1932

Abstract

Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality—how germline cells reset the aging of cells—drawing a parallel between yeast and multicellular organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022123-040039
2023-11-27
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-022123-040039.html?itemId=/content/journals/10.1146/annurev-genet-022123-040039&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdu Y, Maniscalco C, Heddleston JM, Chew T-L, Nance J. 2016. Developmentally programmed germ cell remodelling by endodermal cell cannibalism. Nat. Cell Biol. 18:1302–10
    [Google Scholar]
  2. 2.
    Ackermann M, Stearns SC, Jenal U. 2003. Senescence in a bacterium with asymmetric division. Science 300:1920
    [Google Scholar]
  3. 3.
    Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T. 2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–53
    [Google Scholar]
  4. 4.
    Aire TA. 2014. Spermiogenesis in birds. Spermatogenesis 4:e959392
    [Google Scholar]
  5. 5.
    Aldrich JC, Maggert KA. 2015. Transgenerational inheritance of diet-induced genome rearrangements in Drosophila. PLOS Genet 11:e1005148
    [Google Scholar]
  6. 6.
    Arama E, Agapite J, Steller H. 2003. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev. Cell 4:687–97
    [Google Scholar]
  7. 7.
    Arnon J, Meirow D, Lewis-Roness H, Ornoy A. 2001. Genetic and teratogenic effects of cancer treatments on gametes and embryos. Hum. Reprod. Update 7:4394–403
    [Google Scholar]
  8. 8.
    Bianciardi A, Boschi M, Swanson EE, Belloni M, Robbins LG. 2012. Ribosomal DNA organization before and after magnification in Drosophila melanogaster. Genetics 191:703–23
    [Google Scholar]
  9. 9.
    bin Imtiaz MK, Royall LN, Gonzalez-Bohorquez D, Jessberger S. 2022. Human neural progenitors establish a diffusion barrier in the endoplasmic reticulum membrane during cell division. Development 149:dev200613
    [Google Scholar]
  10. 10.
    Blanco-Rodriguez J, Martinez-Garcia C. 1999. Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol. Reprod. 61:1541–47
    [Google Scholar]
  11. 11.
    Breucker H, Schäfer E, Holstein A-F. 1985. Morphogenesis and fate of the residual body in human spermiogenesis. Cell Tissue Res 240:303–9
    [Google Scholar]
  12. 12.
    Bufalino MR, DeVeale B, van der Kooy D. 2013. The asymmetric segregation of damaged proteins is stem cell–type dependent. J. Cell Biol. 201:523–30
    [Google Scholar]
  13. 13.
    Cairns J. 2006. Cancer and the immortal strand hypothesis. Genetics 174:1069–72
    [Google Scholar]
  14. 14.
    Chakravarti D, LaBella KA, DePinho RA. 2021. Telomeres: history, health, and hallmarks of aging. Cell 184:306–22
    [Google Scholar]
  15. 15.
    Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Buvelot Frei S et al. 2014. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife 3:e01883
    [Google Scholar]
  16. 16.
    Conboy MJ, Karasov AO, Rando TA. 2007. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLOS Biol 5:e102
    [Google Scholar]
  17. 17.
    Conduit PT, Raff JW. 2010. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20:2187–92
    [Google Scholar]
  18. 18.
    Coppe J-P, Desprez P-Y, Krtolica A, Campisi J. 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5:99–118
    [Google Scholar]
  19. 19.
    de Cicco DV, Glover DM. 1983. Amplification of rDNA and type I sequences in Drosophila males deficient in rDNA. Cell 32:1217–25
    [Google Scholar]
  20. 20.
    Denoth-Lippuner A, Krzyzanowski MK, Stober C, Barral Y 2014. Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. eLife 3:e03790
    [Google Scholar]
  21. 21.
    Elabd C, Cousin W, Chen RY, Chooljian MS, Pham JT et al. 2013. DNA methyltransferase-3-dependent nonrandom template segregation in differentiating embryonic stem cells. J. Cell Biol. 203:73–85
    [Google Scholar]
  22. 22.
    Erjavec N, Larsson L, Grantham J, Nystrom T. 2007. Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21:2410–21
    [Google Scholar]
  23. 23.
