1932

Abstract

Regeneration is a remarkable phenomenon that has been the subject of awe and bafflement for hundreds of years. Although regeneration competence is found in highly divergent organisms throughout the animal kingdom, recent advances in tools used for molecular and genomic characterization have uncovered common genes, molecular mechanisms, and genomic features in regenerating animals. In this review we focus on what is known about how genome regulation modulates cellular potency during regeneration. We discuss this regulation in the context of complex tissue regeneration in animals, from to humans, with reference to ex vivo–cultured cell models of pluripotency when appropriate. We emphasize the importance of a detailed molecular understanding of both the mechanisms that regulate genomic output and the functional assays that assess the biological relevance of such molecular characterizations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043733
2019-12-03
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-112618-043733.html?itemId=/content/journals/10.1146/annurev-genet-112618-043733&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adler CE, Sánchez Alvarado A 2017. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration. Dev. Biol. 427:165–75
    [Google Scholar]
  2. 2. 
    Adler CE, Seidel CW, McKinney SA, Sánchez Alvarado A 2014. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. eLife 3:e02238
    [Google Scholar]
  3. 3. 
    Alibardi L. 2010. Morphological and cellular aspects of tail and limb regeneration in lizards. A model system with implications for tissue regeneration in mammals. Adv. Anat. Embryol. Cell Biol. 207:1–109
    [Google Scholar]
  4. 4. 
    Allis CD, Caparros M-L, Jenuwein T, Reinberg D 2015. Epigenetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. , 2nd ed..
    [Google Scholar]
  5. 5. 
    Ardehali MB, Mei A, Zobeck KL, Caron M, Lis JT, Kusch T 2011. Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30:2817–28
    [Google Scholar]
  6. 6. 
    Aristotle 1878. Aristotle's History of Animals. In Ten Books transl. R Cresswell London: G. Bell
    [Google Scholar]
  7. 7. 
    Azimzadeh J, Wong ML, Downhour DM, Sánchez Alvarado A, Marshall WF 2012. Centrosome loss in the evolution of planarians. Science 335:461–63
    [Google Scholar]
  8. 8. 
    Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen HF et al. 2006. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8:532–38
    [Google Scholar]
  9. 9. 
    Baguñà J. 2012. The planarian neoblast: the rambling history of its origin and some current black boxes. Int. J. Dev. Biol. 56:19–37
    [Google Scholar]
  10. 10. 
    Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:823–37
    [Google Scholar]
  11. 11. 
    Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K et al. 2015. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 163:1281–86
    [Google Scholar]
  12. 12. 
    Bernardos RL, Barthel LK, Meyers JR, Raymond PA 2007. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J. Neurosci. 27:7028–40
    [Google Scholar]
  13. 13. 
    Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P et al. 2002. Methylation of histone H3 Lys 4 in coding regions of active genes. PNAS 99:8695–700
    [Google Scholar]
  14. 14. 
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26
    [Google Scholar]
  15. 15. 
    Berrill NJ. 1983. The pleasure and practice of biology. Can. J. Zool. 61:947–51
    [Google Scholar]
  16. 16. 
    Birnbaum KD, Sánchez Alvarado A 2008. Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710
    [Google Scholar]
  17. 17. 
    Bonnet C. 1777. Expériences sur la régénération de la Téte du Limaçon terrestre. J. Physique 10: Part II 165–79
    [Google Scholar]
  18. 18. 
    Bosch TCG. 2009. Hydra and the evolution of stem cells. Bioessays 31:478–86
    [Google Scholar]
  19. 19. 
    Bovari T. 1887. Über Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 2:688–93
    [Google Scholar]
  20. 20. 
    Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS 2012. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 40:5819–31
    [Google Scholar]
  21. 21. 
    Brockes JP, Kumar A. 2008. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol. 24:525–49
    [Google Scholar]
  22. 22. 
    Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–90
    [Google Scholar]
  23. 23. 
    Buganim Y, Markoulaki S, van Wietmarschen N, Hoke H, Wu T et al. 2014. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell 15:295–309
    [Google Scholar]
  24. 24. 
    Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E et al. 2011. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25:930–45
    [Google Scholar]
  25. 25. 
    Chen CH, Poss KD. 2017. Regeneration genetics. Annu. Rev. Genet. 51:63–82
    [Google Scholar]
  26. 26. 
    Chen K, Chen Z, Wu D, Zhang L, Lin X et al. 2015. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet. 47:1149–57
    [Google Scholar]
  27. 27. 
