finegold S, Song Y, Liu C, Hecht D, Summanen P et al. 2005. Clostridium clostridioforme: a mixture of three clinically important species. Eur. J. Clin. Microbiol. Infect. Dis. 24:319–24
    [Google Scholar]
  39. Flint HJ, Duncan SH, Scott KP, Louis P 2015. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74:13–22
    [Google Scholar]
  40. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306
    [Google Scholar]
  41. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50
    [Google Scholar]
  42. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–17
    [Google Scholar]
  43. Garcia-Mazcorro JF, Lage NN, Mertens-Talcott S, Talcott S, Chew B et al. 2018. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ 6:e4195
    [Google Scholar]
  44. Gentile CL, Weir TL. 2018. The gut microbiota at the intersection of diet and human health. Science 362:776–80
    [Google Scholar]
  45. Giménez-Bastida J, Truchado P, Larrosa M, Espín J, Tomás-Barberán F et al. 2012. Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit quorum sensing in Yersinia enterocolitica: phenotypic response and associated molecular changes. Food Chem 132:1465–74
    [Google Scholar]
  46. Gotteland M, Andrews M, Toledo M, Muñoz L, Caceres P et al. 2008. Modulation of Helicobacter pylori colonization with cranberry juice and Lactobacillus johnsonii La1 in children. Nutrition 24:421–26
    [Google Scholar]
  47. Gu J, Thomas‐Ahner JM, Riedl KM, Bailey MT, Vodovotz Y et al. 2019. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Mol. Nutr. Food Res. 63:1800636
    [Google Scholar]
  48. Guglielmetti S, Fracassetti D, Taverniti V, Del Bo’ C, Vendrame S et al. 2013. Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. J. Agric. Food Chem. 61:8134–40
    [Google Scholar]
  49. Håkansson Å, Tormo-Badia N, Baridi A, Xu J, Molin G et al. 2015. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin. Exp. Med. 15:107–20
    [Google Scholar]
  50. Han K, Balan P, Molist Gasa F, Boland M 2011. Green kiwifruit modulates the colonic microbiota in growing pigs. Lett. Appl. Microbiol. 52:379–85
    [Google Scholar]
  51. Han Y, Song M, Gu M, Ren D, Zhu X et al. 2019. Dietary intake of whole strawberry inhibited colonic inflammation in dextran-sulfate-sodium-treated mice via restoring immune homeostasis and alleviating gut microbiota dysbiosis. J. Agric. Food Chem. 67:339168–77
    [Google Scholar]
  52. Hanske L, Engst W, Loh G, Sczesny S, Blaut M, Braune A 2013. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br. J. Nutr. 109:1433–41
    [Google Scholar]
  53. Henning SM, Yang J, Woo SL, Lee R-P, Huang J et al. 2019. Hass avocado inclusion in a weight loss diet supported weight loss and altered gut microbiota: a 12 week randomized parallel-controlled trial. Curr. Dev. Nutr. 3:8nzz068
    [Google Scholar]
  54. Hervert-Hernandez D, Goñi I. 2011. Dietary polyphenols and human gut microbiota: a review. Food Rev. Int. 27:154–69
    [Google Scholar]
  55. Heyman-Lindén L, Kotowska D, Sand E, Bjursell M, Plaza M et al. 2016. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr. Res. 60:29993
    [Google Scholar]
  56. Hjorth MF, Blædel T, Bendtsen LQ, Lorenzen JK, Holm JB et al. 2019. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int. J. Obes. 43:149
    [Google Scholar]
  57. Hu Q, Yuan B, Wu X, Du H, Gu M et al. 2019. Dietary intake of Pleurotus eryngii ameliorated dextran sulfate sodium‐induced colitis in mice. Mol. Nutr. Food Res. 63:171801265
    [Google Scholar]
  58. Ilett KF, Tee LB, Reeves PT, Minchin RF 1990. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol. Ther. 46:67–93
    [Google Scholar]
  59. Islam MR, Lepp D, Godfrey DV, Orban S, Ross K et al. 2019. Effects of wild blueberry (Vaccinium angustifolium) pomace feeding on gut microbiota and blood metabolites in free-range pastured broiler chickens. Poultry Sci 98:93739–55
    [Google Scholar]