    Fabrizio JJ, Hime G, Lemmon SK, Bazinet C. 1998. Genetic dissection of sperm individualization in Drosophila melanogaster. Development 125:1833–43
    [Google Scholar]
  24. 24.
    Falcón AA, Aris JP. 2003. Plasmid accumulation reduces life span in Saccharomyces cerevisiae. J. Biol. Chem. 278:41607–17
    [Google Scholar]
  25. 25.
    Fan W, Waymire KG, Narula N, Li P, Rocher C et al. 2008. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–62
    [Google Scholar]
  26. 26.
    Floros VI, Pyle A, Dietmann S, Wei W, Tang WWC et al. 2023. Author correction: Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 25:194
    [Google Scholar]
  27. 27.
    Grummt I. 2013. The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma 122:487–97
    [Google Scholar]
  28. 28.
    Hawley RS, Marcus CH. 1989. Recombinational controls of rDNA redundancy in Drosophila. Annu. Rev. Genet. 23:87–120
    [Google Scholar]
  29. 29.
    Hawley RS, Marcus CH, Cameron ML, Schwartz RL, Zitron AE. 1985. Repair-defect mutations inhibit rDNA magnification in Drosophila and discriminate between meiotic and premeiotic magnification. PNAS 82:8095–99
    [Google Scholar]
  30. 30.
    Hawley RS, Tartof KD. 1983. The effect of mei-41 on rDNA redundancy in Drosophila melanogaster. Genetics 104:63–80
    [Google Scholar]
  31. 31.
    He C, Zhou C, Kennedy BK. 2018. The yeast replicative aging model. Biochim. Biophys. Acta Mol. Basis Dis. 1864:2690–96
    [Google Scholar]
  32. 32.
    Henderson KA, Gottschling DE. 2008. A mother's sacrifice: What is she keeping for herself?. Curr. Opin. Cell Biol. 20:723–28
    [Google Scholar]
  33. 33.
    Henderson KA, Hughes AL, Gottschling DE 2014. Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. eLife 3:e03504
    [Google Scholar]
  34. 34.
    Hill JH, Chen Z, Xu H. 2014. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat. Genet. 46:389–92
    [Google Scholar]
  35. 35.
    Hill SM, Hao X, Gronvall J, Spikings-Nordby S, Widlund PO et al. 2016. Asymmetric inheritance of aggregated proteins and age reset in yeast are regulated by Vac17-dependent vacuolar functions. Cell Rep 16:826–38
    [Google Scholar]
  36. 36.
    Hori Y, Engel C, Kobayashi T. 2023. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat. Rev. Mol. Cell Biol. 24:414–29
    [Google Scholar]
  37. 37.
    Hotz M, Thayer NH, Hendrickson DG, Schinski EL, Xu J, Gottschling DE. 2022. rDNA array length is a major determinant of replicative lifespan in budding yeast. PNAS 119:e2119593119
    [Google Scholar]
  38. 38.
    Hu J, Cheng S, Wang H, Li X, Liu S et al. 2019. Distinct roles of two myosins in C. elegans spermatid differentiation. PLOS Biol 17:e3000211
    [Google Scholar]
  39. 39.
    Huang J, Wang H, Chen Y, Wang X, Zhang H. 2012. Residual body removal during spermatogenesis in C. elegans requires genes that mediate cell corpse clearance. Development 139:4613–22
    [Google Scholar]
  40. 40.
    Huang Q, Liu Y, Zhang S, Yap YT, Li W et al. 2021. Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice. Autophagy 17:1753–67
    [Google Scholar]
  41. 41.
    Januschke J, Llamazares S, Reina J, Gonzalez C. 2011. Drosophila neuroblasts retain the daughter centrosome. Nat. Commun. 2:243
    [Google Scholar]
  42. 42.
    Johnston JA, Ward CL, Kopito RR. 1998. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143:1883–98
    [Google Scholar]
  43. 43.
    Katajisto P, Döhla J, Chaffer C, Pentinmikko N, Marjanovic N et al. 2015. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–43
    [Google Scholar]
  44. 44.
    Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M et al. 2007. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–42
    [Google Scholar]
  45. 45.
    King GA, Goodman JS, Schick JG, Chetlapalli K, Jorgens DM et al. 2019. Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast. eLife 8:e47156
    [Google Scholar]
  46. 46.
    Kopito RR. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524–30
    [Google Scholar]
  47. 47.
    Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. 2018. Centromeres license the mitotic condensation of yeast chromosome arms. Cell 175:780–95.e15
    [Google Scholar]
  48. 48.
    Lai C-Y, Jaruga E, Borghouts C, Jazwinski SM. 2002. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162:73–87
    [Google Scholar]
  49. 49.
    L'Hernault SW 2006. Spermatogenesis. In WormBook The C. elegans Research Community 1–14. Wormbook. http://www.wormbook.org/chapters/www_spermatogenesis/spermatogenesis.html
    [Google Scholar]
  50. 50.
    Lieber T, Jeedigunta SP, Palozzi JM, Lehmann R, Hurd TR. 2019. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570:380–84
    [Google Scholar]
  51. 51.
    Lu KL, Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM 2018. Transgenerational dynamics of rDNA copy number in Drosophila male germline stem cells. eLife 7:e32421
    [Google Scholar]
  52. 52.
    Lu KL, Yamashita YM 2017. Germ cell connectivity enhances cell death in response to DNA damage in the Drosophila testis. eLife 6:e27960
    [Google Scholar]
  53. 53.
    Luedeke C, Frei SB, Sbalzarini I, Schwarz H, Spang A, Barral Y. 2005. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J. Cell Biol. 169:897–908
    [Google Scholar]
  54. 54.
    Lyckegaard EM, Clark AG. 1989. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster. PNAS 86:1944–48
    [Google Scholar]
  55. 55.
    Lyckegaard EM, Clark AG. 1991. Evolution of ribosomal RNA gene copy number on the sex chromosomes of Drosophila melanogaster. Mol. Biol. Evol. 8:458–74
    [Google Scholar]
  56. 56.
    Ma H, Xu H, O'Farrell PH 2014. Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat. Genet. 46:393–97
    [Google Scholar]
  57. 57.
    Maekawa H, Priest C, Lechner J, Pereira G, Schiebel E. 2007. The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. J. Cell Biol. 179:423–36
    [Google Scholar]
  58. 58.
    Manzano-López J, Matellán L, Álvarez-Llamas A, Blanco-Mira JC, Monje-Casas F. 2019. Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan. Nat. Cell Biol. 21:952–65
    [Google Scholar]
  59. 59.
    McFaline-Figueroa JR, Vevea J, Swayne TC, Zhou C, Liu C et al. 2011. Mitochondrial quality control during inheritance is associated with lifespan and mother–daughter age asymmetry in budding yeast. Aging Cell 10:885–95
    [Google Scholar]
  60. 60.
    McStay B. 2016. Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination. Genes Dev 30:1598–610
    [Google Scholar]
  61. 61.
    Meistrich M. 2013. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil. Steril. 100:51180–86
    [Google Scholar]
  62. 62.
    Moore DL, Jessberger S. 2017. Creating age asymmetry: consequences of inheriting damaged goods in mammalian cells. Trends Cell Biol 27:82–92
    [Google Scholar]
  63. 63.
    Moore DL, Pilz GA, Araúzo-Bravo MJ, Barral Y, Jessberger S. 2015. A mechanism for the segregation of age in mammalian neural stem cells. Science 349:1334–38
    [Google Scholar]
  64. 64.
    Mortimer RK, Johnston JR. 1959. Life span of individual yeast cells. Nature 183:1751–52
    [Google Scholar]
  65. 65.
    Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. 2019. Mechanisms of rDNA copy number maintenance. Trends Genet 35:734–42
    [Google Scholar]
  66. 66.
    Nguyen DH, Soygur B, Peng SP, Malki S, Hu G, Laird DJ. 2020. Apoptosis in the fetal testis eliminates developmentally defective germ cell clones. Nat. Cell Biol. 22:1423–35
    [Google Scholar]
  67. 67.