    Choi J, Huebner AJ, Clement K, Walsh RM, Savol A et al. 2017. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548:219–23
    [Google Scholar]
  28. 28. 
    Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273–304
    [Google Scholar]
  29. 29. 
    Dattani A, Kao D, Mihaylova Y, Abnave P, Hughes S et al. 2018. Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res 28:1543–54
    [Google Scholar]
  30. 30. 
    Davies EL, Lei K, Seidel CW, Kroesen AE, McKinney SA et al. 2017. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife 6:e21052
    [Google Scholar]
  31. 31. 
    Davis RL, Weintraub H, Lassar AB 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000
    [Google Scholar]
  32. 32. 
    Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G et al. 2014. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141:526–37
    [Google Scholar]
  33. 33. 
    Dolan CP, Dawson LA, Muneoka K 2018. Digit tip regeneration: merging regeneration biology with regenerative medicine. Stem Cells Transl. Med. 7:262–70
    [Google Scholar]
  34. 34. 
    Dorighi KM, Swigut T, Henriques T, Bhanu NV, Scruggs BS et al. 2017. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol. Cell 66:568–76.e4
    [Google Scholar]
  35. 35. 
    Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW et al. 2006. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13:713–19
    [Google Scholar]
  36. 36. 
    Duncan EM, Chitsazan AD, Seidel CW, Sánchez Alvarado A 2015. Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo. Cell Rep 13:2741–55
    [Google Scholar]
  37. 37. 
    Eisenhoffer GT, Kang H, Sánchez Alvarado A 2008. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3:327–39
    [Google Scholar]
  38. 38. 
    Elliott SA, Sánchez Alvarado A 2013. The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdiscip. Rev. Dev. Biol. 2:301–26
    [Google Scholar]
  39. 39. 
    Fausett BV, Goldman D. 2006. A role for α1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J. Neurosci. 26:6303–13
    [Google Scholar]
  40. 40. 
    Fausett BV, Gumerson JD, Goldman D 2008. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J. Neurosci. 28:1109–17
    [Google Scholar]
  41. 41. 
    Fei JF, Schuez M, Tazaki A, Taniguchi Y, Roensch K, Tanaka EM 2014. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem. Cell Rep. 3:444–59
    [Google Scholar]
  42. 42. 
    Fimbel SM, Montgomery JE, Burket CT, Hyde DR 2007. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J. Neurosci. 27:1712–24
    [Google Scholar]
  43. 43. 
    Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW 2018. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360:eaaq1736
    [Google Scholar]
  44. 44. 
    Fujisawa T. 2003. Hydra regeneration and epitheliopeptides. Dev. Dyn. 226:182–89
    [Google Scholar]
  45. 45. 
    Gawriluk TR, Simkin J, Thompson KL, Biswas SK, Clare-Salzler Z et al. 2016. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals. Nat. Commun. 7:11164
    [Google Scholar]
  46. 46. 
    Gemberling M, Bailey TJ, Hyde DR, Poss KD 2013. The zebrafish as a model for complex tissue regeneration. Trends Genet 29:611–20
    [Google Scholar]
  47. 47. 
    Goldman D. 2014. Müller glial cell reprogramming and retina regeneration. Nat. Rev. Neurosci. 15:431–42
    [Google Scholar]
  48. 48. 
    Goss RJ, Powel RS. 1985. Induction of deer antlers by transplanted periosteum. I. Graft size and shape. J. Exp. Zool. 235:359–73
    [Google Scholar]
  49. 49. 
    Guo T, Peters AHFM, Newmark PA 2006. A bruno-like gene is required for stem cell maintenance in planarians. Dev. Cell 11:159–69
    [Google Scholar]
  50. 50. 
    Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F et al. 2012. Molecular signatures of the three stem cell lineages in Hydra and the emergence of stem cell function at the base of multicellularity. Mol. Biol. Evol. 29:3267–80
    [Google Scholar]
  51. 51. 
    Histoire de l'Académie Royale des Sciences depuis 1686 jusqu’ à son renouvellement en 1699 1733. Paris: Bibliothéque De M. J.-A. Barral
    [Google Scholar]
  52. 52. 
    Howe FS, Fischl H, Murray SC, Mellor J 2017. Is H3K4me3 instructive for transcription activation?. Bioessays 39:1–12
    [Google Scholar]
  53. 53. 
