1932

Abstract

The domestication of the horse some 5,500 years ago followed those of dogs, sheep, goats, cattle, and pigs by ∼2,500–10,000 years. By providing fast transportation and transforming warfare, the horse had an impact on human history with no equivalent in the animal kingdom. Even though the equine sport industry has considerable economic value today, the evolutionary history underlying the emergence of the modern domestic horse remains contentious. In the last decade, novel sequencing technologies have revolutionized our capacity to sequence the complete genome of organisms, including from archaeological remains. Applied to horses, these technologies have provided unprecedented levels of information and have considerably changed models of horse domestication. This review illustrates how ancient DNA, especially ancient genomes, has inspired researchers to rethink the process by which horses were first domesticated and then diversified into a variety of breeds showing a range of traits that are useful to humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-021920-011805
2020-11-23
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-021920-011805.html?itemId=/content/journals/10.1146/annurev-genet-021920-011805&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Achilli A, Olivieri A, Soares P, Lancioni H, Hooshiar Kashani B et al. 2012. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. PNAS 109:2449–54
    [Google Scholar]
  2. 2. 
    Allentoft ME, Sikora M, Sjögren KG, Rasmussen S, Rasmussen M et al. 2015. Population genomics of Bronze Age Eurasia. Nature 522:167–72
    [Google Scholar]
  3. 3. 
    Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D et al. 2012. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 488:642–46
    [Google Scholar]
  4. 4. 
    Bellone RR, Holl H, Setaluri V, Devi S, Maddodi N et al. 2013. Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse. PLOS ONE 8:e78280
    [Google Scholar]
  5. 5. 
    Bennett EA, Champlot S, Peters J, Arbuckle BS, Guimaraes S et al. 2017. Taming the late Quaternary phylogeography of the Eurasiatic wild ass through ancient and modern DNA. PLOS ONE 12:e0174216
    [Google Scholar]
  6. 6. 
    Boeskorov GG, Potapova OR, Protopopov AV, Plotnikov VV, Maschenko EN et al. 2018. A study of a frozen mummy of a wild horse from the Holocene of Yakutia, East Siberia, Russia. Mammal Res 63:307–14
    [Google Scholar]
  7. 7. 
    Botigué LR, Song S, Scheu A, Gopalan S, Pendleton AL et al. 2017. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8:16082
    [Google Scholar]
  8. 8. 
    Bower MA, McGivney BA, Campana MG, Gu J, Andersson LS et al. 2012. The genetic origin and history of speed in the Thoroughbred racehorse. Nat. Commun. 3:643
    [Google Scholar]
  9. 9. 
    Bowling AT, Zimmermann W, Ryder O, Penado C, Peto S et al. 2003. Genetic variation in Przewalski's horses, with special focus on the last wild caught mare, 231 Orlitza III. Cytogenet. Genome Res. 101:226–34
    [Google Scholar]
  10. 10. 
    Boyd L, Houpt KA. 1994. Przewalski's Horse: The History and Biology of an Endangered Species. Albany, NY: SUNY Press
    [Google Scholar]
  11. 11. 
    Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M et al. 2010. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res 38:e87
    [Google Scholar]
  12. 12. 
    Bryc K, Patterson N, Reich D 2013. A novel approach to estimating heterozygosity from low-coverage genome sequence. Genetics 195:553–61
    [Google Scholar]
  13. 13. 
    Burns EN, Bordbari MH, Mienaltowski MJ, Affolter VK, Barro MV et al. 2018. Generation of an equine biobank to be used for Functional Annotation of Animal Genomes project. Anim. Genet. 49:564–70
    [Google Scholar]
  14. 14. 
    Cheng JY, Mailund T, Nielsen R 2017. Fast admixture analysis and population tree estimation for SNP and NGS data. Bioinformatics 33:2148–55
    [Google Scholar]
  15. 15. 
    Cieslak M, Pruvost M, Benecke N, Hofreiter M, Morales A et al. 2010. Origin and history of mitochondrial DNA lineages in domestic horses. PLOS ONE 5:e15311
    [Google Scholar]
  16. 16. 
    Cruz-Dávalos DI, Llamas B, Gaunitz C, Fages A, Gamba C et al. 2017. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol. Ecol. Resour. 17:508–22
    [Google Scholar]
  17. 17. 