    Oakberg EF. 1955. Sensitivity and time degeneration of spermatogenic cells irradiated in various stages of maturation in the mouse. Radiat. Res. 2:4369–91
    [Google Scholar]
  68. 68.
    O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG. 2011. Spermiation: the process of sperm release. Spermatogenesis 1:14–35
    [Google Scholar]
  69. 69.
    Palozzi JM, Jeedigunta SP, Hurd TR. 2018. Mitochondrial DNA purifying selection in mammals and invertebrates. J. Mol. Biol. 430:4834–48
    [Google Scholar]
  70. 70.
    Palozzi JM, Jeedigunta SP, Minenkova AV, Monteiro VL, Thompson ZS et al. 2022. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab 34:1809–23.e6
    [Google Scholar]
  71. 71.
    Pelletier L, Yamashita YM. 2012. Centrosome asymmetry and inheritance during animal development. Curr. Opin. Cell Biol. 24:541–46
    [Google Scholar]
  72. 72.
    Peng JC, Karpen GH. 2007. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9:25–35
    [Google Scholar]
  73. 73.
    Pereira G, Schiebel E. 2005. Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol. Cell 19:209–21
    [Google Scholar]
  74. 74.
    Pereira G, Tanaka TU, Nasmyth K, Schiebel E. 2001. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. EMBO J 20:6359–70
    [Google Scholar]
  75. 75.
    Pernice WM, Vevea JD, Pon LA. 2016. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat. Commun. 7:10595
    [Google Scholar]
  76. 76.
    Potten CS, Hume WJ, Reid P, Cairns J. 1978. The segregation of DNA in epithelial stem cells. Cell 15:899–906
    [Google Scholar]
  77. 77.
    Quyn AJ, Appleton PL, Carey FA, Steele RJ, Barker N et al. 2010. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 6:175–81
    [Google Scholar]
  78. 78.
    Rengan AK, Agarwal A, van der Linde M, du Plessis SS. 2012. An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Reprod. Biol. Endocrinol. 10:92
    [Google Scholar]
  79. 79.
    Ritossa FM. 1968. Unstable redundancy of genes for ribosomal RNA. PNAS 60:509–16
    [Google Scholar]
  80. 80.
    Ritossa FM. 1972. Procedure for magnification of lethal deletions of genes for ribosomal RNA. Nat. New Biol. 240:109–11
    [Google Scholar]
  81. 81.
    Ritossa FM, Atwood KC, Spiegelman S. 1966. A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of “ribosomal” DNA. Genetics 54:819–34
    [Google Scholar]
  82. 82.
    Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S. 2012. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148:112–25
    [Google Scholar]
  83. 83.
    Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y et al. 2017. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543:443–46
    [Google Scholar]
  84. 84.
    Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA et al. 2006. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLOS Biol 4:e417
    [Google Scholar]
  85. 85.
    Saarikangas J, Barral Y 2015. Protein aggregates are associated with replicative aging without compromising protein quality control. eLife 4:e06197
    [Google Scholar]
  86. 86.
    Saarikangas J, Caudron F, Prasad R, Moreno DF, Bolognesi A et al. 2017. Compartmentalization of ER-bound chaperone confines protein deposit formation to the aging yeast cell. Curr. Biol. 27:773–83
    [Google Scholar]
  87. 87.
    Salzmann V, Chen C, Chiang C-YA, Tiyaboonchai A, Mayer M, Yamashita YM. 2014. Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol. Biol. Cell 25:267–75
    [Google Scholar]
  88. 88.
    Schepers AG, Vries R, van den Born M, van de Wetering M, Clevers H. 2011. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J 30:1104–9
    [Google Scholar]
  89. 89.
    Schwartz AZA, Tsyba N, Abdu Y, Patel MR, Nance J 2022. Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans primordial germ cells. eLife 11:e80396
    [Google Scholar]
  90. 90.
    Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y. 2008. A mechanism for asymmetric segregation of age during yeast budding. Nature 454:728–34
    [Google Scholar]
  91. 91.
    Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S. 2006. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat. Cell Biol. 8:677–87
    [Google Scholar]
  92. 92.
    Sinclair DA, Guarente L. 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–42
    [Google Scholar]
  93. 93.