    Hubert A, Henderson JM, Ross KG, Cowles MW, Torres J, Zayas RM 2013. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics 8:79–91
    [Google Scholar]
  54. 54. 
    Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS et al. 2017. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548:103–7
    [Google Scholar]
  55. 55. 
    Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA 2008. Stimulation of neural regeneration in the mouse retina. PNAS 105:19508–13
    [Google Scholar]
  56. 56. 
    Kim K, Doi A, Wen B, Ng K, Zhao R et al. 2010. Epigenetic memory in induced pluripotent stem cells. Nature 467:285–90
    [Google Scholar]
  57. 57. 
    Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D et al. 2004. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18:1592–605
    [Google Scholar]
  58. 58. 
    Knaupp AS, Buckberry S, Pflueger J, Lim SM, Ford E et al. 2017. Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell 21:834–45.e6
    [Google Scholar]
  59. 59. 
    Knopf F, Hammond C, Chekuru A, Kurth T, Hans S et al. 2011. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 20:713–24
    [Google Scholar]
  60. 60. 
    Kragl M, Knapp D, Nacu E, Khattak S, Maden M et al. 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65
    [Google Scholar]
  61. 61. 
    Kurdistani SK, Tavazoie S, Grunstein M 2004. Mapping global histone acetylation patterns to gene expression. Cell 117:721–33
    [Google Scholar]
  62. 62. 
    Lee DY, Hayes JJ, Pruss D, Wolffe AP 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84
    [Google Scholar]
  63. 63. 
    Lenhoff SG, Lenhoff HM, Trembley A 1986. Hydra and the Birth of Experimental Biology—1744. Abraham Trembley's Mémoires Concerning the Polyps Pacific Grove, CA: Boxwood Press
    [Google Scholar]
  64. 64. 
    Lim DA, Huang Y-C, Swigut T, Mirick AL, Garcia-Verdugo JM et al. 2009. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458:529–33
    [Google Scholar]
  65. 65. 
    Lin R, Leone JW, Cook RG, Allis CD 1989. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena. J. Cell Biol 108:1577–88
    [Google Scholar]
  66. 66. 
    Manco R, Leclercq IA, Clerbaux L-A 2018. Liver regeneration: Different sub-populations of parenchymal cells at play choreographed by an injury-specific microenvironment. Int. J. Mol. Sci. 19:E4115
    [Google Scholar]
  67. 67. 
    Marks H, Kalkan T, Menafra R, Denissov S, Jones K et al. 2012. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590–604
    [Google Scholar]
  68. 68. 
    Martello G, Smith A. 2014. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30:647–75
    [Google Scholar]
  69. 69. 
    Martínez DE. 1998. Mortality patterns suggest lack of senescence in Hydra. Exp. Gerontol. 33:217–25
    [Google Scholar]
  70. 70. 
    McCusker CD, Athippozhy A, Diaz-Castillo C, Fowlkes C, Gardiner DM, Voss SR 2015. Positional plasticity in regenerating Ambystoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC Dev. Biol. 15:45
    [Google Scholar]
  71. 71. 
    Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D et al. 2002. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10:1107–17
    [Google Scholar]
  72. 72. 
    Morris AC, Scholz TL, Brockerhoff SE, Fadool JM 2008. Genetic dissection reveals two separate pathways for rod and cone regeneration in the teleost retina. Dev. Neurobiol. 68:605–19
    [Google Scholar]
  73. 73. 
    Morrison SJ, Uchida N, Weissman IL 1995. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11:35–71
    [Google Scholar]
  74. 74. 
    Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A et al. 2002. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197–208
    [Google Scholar]
  75. 75. 
    Murawala P, Tanaka EM, Currie JD 2012. Regeneration: the ultimate example of wound healing. Semin. Cell Dev. Biol. 23:954–62
    [Google Scholar]
  76. 76. 
    Nacu E, Tanaka EM. 2011. Limb regeneration: a new development. ? Annu. Rev. Cell Dev. Biol. 27:409–40
    [Google Scholar]
  77. 77. 
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T et al. 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26:101–6
    [Google Scholar]
  78. 78. 
    Newmark PA, Reddien PW, Cebrià F, Sánchez Alvarado A 2003. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. PNAS 100:Suppl. 111861–65
    [Google Scholar]
  79. 79. 
    Newmark PA, Sánchez Alvarado A 2000. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol. 220:142–53
    [Google Scholar]
  80. 80. 