    Daly KG, Maisano Delser P, Mullin VE, Scheu A et al. 2018. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361:85–88
    [Google Scholar]
  18. 18. 
    Der Sarkissian C, Allentoft ME, Ávila-Arcos MC, Barnett R, Campos PF et al. 2015. Ancient genomics. Philos. Trans. R. Soc. B 370:20130387
    [Google Scholar]
  19. 19. 
    Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P et al. 2015. Evolutionary genomics and conservation of the endangered Przewalski's horse. Curr. Biol. 25:2577–83
    [Google Scholar]
  20. 20. 
    Der Sarkissian C, Vilstrup JT, Schubert M, Seguin-Orlando A, Eme D et al. 2015. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids. Biol. Lett. 11:20141058
    [Google Scholar]
  21. 21. 
    Drews R. 2004. Early Riders. The Beginnings of Mounted Warfare in Asia and Europe London/New York: Routledge
    [Google Scholar]
  22. 22. 
    Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A et al. 2019. Tracking five millennia of horse management with extensive ancient genome time series. Cell 177:1419–35.e31
    [Google Scholar]
  23. 23. 
    Fages A, Seguin-Orlando A, Germonpré M, Orlando L 2020. Horse males became over-represented in archaeological assemblages during the Bronze Age. J. Arc. Sci. 31:102364
    [Google Scholar]
  24. 24. 
    Felkel S, Vogl C, Rigler D, Jagannathan V, Leeb T et al. 2018. Asian horses deepen the MSY phylogeny. Anim. Genet. 49:90–93
    [Google Scholar]
  25. 25. 
    Frantz LAF, Bradley DG, Larson G, Orlando L 2020. Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 21:449–60
    [Google Scholar]
  26. 26. 
    Frantz LAF, Haile J, Lin AT, Scheu A, Geörg C et al. 2019. Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. PNAS 116:17231–38
    [Google Scholar]
  27. 27. 
    Frantz LAF, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M et al. 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352:1228–31
    [Google Scholar]
  28. 28. 
    Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N et al. 2018. Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science 360:111–14
    [Google Scholar]
  29. 29. 
    Gu J, MacHugh DE, McGivney BA, Park SD, Katz LM, Hill EW 2010. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet. J. 42:s38569–75
    [Google Scholar]
  30. 30. 
    Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S et al. 2015. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522:207–11
    [Google Scholar]
  31. 31. 
    Hanghøj K, Orlando L. 2018. Ancient epigenomics. Paleogenomics C Lindqvist, OP Rajora 1–37 Cham, Switz: Springer
    [Google Scholar]
  32. 32. 
    Hanghøj K, Renaud G, Albrechtsen A, Orlando L 2019. DamMet: ancient methylome mapping accounting for errors, true variants, and post-mortem DNA damage. Gigascience 8:giz025
    [Google Scholar]
  33. 33. 
    Heintzman PD, Zazula GD, MacPhee R, Scott E, Cahill JA et al. 2017. A new genus of horse from Pleistocene North America. eLife 6:e29944
    [Google Scholar]
  34. 34. 
    Hendricks BL. 2007. International Encyclopedia of Horse Breeds Norman, OK: Univ. Okla. Press
    [Google Scholar]
  35. 35. 
    Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–84
    [Google Scholar]
  36. 36. 
    Hill EW, Gu J, Eivers SS, Fonseca RG, McGivney BA et al. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLOS ONE 5:e8645
    [Google Scholar]
  37. 37. 
    Hill EW, McGivney BA, Gu J, Whiston R, Machugh DE 2010. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genom 11:552
    [Google Scholar]
  38. 38. 
    Imsland F, McGowan K, Rubin CJ, Henegar C, Sundström E et al. 2016. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nat. Genet. 48:152–58
    [Google Scholar]
  39. 39. 
    Janečka JE, Davis BW, Ghosh S, Paria N, Das PJ et al. 2018. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat. Commun. 9:2945
    [Google Scholar]
  40. 40. 
    Jansen T, Forster P, Levine MA, Oelke H, Hurles M et al. 2002. Mitochondrial DNA and the origins of the domestic horse. PNAS 99:10905–10
    [Google Scholar]
  41. 41. 
    Jónsson H, Ginolhac A, Schubert M, Johnson PL, Orlando L 2013. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29:1682–84
    [Google Scholar]
  42. 42. 
