1932

Abstract

Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022123-104503
2023-11-27
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-022123-104503.html?itemId=/content/journals/10.1146/annurev-genet-022123-104503&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abrams PA, Rowe L. 1996. The effects of predation on the age and size of maturity of prey. Evolution 50:31052–61
    [Google Scholar]
  2. 2.
    Amano T, Matsushita A, Hatanaka Y, Watanabe T, Oishi K et al. 2009.. Expression and functional analyses of circadian genes in mouse oocytes and preimplantation embryos: Cry1 is involved in the meiotic process independently of circadian clock regulation. Biol. Reprod. 80:3473–83
    [Google Scholar]
  3. 3.
    Arrhenius S. 1889. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4U:1226–48
    [Google Scholar]
  4. 4.
    Ay A, Knierer S, Sperlea A, Holland J, Ozbudak EM. 2013. Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock. Development 140:153244–53
    [Google Scholar]
  5. 5.
    Aydogan MG, Steinacker TL, Mofatteh M, Wilmott ZM, Zhou FY et al. 2020. An autonomous oscillation times and executes centriole biogenesis. . Cell 181:71566–81.e27
    [Google Scholar]
  6. 6.
    Barry C, Schmitz MT, Jiang P, Schwartz MP, Duffin BM et al. 2017. Species-specific developmental timing is maintained by pluripotent stem cells ex utero. Dev. Biol. 423:2101–10
    [Google Scholar]
  7. 7.
    Bartman CM, Matveyenko A, Prakash YS. 2020. It's about time: clocks in the developing lung. J. Clin. Investig. 130:139–50
    [Google Scholar]
  8. 8.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW et al. 2008. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40:5499–507
    [Google Scholar]
  9. 9.
    Biggers JD, Curnow RN, Finn CA, McLaren A. 1963. Regulation of the gestation period in mice. Reproduction 6:1125–38
    [Google Scholar]
  10. 10.
    Blagosklonny MV. 2013. Big mice die young but large animals live longer. Aging 5:4227–33
    [Google Scholar]
  11. 11.
    Branicky R, Bénard C, Hekimi S. 2000. clk-1, mitochondria, and physiological rates. Bioessays 22:148–56
    [Google Scholar]
  12. 12.
    Brown J, Barry C, Schmitz MT, Argus C, Bolin JM et al. 2021. Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells. PLOS Comput. Biol. 17:3e1008778
    [Google Scholar]
  13. 13.
    Butler H, Juurlink BHJ. 1987. An Atlas for Staging Mammalian and Chick Embryos Boca Raton, FL: CRC Press
    [Google Scholar]
  14. 14.
    Byerly L, Cassada RC, Russell RL. 1976. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev. Biol. 51:123–33
    [Google Scholar]
  15. 15.
    Carmona-Alcocer V, Abel JH, Sun TC, Petzold LR, Doyle FJ 3rd et al. 2018. Ontogeny of circadian rhythms and synchrony in the suprachiasmatic nucleus. J. Neurosci. 38:61326–34
    [Google Scholar]
  16. 16.
    Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S et al. 2016. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat. Protoc. 11:101833–50
    [Google Scholar]
  17. 17.
    Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O et al. 2015. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33:9962–69
    [Google Scholar]
  18. 18.
    Chew KY, Shaw G, Yu H, Pask AJ, Renfree MB. 2014. Heterochrony in the regulation of the developing marsupial limb. Dev. Dyn. 243:2324–38
    [Google Scholar]
  19. 19.
    Chu L-F, Mamott D, Ni Z, Bacher R, Liu C et al. 2019. An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep 28:92247–55.e5
    [Google Scholar]
  20. 20.
    Ciceri G, Cho H, Kshirsagar M, Baggiolini A, Aromolaran KA et al. 2022. An epigenetic barrier sets the timing of human neuronal maturation. bioRxiv 2022.06.02.490114. https://doi.org/10.1101/2022.06.02.490114
    [Crossref]
  21. 21.
    Clarke A. 2003. Costs and consequences of evolutionary temperature adaptation. . Trends Ecol. Evol. 18:11573–81
    [Google Scholar]
  22. 22.
    Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P. 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341:6148893–96
    [Google Scholar]
  23. 23.