  60. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K et al. 2011. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 60:631–37
    [Google Scholar]
  61. Kaczmarek JL, Liu X, Charron CS, Novotny JA, Jeffery EH et al. 2019. Broccoli consumption affects the human gastrointestinal microbiota. J. Nutr. Biochem. 63:27–34
    [Google Scholar]
  62. Kameyama K, Itoh K. 2014. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ 29:4427–30
    [Google Scholar]
  63. Keppler K, Humpf H-U. 2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg. Med. Chem. 13:5195–205
    [Google Scholar]
  64. Khanal R, Howard LR, Prior RL 2013. Urinary excretion of phenolic acids in rats fed cranberry, blueberry, or black raspberry powder. J. Agric. Food Chem. 62:3987–96
    [Google Scholar]
  65. Koutsos A, Lima M, Conterno L, Gasperotti M, Bianchi M et al. 2017. Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model. Nutrients 9:E533
    [Google Scholar]
  66. Koutsos A, Tuohy K, Lovegrove J 2015. Apples and cardiovascular health: Is the gut microbiota a core consideration?. Nutrients 7:3959–98
    [Google Scholar]
  67. Lacombe A, Li RW, Klimis-Zacas D, Kristo AS, Tadepalli S et al. 2013. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLOS ONE 8:e67497
    [Google Scholar]
  68. Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB 2018. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J. Nutr. 148:209–19
    [Google Scholar]
  69. Ley RE, Turnbaugh PJ, Klein S, Gordon JI 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022
    [Google Scholar]
  70. Li CC, Liu C, Fu M, Hu KQ, Aizawa K et al. 2018. Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adiponectin function independent of carotenoid cleavage enzymes in mice. Mol. Nutr. Food Res. 62:1700738
    [Google Scholar]
  71. Li J, Butcher J, Mack D, Stintzi A 2014. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm. Bowel Dis. 21:139–53
    [Google Scholar]
  72. Li J, Wu T, Li N, Wang X, Chen G, Lyu X 2019. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct 10:333–43
    [Google Scholar]
  73. Li L, Wang L, Wu Z, Yao L, Wu Y et al. 2014. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci. Rep. 4:6234
    [Google Scholar]
  74. Li Z, Henning SM, Lee R-P, Lu Q-Y, Summanen PH et al. 2015. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct 6:2487–95
    [Google Scholar]
  75. Licht TR, Hansen M, Bergström A, Poulsen M, Krath BN et al. 2010. Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin. BMC Microbiol 10:13
    [Google Scholar]
  76. Lima ACD, Cecatti C, Fidélix MP, Adorno MAT, Sakamoto IK et al. 2019. Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: controlled clinical trials. J. Med. Food 22:202–10
    [Google Scholar]
  77. Liu W, Crott JW, Lyu L, Pfalzer AC, Li J et al. 2016. Diet- and genetically-induced obesity produces alterations in the microbiome, inflammation and Wnt pathway in the intestine of Apc+/1638N mice: comparisons and contrasts. J. Cancer 7:1780–90
    [Google Scholar]
  78. Liu X, Wang Y, Hoeflinger J, Neme B, Jeffery E, Miller M 2017. Dietary broccoli alters rat cecal microbiota to improve glucoraphanin hydrolysis to bioactive isothiocyanates. Nutrients 9:3262
    [Google Scholar]
  79. Louis P, Scott KP, Duncan SH, Flint HJ 2007. Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 102:1197–208
    [Google Scholar]
  80. Lu F, Li Y, Zhou B, Guo Q, Chen F et al. 2019. Early-life supplementation of grape pomace extracts lastingly promotes polyphenol metabolism and optimizes gut microbiota. Lancet In press
    [Google Scholar]
  81. Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLOS ONE 5:e15046
    [Google Scholar]
  82. Marungruang N, Kovalenko T, Osadchenko I, Voss U, Huang F et al. 2018. Lingonberries and their two separated fractions differently alter the gut microbiota, improve metabolic functions, reduce gut inflammatory properties, and improve brain function in ApoE−/− mice fed high-fat diet. Nutr. Neurosci. In press
    [Google Scholar]