    Jónsson H, Schubert M, Seguin-Orlando A, Ginolhac A, Petersen L et al. 2014. Speciation with gene flow in equids despite extensive chromosomal plasticity. PNAS 111:18655–60
    [Google Scholar]
  43. 43. 
    Kelekna P. 2009. The Horse in Human History Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  44. 44. 
    Larson G, Fuller DQ. 2014. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45:115–36
    [Google Scholar]
  45. 45. 
    Lau AN, Peng L, Goto H, Chemnick L, Ryder OA et al. 2009. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences. Mol. Biol. Evol. 26:199–208
    [Google Scholar]
  46. 46. 
    Leonardi M, Boschin F, Giampoudakis K, Beyer RM, Krapp M et al. 2018. Late Quaternary horses in Eurasia in the face of climate and vegetation change. Sci. Adv. 4:eaar5589
    [Google Scholar]
  47. 47. 
    Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475:493–96
    [Google Scholar]
  48. 48. 
    Librado P, Der Sarkissian C, Ermini L, Schubert M, Jónsson H et al. 2015. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. PNAS 112:E6889–97
    [Google Scholar]
  49. 49. 
    Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S et al. 2016. The evolutionary origin and genetic makeup of domestic horses. Genetics 204:423–34
    [Google Scholar]
  50. 50. 
    Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M et al. 2017. Ancient genomic changes associated with domestication of the horse. Science 356:442–45
    [Google Scholar]
  51. 51. 
    Librado P, Orlando L. 2018. Detecting signatures of positive selection along defined branches of a population tree using LSD. Mol. Biol. Evol. 35:1520–35
    [Google Scholar]
  52. 52. 
    Linderholm A, Larson G. 2013. The role of humans in facilitating and sustaining coat colour variation in domestic animals. Sem. Cell Dev. Biol. 24:587–93
    [Google Scholar]
  53. 53. 
    Lindgren G, Backström N, Swinburne J, Hellborg L, Einarsson A et al. 2004. Limited number of patrilines in horse domestication. Nat. Genet. 36:335–36
    [Google Scholar]
  54. 54. 
    Lippold S, Knapp M, Kuznetsova T, Leonard JA, Benecke N et al. 2011. Discovery of lost diversity of paternal horse lineages using ancient DNA. Nat. Commun. 2:450
    [Google Scholar]
  55. 55. 
    Lippold S, Matzke NJ, Reissmann M, Hofreiter M 2011. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evol. Biol. 11:328
    [Google Scholar]
  56. 56. 
    Liu X, Zhang Y, Li Y, Pan J, Wang D et al. 2019. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol. Biol. Evol. 36:2591–603
    [Google Scholar]
  57. 57. 
    Lord KA, Larson G, Coppinger RP, Karlsson EK 2020. The history of farm foxes undermines the animal domestication syndrome. Trends Ecol. Evol. 35:125–36
    [Google Scholar]
  58. 58. 
    Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA et al. 2009. Coat color variation at the beginning of horse domestication. Science 324:485
    [Google Scholar]
  59. 59. 
    Ludwig A, Reissmann M, Benecke N, Bellone R, Sandoval-Castellanos E et al. 2015. Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Philos. Trans. R. Soc. B 370:20130386
    [Google Scholar]
  60. 60. 
    Maddison WP, Knowles LL. 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55:21–30
    [Google Scholar]
  61. 61. 
    Malaspinas AS. 2016. Methods to characterize selective sweeps using time serial samples: an ancient DNA perspective. Mol. Ecol. 25:24–41
    [Google Scholar]
  62. 62. 
    Marciniak S, Perry GH. 2017. Harnessing ancient genomes to study the history of human adaptation. Nat. Rev. Genet. 18:659–74
    [Google Scholar]
  63. 63. 
    McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E et al. 2012. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLOS Genet 8:e1002451
    [Google Scholar]
  64. 64. 
    McGahern A, Bower MA, Edwards CJ, Brophy PO, Sulimova G et al. 2006. Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations. Anim. Genet. 37:494–97
    [Google Scholar]
  65. 65. 
    McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM et al. 2017. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57:690–704
    [Google Scholar]
  66. 66. 
    Metcalf JL, Song SJ, Morton JT, Weiss S, Seguin-Orlando A et al. 2017. Evaluating the impact of domestication and captivity on the horse gut microbiome. Sci. Rep. 7:15497
    [Google Scholar]
  67. 67. 