    Collier JR, McInerney D, Schnell S, Maini PK, Gavaghan DJ et al. 2000. A cell cycle model for somitogenesis: mathematical formulation and numerical simulation. J. Theor. Biol. 207:3305–16
    [Google Scholar]
  24. 24.
    Covarrubias AJ, Perrone R, Grozio A, Verdin E. 2021. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22:2119–41
    [Google Scholar]
  25. 25.
    Crapse J, Pappireddi N, Gupta M, Shvartsman SY, Wieschaus E et al. 2021. Evaluating the Arrhenius equation for developmental processes. Mol. Syst. Biol. 17:8e9895
    [Google Scholar]
  26. 26.
    Dady A, Davidson L, Halley PA, Storey KG 2022. Human spinal cord in vitro differentiation pace is initially maintained in heterologous embryonic environments. eLife 11:e67282
    [Google Scholar]
  27. 27.
    Dancy BM, Sedensky MM, Morgan PG. 2015. Mitochondrial bioenergetics and disease in Caenorhabditis elegans. Front. Biosci. 20:2198–228
    [Google Scholar]
  28. 28.
    das Neves RP, Jones NS, Andreu L, Gupta R, Enver T et al. 2010. Connecting variability in global transcription rate to mitochondrial variability. PLOS Biol. 8:12e1000560
    [Google Scholar]
  29. 29.
    Diaz-Cuadros M, Miettinen TP, Skinner OS, Sheedy D, Díaz-García CM et al. 2023. Metabolic regulation of species-specific developmental rates. Nature 613:7944550–57
    [Google Scholar]
  30. 30.
    Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA et al. 2020. In vitro characterization of the human segmentation clock. Nature 580:7801113–18
    [Google Scholar]
  31. 31.
    Dolatshad H, Campbell EA, O'Hara L, Maywood ES, Hastings MH, Johnson MH. 2006. Developmental and reproductive performance in circadian mutant mice. Hum. Reprod. 21:168–79
    [Google Scholar]
  32. 32.
    Dugas JC, Ibrahim A, Barres BA. 2007. A crucial role for p57Kip2 in the intracellular timer that controls oligodendrocyte differentiation. J. Neurosci. 27:236185–96
    [Google Scholar]
  33. 33.
    Evans HE, Sack WO. 1973. Prenatal development of domestic and laboratory mammals: growth curves, external features and selected references. Anat. Histol. Embryol 2:111–45
    [Google Scholar]
  34. 34.
    Felkai S, Ewbank JJ, Lemieux J, Labbé J-C, Brown GG, Hekimi S. 1999. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 18:71783–92
    [Google Scholar]
  35. 35.
    Flatt T. 2020. Life-history evolution and the genetics of fitness components in Drosophila melanogaster. Genetics 214:13–48
    [Google Scholar]
  36. 36.
    Flatt T, Heyland A. 2011. Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs. Oxford, UK: Oxford Academic
    [Google Scholar]
  37. 37.
    Fuhrmann JF, Buono L, Adelmann L, Martinez-Morales JR, Centanin L 2020. Genetic developmental timing revealed by inter-species transplantations in fish. Development 147:22dev192500
    [Google Scholar]
  38. 38.
    Fushan AA, Turanov AA, Lee S-G, Kim EB, Lobanov AV et al. 2015. Gene expression defines natural changes in mammalian lifespan. Aging Cell 14:3352–65
    [Google Scholar]
  39. 39.
    Gadgil M, Bossert WH. 1970. Life historical consequences of natural selection. Am. Nat. 104:9351–24
    [Google Scholar]
  40. 40.
    Gao F-B, Durand B, Raff M. 1997. Oligodendrocyte precursor cells count time but not cell divisions before differentiation. Curr. Biol. 7:2152–55
    [Google Scholar]
  41. 41.
    Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J et al. 2008. Control of segment number in vertebrate embryos. Nature 454:7202335–39
    [Google Scholar]
  42. 42.
    Grainger TN, Levine JM. 2022. Rapid evolution of life-history traits in response to warming, predation and competition: a meta-analysis. Ecol. Lett. 25:2541–54
    [Google Scholar]
  43. 43.
    Guantes R, Rastrojo A, Neves R, Lima A, Aguado B et al. 2015. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 25:5633–44
    [Google Scholar]
  44. 44.