    Sinclair DA, Mills K, Guarente L. 1997. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–16
    [Google Scholar]
  94. 94.
    Sinclair DA, Mills K, Guarente L. 1998. Molecular mechanisms of yeast aging. Trends Biochem. Sci. 23:131–34
    [Google Scholar]
  95. 95.
    Sing TL, Brar GA, Ünal E. 2022. Gametogenesis: exploring an endogenous rejuvenation program to understand cellular aging and quality control. Annu. Rev. Genet. 56:89–112
    [Google Scholar]
  96. 96.
    Smith BV, Lacy D. 1959. Residual bodies of seminiferous tubules of the rat. Nature 184:249–51
    [Google Scholar]
  97. 97.
    Smith GH. 2005. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–87
    [Google Scholar]
  98. 98.
    Sotiropoulou PA, Candi A, Blanpain C. 2008. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells 26:2964–73
    [Google Scholar]
  99. 99.
    Sprando RL, Russell LD. 1988. Spermiogenesis in the red-ear turtle (Pseudemys scripta) and the domestic fowl (Gallus domesticus): a study of cytoplasmic events including cell volume changes and cytoplasmic elimination. J. Morphol. 198:95–118
    [Google Scholar]
  100. 100.
    Stewart EJ, Madden R, Paul G, Taddei F. 2005. Aging and death in an organism that reproduces by morphologically symmetric division. PLOS Biol 3:e45
    [Google Scholar]
  101. 101.
    Sun N, Youle RJ, Finkel T. 2016. The mitochondrial basis of aging. Mol. Cell 61:654–66
    [Google Scholar]
  102. 102.
    Tartof KD. 1974. Unequal mitotic sister chromatin exchange as the mechanism of ribosomal RNA gene magnification. PNAS 71:1272–76
    [Google Scholar]
  103. 103.
    Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA et al. 2014. Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. PNAS 111:14019–26
    [Google Scholar]
  104. 104.
    Tokuyasu KT, Peacock WJ, Hardy RW. 1972. Dynamics of spermiogenesis in Drosophila melanogaster. I. Individualization process. Z. Zellforsch. Mikrosk. Anat. 124:479–506
    [Google Scholar]
  105. 105.
    Tran V, Lim C, Xie J, Chen X. 2012. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–82
    [Google Scholar]
  106. 106.
    Ünal E, Kinde B, Amon A. 2011. Gametogenesis eliminates age-induced cellular damage and resets lifespan in yeast. Science 332:1554–57
    [Google Scholar]
  107. 107.
    Waghmare SK, Bansal R, Lee J, Zhang YV, McDermitt DJ, Tumbar T. 2008. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J 27:1309–20
    [Google Scholar]
  108. 108.
    Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH. 2009. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–55
    [Google Scholar]
  109. 109.
    Ward S, Argon Y, Nelson GA. 1981. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J. Cell Biol. 91:26–44
    [Google Scholar]
  110. 110.
    Watase GJ, Nelson JO, Yamashita YM. 2022. Nonrandom sister chromatid segregation mediates rDNA copy number maintenance in Drosophila. Sci. Adv. 8:eabo4443
    [Google Scholar]
  111. 111.
    Xie J, Wooten M, Tran V, Chen BC, Pozmanter C et al. 2015. Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the Drosophila male germline. Cell 163:920–33
    [Google Scholar]
  112. 112.
    Yadlapalli S, Cheng J, Yamashita YM. 2011. Drosophila male germline stem cells do not asymmetrically segregate chromosome strands. J. Cell Sci. 124:933–39
    [Google Scholar]
  113. 113.
    Yadlapalli S, Yamashita YM. 2013. Chromosome-specific nonrandom sister chromatid segregation during stem-cell division. Nature 498:251–54
    [Google Scholar]
  114. 114.
    Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. 2007. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–21
    [Google Scholar]
  115. 115.
    Yang J, McCormick MA, Zheng J, Xie Z, Tsuchiya M et al. 2015. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry. PNAS 112:11977–82
    [Google Scholar]
  116. 116.
    Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z et al. 2014. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159:530–42
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022123-040039
Loading
/content/journals/10.1146/annurev-genet-022123-040039
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error