    Mittnik A, Massy K, Knipper C, Wittenborn F, Friedrich R et al. 2019. Kinship-based social inequality in Bronze Age Europe. Science 366:731–34
    [Google Scholar]
  68. 68. 
    Molin AM, Berglund J, Webster MT, Lindblad-Toh K 2014. Genome-wide copy number variant discovery in dogs using the CanineHD genotyping array. BMC Genom 15:210
    [Google Scholar]
  69. 69. 
    Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R et al. 2019. The formation of human populations in South and Central Asia. Science 365:eaat7487
    [Google Scholar]
  70. 70. 
    Nistelberger HM, Pálsdóttir AH, Star B, Leifsson R, Gondeka AT et al. 2018. Sexing Viking Age horses from burial and non-burial sites in Iceland using ancient DNA. J. Arc. Sci. 101:115–22
    [Google Scholar]
  71. 71. 
    Oakenfull EA, Ryder OA. 1998. Mitochondrial control region and 12S rRNA variation in Przewalski's horse (Equus przewalskii). Anim. Genet. 29:456–59
    [Google Scholar]
  72. 72. 
    Orlando L. 2020. Ancient genomes reveal unexpected horse domestication and management dynamics. Bioessays 42:e1900164
    [Google Scholar]
  73. 73. 
    Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78
    [Google Scholar]
  74. 74. 
    Orlando L, Librado P. 2019. Origin and evolution of deleterious mutations in horses. Genes 10:649
    [Google Scholar]
  75. 75. 
    Orlando L, Metcalf JL, Alberdi MT, Telles-Antunes M, Bonjean D et al. 2009. Revising the recent evolutionary history of equids using ancient DNA. PNAS 106:21754–59
    [Google Scholar]
  76. 76. 
    O'Toole PW, Shiels PG. 2020. The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. J. Intern. Med. 287:271–82
    [Google Scholar]
  77. 77. 
    Outram AK, Kasparov A, Stear NA, Varfolomeev V, Usmanova E et al. 2012. Patterns of pastoralism in later Bronze Age Kazakhstan: new evidence from faunal and lipid residue analyses. J. Arc. Sci. 39:2424–35
    [Google Scholar]
  78. 78. 
    Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A et al. 2009. The earliest horse harnessing and milking. Science 323:1332–35
    [Google Scholar]
  79. 79. 
    Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N et al. 2012. Ancient admixture in human history. Genetics 192:1065–93
    [Google Scholar]
  80. 80. 
    Pedersen JS, Valen E, Velazquez AM, Parker BJ, Rasmussen M et al. 2014. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res 24:454–66
    [Google Scholar]
  81. 81. 
    Perry GH, Makarewicz CA. 2019. Horse paleogenomes and human-animal interactions in prehistory. Trends Genet 35:473–75
    [Google Scholar]
  82. 82. 
    Petersen J, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS et al. 2013. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLOS Genet 9:e1003211
    [Google Scholar]
  83. 83. 
    Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A 2010. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110–21
    [Google Scholar]
  84. 84. 
    Pruvost M, Bellone R, Benecke N, Sandoval-Castellanos E, Cieslak M et al. 2011. Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. PNAS 108:18626–30
    [Google Scholar]
  85. 85. 
    Racimo F, Berg JJ, Pickrell JK 2018. Detecting polygenic adaptation in admixture graphs. Genetics 208:1565–84
    [Google Scholar]
  86. 86. 
    Refoyo-Martínez A, da Fonseca RR, Halldórsdóttir K, Árnason E, Mailund T et al. 2019. Identifying loci under positive selection in complex population histories. Genome Res 29:1506–20
    [Google Scholar]
  87. 87. 
    Rieder S, Taourit S, Mariat D, Langlois B, Gu G et al. 2001. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome 12:450–55
    [Google Scholar]
  88. 88. 
    Robb J, Harris OJT. 2018. Becoming gendered in European prehistory: Was Neolithic gender fundamentally different. ? Am. Antiq. 83:128–47
    [Google Scholar]
  89. 89. 
    Schraiber JG, Evans SN, Slatkin M 2016. Bayesian inference of natural selection from allele frequency time series. Genetics 203:493–511
    [Google Scholar]
  90. 90. 
    Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:E5661–69
    [Google Scholar]
  91. 91. 