    Hall J, Jheon AH, Ealba EL, Eames BF, Butcher KD et al. 2014. Evolution of a developmental mechanism: species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis. Dev. Biol 385:2380–95
    [Google Scholar]
  45. 45.
    Harima Y, Takashima Y, Ueda Y, Ohtsuka T, Kageyama R. 2013. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep. 3:11–7
    [Google Scholar]
  46. 46.
    Hendriks G-J, Gaidatzis D, Aeschimann F, Großhans H. 2014. Extensive oscillatory gene expression during C. elegans larval development. Mol. Cell 53:3380–92
    [Google Scholar]
  47. 47.
    Hergenreder E, Zorina Y, Zhao Z, Munguba H, Calder EL et al. 2022. Combined small molecule treatment accelerates timing of maturation in human pluripotent stem cell-derived neurons. bioRxiv 2022.06.02.494616. https://doi.org/10.1101/2022.06.02.494616
    [Crossref]
  48. 48.
    Hirata H, Bessho Y, Kokubu H, Masamizu Y, Yamada S et al. 2004. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36:7750–54
    [Google Scholar]
  49. 49.
    Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T et al. 2002. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:5594840–43
    [Google Scholar]
  50. 50.
    Hoyle NP, Ish-Horowicz D. 2013. Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. PNAS 110:46E4316–24
    [Google Scholar]
  51. 51.
    Hubaud A, Pourquié O. 2014. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15:11709–21
    [Google Scholar]
  52. 52.
    Hubaud A, Regev I, Mahadevan L, Pourquié O. 2017. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171:3668–82.e11
    [Google Scholar]
  53. 53.
    Iwata R, Casimir P, Erkol E, Boubakar L, Planque M et al. 2023. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science 379:6632eabn4705
    [Google Scholar]
  54. 54.
    Jiang Y-J, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D et al. 2000. Notch signalling and the synchronization of the somite segmentation clock. Nature 408:6811475–79
    [Google Scholar]
  55. 55.
    Johnson MH, Day ML. 2000. Egg timers: How is developmental time measured in the early vertebrate embryo?. Bioessays 22:157–63
    [Google Scholar]
  56. 56.
    Johnston IG, Gaal B, das Neves RP, Enver T, Iborra FJ, Jones NS. 2012. Mitochondrial variability as a source of extrinsic cellular noise. PLOS Comput. Biol. 8:3e1002416
    [Google Scholar]
  57. 57.
    Keyte A, Smith KK. 2012. Heterochrony in somitogenesis rate in a model marsupial, Monodelphis domestica. Evol. Dev. 14:193–103
    [Google Scholar]
  58. 58.
    Keyte AL, Smith KK. 2010. Developmental origins of precocial forelimbs in marsupial neonates. Development 137:244283–94
    [Google Scholar]
  59. 59.
    Khokha MK, Chung C, Bustamante EL, Gaw LWK, Trott KA et al. 2002. Techniques and probes for the study of Xenopus tropicalis development. Dev. Dyn. 225:4499–510
    [Google Scholar]
  60. 60.
    Kim Y, Nam HG, Valenzano DR. 2016. The short-lived African turquoise killifish: an emerging experimental model for ageing. Dis. Model. Mech. 9:2115–29
    [Google Scholar]
  61. 61.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203:3253–310
    [Google Scholar]
  62. 62.
    Kleiber M. 1947. Body size and metabolic rate. Physiol. Rev. 27:4511–41
    [Google Scholar]
  63. 63.
    Knight GR, Robertson A. 1957. Fitness as a measurable character in Drosophila. Genetics 42:4524–30
    [Google Scholar]
  64. 64.
    Kuntz SG, Eisen MB. 2014. Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species. PLOS Genet. 10:4e1004293
    [Google Scholar]
  65. 65.
    Lázaro J, Costanzo M, Sanaki-Matsumiya M, Girardot C, Hayashi M et al. 2023. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals. Cell Stem Cell 30793849.E7
    [Google Scholar]
  66. 66.
    Lewis J. 2003. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13:161398–408
    [Google Scholar]
  67. 67.
    Lewontin R. 1974. The Genetic Basis of Evolutionary Change. New York: Columbia Univ. Press
    [Google Scholar]
  68. 68.
    Libé-Philippot B, Vanderhaeghen P. 2021. Cellular and molecular mechanisms linking human cortical development and evolution. Annu. Rev. Genet. 55:555–81
    [Google Scholar]
  69. 69.