    Newmark PA, Sánchez Alvarado A 2002. Not your father's planarian: a classic model enters the era of functional genomics. Nat. Rev. Genet. 3:210–19
    [Google Scholar]
  81. 81. 
    Pallas PS. 1767. Spicilegia zoologica: quibus novae imprimis et obscurae animalium species iconibus Pre-1801 Imprint Collection, Library of Congress Washington, DC:
    [Google Scholar]
  82. 82. 
    Papayannopoulou T, Scadden DT. 2008. Stem-cell ecology and stem cells in motion. Blood 111:3923–30
    [Google Scholar]
  83. 83. 
    Pearson BJ, Sánchez Alvarado A 2010. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development 137:213–21
    [Google Scholar]
  84. 84. 
    Plass M, Solana J, Wolf FA, Ayoub S, Misios A et al. 2018. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360:eaaq1723
    [Google Scholar]
  85. 85. 
    Pogo BG, Pogo AO, Allfrey VG, Mirsky AE 1968. Changing patterns of histone acetylation and RNA synthesis in regeneration of the liver. PNAS 59:1337–44
    [Google Scholar]
  86. 86. 
    Pollak J, Wilken MS, Ueki Y, Cox KE, Sullivan JM et al. 2013. ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors. Development 140:2619–31
    [Google Scholar]
  87. 87. 
    Ramalho-Santos M, Willenbring H. 2007. On the origin of the term “stem cell. .” Cell Stem Cell 1:35–38
    [Google Scholar]
  88. 88. 
    Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ 2006. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev. Biol. 6:36
    [Google Scholar]
  89. 89. 
    Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A 2005. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8:635–49
    [Google Scholar]
  90. 90. 
    Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A 2005. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–30
    [Google Scholar]
  91. 91. 
    Rickels R, Herz HM, Sze CC, Cao K, Morgan MA et al. 2017. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat. Genet. 49:1647–53
    [Google Scholar]
  92. 92. 
    Rossant J. 2018. Genetic control of early cell lineages in the mammalian embryo. Annu. Rev. Genet. 52:185–201
    [Google Scholar]
  93. 93. 
    Ruthenburg AJ, Allis CD, Wysocka J 2007. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25:15–30
    [Google Scholar]
  94. 94. 
    Sánchez Alvarado A, Yamanaka S 2014. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 157:110–19
    [Google Scholar]
  95. 95. 
    Schlesinger S, Meshorer E. 2019. Open chromatin, epigenetic plasticity, and nuclear organization in pluripotency. Dev. Cell 48:135–50
    [Google Scholar]
  96. 96. 
    Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T 2004. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol. 6:73–77
    [Google Scholar]
  97. 97. 
    Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M 2012. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–65
    [Google Scholar]
  98. 98. 
    Seifert AW, Muneoka K. 2018. The blastema and epimorphic regeneration in mammals. Dev. Biol. 433:190–99
    [Google Scholar]
  99. 99. 
    Shi X, Hong T, Walter KL, Ewalt M, Michishita E et al. 2006. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99
    [Google Scholar]
  100. 100. 
    Singh SP, Holdway JE, Poss KD 2012. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev. Cell 22:879–86
    [Google Scholar]
  101. 101. 
    Smith JJ, Antonacci F, Eichler EE, Amemiya CT 2009. Programmed loss of millions of base pairs from a vertebrate genome. PNAS 106:11212–17
    [Google Scholar]
  102. 102. 
    Soares LM, He PC, Chun Y, Suh H, Kim T, Buratowski S 2017. Determinants of histone H3K4 methylation patterns. Mol. Cell 68:773–85.e6
    [Google Scholar]
  103. 103. 
    Soldner F, Jaenisch R. 2018. Stem cells, genome editing, and the path to translational medicine. Cell 175:615–32
    [Google Scholar]
  104. 104. 
    Spallanzani L. 1768. Prodromo di un’ opera da imprimersi sopra le riproduzioni animali dato in luce dall’ abate spallanzani Modena, Italy: Nella Stamperia di Giovanni Montanari
    [Google Scholar]
  105. 105. 
    Stewart S, Stankunas K. 2012. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev. Biol. 365:339–49
    [Google Scholar]
  106. 106. 
    Stewart S, Tsun Z-Y, Izpisua Belmonte JC 2009. A histone demethylase is necessary for regeneration in zebrafish. PNAS 106:19889–94
    [Google Scholar]
  107. 107. 
    Strahl BD, Ohba R, Cook RG, Allis CD 1999. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. PNAS 96:14967–72
    [Google Scholar]
  108. 108. 