  83. Matziouridou C, Marungruang N, Nguyen TD, Nyman M, Fåk F 2016. Lingonberries reduce atherosclerosis in ApoE−/− mice in association with altered gut microbiota composition and improved lipid profile. Mol. Nutr. Food Res. 60:1150–60
    [Google Scholar]
  84. Mayta-Apaza AC, Pottgen E, De Bodt J, Papp N, Marasini D et al. 2018. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. J. Nutr. Biochem. 59:160–72
    [Google Scholar]
  85. Molan AL, Lila MA, Mawson J, De S 2009. In vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts. World J. Microbiol. Biotechnol. 25:1243–49
    [Google Scholar]
  86. Monk JM, Lepp D, Wu W, Pauls KP, Robinson LE, Power KA 2017. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. J. Nutr. Biochem. 49:89–100
    [Google Scholar]
  87. Monk JM, Wu W, Lepp D, Wellings HR, Hutchinson AL et al. 2019. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J. Nutr. Biochem. 70:91–104
    [Google Scholar]
  88. Mosele JI, Gosalbes MJ, Macià A, Rubió L, Vázquez‐Castellanos JF et al. 2015. Effect of daily intake of pomegranate juice on fecal microbiota and feces metabolites from healthy volunteers. Mol. Nutr. Food Res. 59:1942–53
    [Google Scholar]
  89. Nakata T, Kyoui D, Takahashi H, Kimura B, Kuda T 2017. Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota. Int. J. Biol. Macromol. 97:173–80
    [Google Scholar]
  90. Nerurkar PV, Orias D, Soares N, Kumar M, Nerurkar VR 2019. Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J. Nutr. Biochem. 68:16–32
    [Google Scholar]
  91. Ojo B, El-Rassi GD, Payton ME, Perkins-Veazie P, Clarke S et al. 2016. Mango supplementation modulates gut microbial dysbiosis and short-chain fatty acid production independent of body weight reduction in C57BL/6 mice fed a high-fat diet. J. Nutr. 146:1483–91
    [Google Scholar]
  92. Okada Y, Tsuzuki Y, Hokari R, Komoto S, Kurihara C et al. 2009. Anti‐inflammatory effects of the genus Bifidobacterium on macrophages by modification of phospho‐IκB and SOCS gene expression. Int. J. Exp. Pathol. 90:131–40
    [Google Scholar]
  93. Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V et al. 2017. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLOS ONE 12:e0173004
    [Google Scholar]
  94. Özcan E, Sun J, Rowley DC, Sela DA 2017. A human gut commensal ferments cranberry carbohydrates to produce formate. Appl. Environ. Microbiol. 83:e01097–17
    [Google Scholar]
  95. Pan P, Lam V, Salzman N, Huang Y-W, Yu J et al. 2017. Black raspberries and their anthocyanin and fiber fractions alter the composition and diversity of gut microbiota in F-344 rats. Nutr. Cancer 69:943–51
    [Google Scholar]
  96. Paturi G, Butts C, Monro J, Nones K, Martell S et al. 2010. Cecal and colonic responses in rats fed 5 or 30% corn oil diets containing either 7.5% broccoli dietary fiber or microcrystalline cellulose. J. Agric. Food Chem. 58:6510–15
    [Google Scholar]
  97. Paturi G, Butts CA, Bentley‐Hewitt KL, Ansell J 2014. Influence of green and gold kiwifruit on indices of large bowel function in healthy rats. J. Food Sci. 79:H1611–20
    [Google Scholar]
  98. Paturi G, Butts CA, Monro JA, Hedderley D 2018. Effects of blackcurrant and dietary fibers on large intestinal health biomarkers in rats. Plant Foods Hum. Nutr. 73:54–60
    [Google Scholar]
  99. Paturi G, Butts CA, Stoklosinski H, Herath TD, Monro JA 2017. Short‐term feeding of fermentable dietary fibres influences the gut microbiota composition and metabolic activity in rats. Int. J. Food Sci. Technol. 52:2572–78
    [Google Scholar]
  100. Paturi G, Mandimika T, Butts CA, Zhu S, Roy NC et al. 2012. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a−/− mice, a model of inflammatory bowel diseases. Nutrition 28:324–30
    [Google Scholar]
  101. Peran L, Camuesco D, Comalada M, Nieto A, Concha A et al. 2006. Lactobacillus fermentum, a probiotic capable to release glutathione, prevents colonic inflammation in the TNBS model of rat colitis. Int. J. Colorectal Dis. 21:737–46