    Linaro D, Vermaercke B, Iwata R, Ramaswamy A, Libé-Philippot B et al. 2019. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104:5972–86.e6
    [Google Scholar]
  70. 70.
    Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF. 2005. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:70371134–38
    [Google Scholar]
  71. 71.
    MacArthur RH, Wilson EO. 1967. The Theory of Island Biogeography Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  72. 72.
    Martin RD, Genoud M, Hemelrijk CK. 2005. Problems of allometric scaling analysis: examples from mammalian reproductive biology. J. Exp. Biol. 208:91731–47
    [Google Scholar]
  73. 73.
    Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y et al. 2006. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. PNAS 103:51313–18
    [Google Scholar]
  74. 74.
    Mata-Cabana A, Romero-Expósito FJ, Geibel M, Piubeli FA, Merrow M, Olmedo M. 2022. Deviations from temporal scaling support a stage-specific regulation for C. elegans postembryonic development. BMC Biol. 20:94
    [Google Scholar]
  75. 75.
    Deleted in proof
  76. 76.
    Matsuda M, Hayashi H, Garcia-Ojalvo J, Yoshioka-Kobayashi K, Kageyama R et al. 2020. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369:65101450–55
    [Google Scholar]
  77. 77.
    Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK et al. 2020. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580:7801124–29
    [Google Scholar]
  78. 78.
    Meeuse MWM, Hauser YP, Morales Moya LJ, Hendriks G-J, Eglinger J et al. 2020. Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans. Mol. Syst. Biol. 16:7e9498
    [Google Scholar]
  79. 79.
    Meeuse MWM, Hauser YP, Nahar S, Smith AAT, Braun K et al. 2023. C. elegans molting requires rhythmic accumulation of the Grainyhead/LSF transcription factor GRH-1. EMBO J 42:e111895
    [Google Scholar]
  80. 80.
    Mita-Miyazawa I, Ikegami S, Satoh N. 1985. Histospecific acetylcholinesterase development in the presumptive muscle cells isolated from 16-cell-stage ascidian embryos with respect to the number of DNA replications. J. Embryol. Exp. Morphol. 87:1–12
    [Google Scholar]
  81. 81.
    Mofatteh M, Echegaray-Iturra F, Alamban A, Dalla Ricca F, Bakshi A et al. 2021. Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics. eLife 10:e72104
    [Google Scholar]
  82. 82.
    Neyfakh AA, Hartl DL. 1993. Genetic control of the rate of embryonic development: selection for faster development at elevated temperatures. Evolution 47:51625–31
    [Google Scholar]
  83. 83.
    Nunney L. 1996. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: an example of a fitness trade-off. Evolution 50:31193–204
    [Google Scholar]
  84. 84.
    Otani T, Marchetto MC, Gage FH, Simons BD, Livesey FJ 2016. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18:4467–80
    [Google Scholar]
  85. 85.
    Otis EM, Brent R. 1954. Equivalent ages in mouse and human embryos. Anat. Rec. 120:133–63
    [Google Scholar]
  86. 86.
    Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O. 1997. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91:5639–48
    [Google Scholar]
  87. 87.
    Parry GD. 1981. The meanings of r- and K-selection. Oecologia 48:2260–64
    [Google Scholar]
  88. 88.
    Pourquié O. 1998. Clocks regulating developmental processes. Curr. Opin. Neurobiol. 8:5665–70
    [Google Scholar]
  89. 89.
    Pourquié O. 2011. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145:5650–63
    [Google Scholar]
  90. 90.
    Primmett DR, Norris WE, Carlson GJ, Keynes RJ, Stern CD. 1989. Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105:1119–30
    [Google Scholar]
  91. 91.
    Rayon T, Stamataki D, Perez-Carrasco R, Garcia-Perez L, Barrington C et al. 2020. Species-specific pace of development is associated with differences in protein stability. Science 369:6510eaba7667
    [Google Scholar]
  92. 92.
    Rebaudo F, Rabhi V-B. 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol. Exp. Appl. 166:8607–17
    [Google Scholar]
  93. 93.
    Ricklefs RE. 2006. Embryo development and ageing in birds and mammals. Proc. Biol. Sci. 273:15972077–82
    [Google Scholar]
  94. 94.