    Sommer RS, Benecke N, Lõugas L, Nelle O, Schmölcke U 2011. Holocene survival of the wild in Europe: a matter of open landscape. ? J. Quat. Sci. 26:805–12
    [Google Scholar]
  92. 92. 
    Sonnenburg JL, Sonnenburg ED. 2019. Vulnerability of the industrialized microbiota. Science 366:eaaw9255
    [Google Scholar]
  93. 93. 
    Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V et al. 1996. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–94
    [Google Scholar]
  94. 94. 
    Upadhyay M, da Silva VH, Megens HJ, Visker MHPW, Ajmone-Marsan P et al. 2017. Distribution and functionality of copy number variation across European cattle populations. Front. Genet. 8:108
    [Google Scholar]
  95. 95. 
    Verdugo MP, Mullin VE, Scheu A, Mattiangeli V, Daly KG et al. 2019. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 365:173–76
    [Google Scholar]
  96. 96. 
    Vilstrup JT, Seguin-Orlando A, Stiller M, Ginolhac A, Raghavan M et al. 2013. Mitochondrial phylogenomics of modern and ancient equids. PLOS ONE 8:e55950
    [Google Scholar]
  97. 97. 
    Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S et al. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–67
    [Google Scholar]
  98. 98. 
    Wallner B, Brem G, Müller M, Achmann R 2003. Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus przewalskii and Equus caballus. Anim. . Genet 34:453–56
    [Google Scholar]
  99. 99. 
    Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E et al. 2017. Y chromosome uncovers the recent Oriental origin of modern stallions. Curr. Biol. 27:2029–35.e5
    [Google Scholar]
  100. 100. 
    Wallner B, Vogl C, Shukla P, Burgstaller JP, Druml T et al. 2013. Identification of genetic variation on the horse Y chromosome and the tracing of male founder lineages in modern breeds. PLOS ONE 8:e60015
    [Google Scholar]
  101. 101. 
    Warinner C, Herbig A, Mann A, Fellows Yates JA, Weiß CL et al. 2017. A robust framework for microbial archaeology. Annu. Rev. Genom. Hum. Genet. 18:321–56
    [Google Scholar]
  102. 102. 
    Warmuth V, Eriksson A, Bower MA, Cañon J, Cothran G et al. 2011. European domestic horses originated in two holocene refugia. PLOS ONE 6:e18194
    [Google Scholar]
  103. 103. 
    Weinstock J, Willerslev E, Sher A, Tong W, Ho SY et al. 2005. Evolution, systematics, and phylogeography of Pleistocene horses in the new world: a molecular perspective. PLOS Biol 3:e241
    [Google Scholar]
  104. 104. 
    Wilkins AS, Wrangham RW, Fitch WT 2014. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 197:795–808
    [Google Scholar]
  105. 105. 
    Wutke S, Andersson L, Benecke N, Sandoval-Castellanos E, Gonzalez J et al. 2016. The origin of ambling horses. Curr. Biol. 26:R697–99
    [Google Scholar]
  106. 106. 
    Wutke S, Benecke N, Sandoval-Castellanos E, Döhle HJ, Friederich S et al. 2016. Spotted phenotypes in horses lost attractiveness in the Middle Ages. Sci. Rep. 6:38548
    [Google Scholar]
  107. 107. 
    Wutke S, Ludwig A. 2019. Targeted PCR amplification and multiplex sequencing of ancient DNA for SNP analysis. Methods Mol. Biol. 1963:141–47
    [Google Scholar]
  108. 108. 
    Wutke S, Sandoval-Castellanos E, Benecke N, Döhle HJ, Friederich S et al. 2018. Decline of genetic diversity in ancient domestic stallions in Europe. Sci. Adv. 4:eaap9691
    [Google Scholar]
  109. 109. 
    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX et al. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78
    [Google Scholar]
  110. 110. 
    Yuan JX, Hou XD, Barlow A, Preick M, Taron UH et al. 2019. Molecular identification of late and terminal Pleistocene Equus ovodovi from northeastern China. PLOS ONE 14:e0216883
    [Google Scholar]
  111. 111. 
    Zeder M. 2012. Pathways to animal domestication. Biodiversity in Agriculture: Domestication, Evolution, and Sustainability P Gepts, T Famula, R Bettinger, S Brush, A Damania et al.227–59 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-genet-021920-011805
Loading
/content/journals/10.1146/annurev-genet-021920-011805
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error