    [Google Scholar]
  102. Petersen C, Wankhade UD, Bharat D, Wong K, Mueller JE et al. 2019. Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. J. Nutr. Biochem. 66:63–69
    [Google Scholar]
  103. Plovier H, Everard A, Druart C, Depommier C, Van Hul M et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23:107–13
    [Google Scholar]
  104. Prorok-Hamon M, Friswell MK, Alswied A, Roberts CL, Song F et al. 2014. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut 63:761–70
    [Google Scholar]
  105. Rahman A, Bonny TS, Stonsaovapak S, Ananchaipattana C 2011. Yersinia enterocolitica: epidemiological studies and outbreaks. J. Pathog. 2011:239391
    [Google Scholar]
  106. Rajilić-Stojanović M, Shanahan F, Guarner F, de Vos WM 2013. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19:481–88
    [Google Scholar]
  107. Raqib R, Sarker P, Mily A, Alam NH, Arifuzzaman ASM et al. 2012. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect. Dis. 12:111
    [Google Scholar]
  108. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7:979
    [Google Scholar]
  109. Rodes L, Khan A, Paul A, Coussa-Charley M, Marinescu D et al. 2013. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. J. Microbiol. Biotechnol. 23:518–26
    [Google Scholar]
  110. Rodríguez-Morató J, Matthan NR, Liu J, de la Torre R, Chen C-YO 2018. Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. J. Nutr. Biochem. 62:76–86
    [Google Scholar]
  111. Rom O, Korach-Rechtman H, Hayek T, Danin-Poleg Y, Bar H et al. 2017. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice. Arch. Toxicol. 91:1709–25
    [Google Scholar]
  112. Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P et al. 2015. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet–induced metabolic syndrome. Diabetes 64:2847–58
    [Google Scholar]
  113. Saura‐Calixto F, Pérez‐Jiménez J, Touriño S, Serrano J, Fuguet E et al. 2010. Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Mol. Nutr. Food Res. 54:939–46
    [Google Scholar]
  114. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA et al. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–95
    [Google Scholar]
  115. Segain J, De La Blétiere DR, Bourreille A, Leray V, Gervois N et al. 2000. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease. Gut 47:397–403
    [Google Scholar]
  116. Seregin SS, Golovchenko N, Schaf B, Chen J, Pudlo NA et al. 2017. NLRP6 protects Il10−/− mice from colitis by limiting colonization of Akkermansia muciniphila. . Cell Rep 19:733–45
    [Google Scholar]
  117. Sha S, Xu B, Wang X, Zhang Y, Wang H et al. 2013. The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagn. Microbiol. Infect. Dis. 75:245–51
    [Google Scholar]
  118. Shimizu T, Mori K, Ouchi K, Kushida M, Tsuduki T 2018. Effects of dietary intake of Japanese mushrooms on visceral fat accumulation and gut microbiota in mice. Nutrients 10:E610
    [Google Scholar]
  119. Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW et al. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–35
    [Google Scholar]
  120. Shinde T, Perera AP, Vemuri R, Gondalia SV, Karpe AV et al. 2019. Synbiotic supplementation containing whole plant sugar cane fibre and probiotic spores potentiates protective synergistic effects in mouse model of IBD. Nutrients 11:E818
    [Google Scholar]
  121. Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T 2010. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 16:510–15
    [Google Scholar]
  122. Shtriker MG, Hahn M, Taieb E, Nyska A, Moallem U et al. 2018. Fenugreek galactomannan and citrus pectin improve several parameters associated with glucose metabolism and modulate gut microbiota in mice. Nutrition 46:134–42.e3
    [Google Scholar]
  123. Sido A, Radhakrishnan S, Kim SW, Eriksson E, Shen F et al. 2017. A food-based approach that targets interleukin-6, a key regulator of chronic intestinal inflammation and colon carcinogenesis. J. Nutr. Biochem. 43:11–17