    Sugiyama T, Wanek N. 1993. Genetic analysis of developmental mechanisms in Hydra: XXI. Enhancement of regeneration in a regeneration-deficient mutant strain by the elimination of the interstitial cell lineage. Dev. Biol. 160:64–72
    [Google Scholar]
  109. 109. 
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76
    [Google Scholar]
  110. 110. 
    Underwood JM, Becker KA, Stein GS, Nickerson JA 2017. The ultrastructural signature of human embryonic stem cells. J. Cell Biochem. 118:764–74
    [Google Scholar]
  111. 111. 
    van Wolfswinkel JC, Wagner DE, Reddien PW 2014. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15:326–39
    [Google Scholar]
  112. 112. 
    Wagner DE, Ho JJ, Reddien PW 2012. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10:299–311
    [Google Scholar]
  113. 113. 
    Wagner DE, Wang IE, Reddien PW 2011. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–16
    [Google Scholar]
  114. 114. 
    Walter M, Teissandier A, Pérez-Palacios R, Bourc'his D 2016. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 5:e11418
    [Google Scholar]
  115. 115. 
    Wan J, Goldman D. 2016. Retina regeneration in zebrafish. Curr. Opin. Genet. Dev. 40:41–47
    [Google Scholar]
  116. 116. 
    Watanabe H, Hoang VT, Mattner R, Holstein TW 2009. Immortality and the base of multicellular life: lessons from cnidarian stem cells. Semin. Cell Dev. Biol. 20:1114–25
    [Google Scholar]
  117. 117. 
    Weintraub H, Dwarki VJ, Verma I, Davis R, Hollenberg S et al. 1991. Muscle-specific transcriptional activation by MyoD. Genes Dev 5:1377–86
    [Google Scholar]
  118. 118. 
    Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA et al. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. PNAS 86:5434–38
    [Google Scholar]
  119. 119. 
    Weismann A. 1893. The Germ-Plasm. A Theory of Heredity transl WN Parker, H Rönnfeldt New York: Scribner's
    [Google Scholar]
  120. 120. 
    Wen D, Saiz N, Rosenwaks Z, Hadjantonakis AK, Rafii S 2014. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts. PLOS ONE 9:e94730
    [Google Scholar]
  121. 121. 
    Wenemoser D, Reddien PW. 2010. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev. Biol. 344:979–91
    [Google Scholar]
  122. 122. 
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M et al. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–24
    [Google Scholar]
  123. 123. 
    Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG 2006. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. PNAS 103:6208–11
    [Google Scholar]
  124. 124. 
    Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M et al. 2014. Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs. Cell Stem Cell 15:281–94
    [Google Scholar]
  125. 125. 
    Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X et al. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–72
    [Google Scholar]
  126. 126. 
    Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY et al. 2006. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90
    [Google Scholar]
  127. 127. 
    Xu CR, Cole PA, Meyers DJ, Kormish J, Dent S, Zaret KS 2011. Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas. Science 332:963–66
    [Google Scholar]
  128. 128. 
    Xue Z, Huang K, Cai C, Cai L, Jiang CY et al. 2013. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–97
    [Google Scholar]
  129. 129. 
    Yagi M, Kishigami S, Tanaka A, Semi K, Mizutani E et al. 2017. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548:224–27
    [Google Scholar]
  130. 130. 
    Yokoyama RW, Yao MC. 1982. Elimination of DNA sequences during macronuclear differentiation in Tetrahymena thermophila, as detected by in situ hybridization. Chromosoma 85:11–22
    [Google Scholar]
  131. 131. 
    Yoshida-Kashikawa M, Shibata N, Takechi K, Agata K 2007. DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Dev. Dyn. 236:3436–50
    [Google Scholar]
  132. 132. 
    Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ 1998. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. PNAS 95:10632–36
    [Google Scholar]
  133. 133. 
    Yun MH, Gates PB, Brockes JP 2013. Regulation of p53 is critical for vertebrate limb regeneration. PNAS 110:17392–97
    [Google Scholar]
  134. 134. 
    Zaret KS, Mango SE. 2016. Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr. Opin. Genet. Dev. 37:76–81
    [Google Scholar]
  135. 135. 
    Zeng A, Li H, Guo L, Gao X, McKinney S et al. 2018. Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173:1593–608.e20
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043733
Loading
/content/journals/10.1146/annurev-genet-112618-043733
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error