    Romanoff AL. 1960. The Avian Embryo: Structural and Functional Development New York: Macmillan
    [Google Scholar]
  95. 95.
    Saha K, Jaenisch R 2009. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:6584–95
    [Google Scholar]
  96. 96.
    Schröter C, Herrgen L, Cardona A, Brouhard GJ, Feldman B et al. 2008. Dynamics of zebrafish somitogenesis. Dev. Dyn. 237:3545–53
    [Google Scholar]
  97. 97.
    Smith DG, Sturmey RG. 2013. Parallels between embryo and cancer cell metabolism. Biochem. Soc. Trans. 41:2664–69
    [Google Scholar]
  98. 98.
    Smith NS, Buss IO. 1973. Reproductive ecology of the female African elephant. J. Wildl. Manag. 37:4524–34
    [Google Scholar]
  99. 99.
    Stauber M, Laclef C, Vezzaro A, Page ME, Ish-Horowicz D. 2012. Modifying transcript lengths of cycling mouse segmentation genes. Mech. Dev. 129:1–461–72
    [Google Scholar]
  100. 100.
    Stearns SC. 1977. The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8:145–71
    [Google Scholar]
  101. 101.
    Stearns SC. 1989. Trade-offs in life-history evolution. Funct. Ecol. 3:3259–68
    [Google Scholar]
  102. 102.
    Swovick K, Firsanov D, Welle KA, Hryhorenko JR, Wise JP Sr. et al. 2021. Interspecies differences in proteome turnover kinetics are correlated with life spans and energetic demands. Mol. Cell. Proteom. 20:100041
    [Google Scholar]
  103. 103.
    Swovick K, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V et al. 2018. Cross-species comparison of proteome turnover kinetics. Mol. Cell. Proteom. 17:4580–91
    [Google Scholar]
  104. 104.
    Temple S, Raff MC. 1986. Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44:5773–79
    [Google Scholar]
  105. 105.
    Umemura Y, Koike N, Tsuchiya Y, Watanabe H, Kondoh G et al. 2022. Circadian key component CLOCK/BMAL1 interferes with segmentation clock in mouse embryonic organoids. PNAS 119:1e2114083119
    [Google Scholar]
  106. 106.
    Urushibata H, Sasaki K, Takahashi E, Hanada T, Fujimoto T et al. 2021. Control of developmental speed in zebrafish embryos using different incubation temperatures. Zebrafish 18:5316–25
    [Google Scholar]
  107. 107.
    Vallone D, Lahiri K, Dickmeis T, Foulkes NS. 2007. Start the clock! Circadian rhythms and development. Dev. Dyn. 236:1142–55
    [Google Scholar]
  108. 108.
    Venters SJ, Hultner ML, Ordahl CP. 2008. Somite cell cycle analysis using somite-staging to measure intrinsic developmental time. Dev. Dyn. 237:2377–92
    [Google Scholar]
  109. 109.
    Walters EA, Brown JL, Krisher R, Voelkel S, Swain JE. 2020. Impact of a controlled culture temperature gradient on mouse embryo development and morphokinetics. Reprod. Biomed. Online 40:4494–99
    [Google Scholar]
  110. 110.
    West GB, Woodruff WH, Brown JH. 2002. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. PNAS 99:Suppl. 12473–78
    [Google Scholar]
  111. 111.
    Xue L, Cai J-Y, Ma J, Huang Z, Guo M-X et al. 2013. Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis. BMC Genom. 14:1568
    [Google Scholar]
  112. 112.
    Yadav P, Sharma VK. 2014. Circadian clocks of faster developing fruit fly populations also age faster. Biogerontology 15:133–45
    [Google Scholar]
  113. 113.
    Yadav P, Thandapani M, Sharma VK. 2014. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC Dev. Biol. 14:19
    [Google Scholar]
  114. 114.
    Yagita K, Horie K, Koinuma S, Nakamura W, Yamanaka I et al. 2010. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. PNAS 107:83846–51
    [Google Scholar]
  115. 115.
    Zhang L, Kendrick C, Julich D, Holley SA. 2008. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function. Development 135:122065–70
    [Google Scholar]
  116. 116.
    Zhu M, Cornwall-Scoones J, Wang P, Handford CE, Na J et al. 2020. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science 370:6522eabd2703
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022123-104503
Loading
/content/journals/10.1146/annurev-genet-022123-104503
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error