    [Google Scholar]
  124. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. PNAS 105:16731–36
    [Google Scholar]
  125. Solano-Aguilar G, Jang S, Lakshman S, Gupta R, Beshah E et al. 2018. The effect of dietary mushroom Agaricus bisporus on intestinal microbiota composition and host immunological function. Nutrients 10:E1721
    [Google Scholar]
  126. Song H, Chu Q, Yan F, Yang Y, Han W, Zheng X 2016. Red pitaya betacyanins protects from diet‐induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice. J. Gastroenterol. Hepatol. 31:1462–69
    [Google Scholar]
  127. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–15
    [Google Scholar]
  128. Swidsinski A, Loening‐Baucke V, Vaneechoutte M, Doerffel Y 2008. Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis. 14:147–61
    [Google Scholar]
  129. Thursby E, Juge N. 2017. Introduction to the human gut microbiota. Biochem. J. 474:1823–36
    [Google Scholar]
  130. Tu P, Bian X, Chi L, Gao B, Ru H et al. 2018. Characterization of the functional changes in mouse gut microbiome associated with increased Akkermansia muciniphila population modulated by dietary black raspberries. ACS Omega 3:10927–37
    [Google Scholar]
  131. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31
    [Google Scholar]
  132. Tzounis X, Vulevic J, Kuhnle GG, George T, Leonczak J et al. 2008. Flavanol monomer-induced changes to the human faecal microflora. Br. J. Nutr. 99:782–92
    [Google Scholar]
  133. Varshney J, Ooi JH, Jayarao BM, Albert I, Fisher J et al. 2013. White button mushrooms increase microbial diversity and accelerate the resolution of Citrobacter rodentium infection in mice. J. Nutr. 143:526–32
    [Google Scholar]
  134. Vendrame S, Guglielmetti S, Riso P, Arioli S, Klimis-Zacas D, Porrini M 2011. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J. Agric. Food Chem. 59:12815–20
    [Google Scholar]
  135. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–30
    [Google Scholar]
  136. Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK 2004. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32:1377–82
    [Google Scholar]
  137. Wankhade UD, Zhong Y, Lazarenko OP, Chintapalli SV, Piccolo BD et al. 2019. Sex-specific changes in gut microbiome composition following blueberry consumption in C57BL/6J mice. Nutrients 11:313
    [Google Scholar]
  138. Wei T, Bao J-Y, Yang H-H, Lin J-F, Zheng Q-W et al. 2019. Musa basjoo regulates the gut microbiota in mice by rebalancing the abundance of probiotic and pathogen. Microb. Pathog. 131:205–11
    [Google Scholar]
  139. Wu X, Song M, Cai X, Neto C, Tata A et al. 2018. Chemopreventive effects of whole cranberry (Vaccinium macrocarpon) on colitis‐associated colon tumorigenesis. Mol. Nutr. Food Res. 62:1800942
    [Google Scholar]
  140. Zella GC, Hait EJ, Glavan T, Gevers D, Ward DV et al. 2010. Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflamm. Bowel Dis. 17:1092–100
    [Google Scholar]
  141. Zeng H, Huang C, Lin S, Zheng M, Chen C et al. 2017. Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice. J. Agric. Food Chem. 65:9217–25
    [Google Scholar]
  142. Zeng M, Inohara N, Nuñez G 2017. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10:18–26
    [Google Scholar]
  143. Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C 2019. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front. Cell. Infect. Microbiol. 9:239
    [Google Scholar]
  144. Zhou D, Pan Q, Xin F-Z, Zhang R-N, He C-X, Chen G-Y et al. 2017. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J. Gastroenterol. 23:60–75
    [Google Scholar]
  145. Zmora N, Suez J, Elinav E 2019. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16:35–56
    [Google Scholar]
/content/journals/10.1146/annurev-food-111519-014337
Loading
/content/journals/10.1146/annurev-food-111519-014337
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error