1932

Abstract

The goal of genomics and systems biology is to understand how complex systems of factors assemble into pathways and structures that combine to form living organisms. Great advances in understanding biological processes result from determining the function of individual genes, a process that has classically relied on characterizing single mutations. Advances in DNA sequencing has made available the complete set of genetic instructions for an astonishing and growing number of species. To understand the function of this ever-increasing number of genes, a high-throughput method was developed that in a single experiment can measure the function of genes across the genome of an organism. This occurred approximately 10 years ago, when high-throughput DNA sequencing was combined with advances in transposon-mediated mutagenesis in a method termed transposon insertion sequencing (TIS). In the subsequent years, TIS succeeded in addressing fundamental questions regarding the genes of bacteria, many of which have been shown to play central roles in bacterial infections that result in major human diseases. The field of TIS has matured and resulted in studies of hundreds of species that include significant innovations with a number of transposons. Here, we summarize a number of TIS experiments to provide an understanding of the method and explanation of approaches that are instructive when designing a study. Importantly, we emphasize critical aspects of a TIS experiment and highlight the extension and applicability of TIS into nonbacterial species such as yeast.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043838
2020-11-23
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-112618-043838.html?itemId=/content/journals/10.1146/annurev-genet-112618-043838&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akerley BJ, Lampe DJ. 2002. Analysis of gene function in bacterial pathogens by GAMBIT. Methods Enzymol 358:100–8
    [Google Scholar]
  2. 2. 
    Anthony J, van Opijnen T 2019. Aerobio. DAG streaming computation server https://github.com/jsa-aerial/aerobio
    [Google Scholar]
  3. 3. 
    Armbruster CE, Forsyth VS, Johnson AO, Smith SN, White AN et al. 2019. Twin arginine translocation, ammonia incorporation, and polyamine biosynthesis are crucial for Proteus mirabilis fitness during bloodstream infection. PLOS Pathog 15:e1007653
    [Google Scholar]
  4. 4. 
    Armbruster CE, Forsyth-DeOrnellas V, Johnson AO, Smith SN, Zhao L et al. 2017. Genome-wide transposon mutagenesis of Proteus mirabilis: essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLOS Pathog 13:e1006434
    [Google Scholar]
  5. 5. 
    Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ et al. 2016. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 32:1109–11
    [Google Scholar]
  6. 6. 
    Bender J, Kleckner N. 1992. Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the target-site consensus sequence. PNAS 89:7996–8000
    [Google Scholar]
  7. 7. 
    Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T 2020. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21:526–40
    [Google Scholar]
  8. 8. 
    Capel E, Zomer AL, Nussbaumer T, Bole C, Izac B et al. 2016. Comprehensive identification of meningococcal genes and small noncoding RNAs required for host cell colonization. mBio 7:e01173–16
    [Google Scholar]
  9. 9. 
    Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M et al. 2011. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29:542–46
    [Google Scholar]
  10. 10. 
    Carter R, Wolf J, van Opijnen T, Muller M, Obert C et al. 2014. Genomic analyses of pneumococci from children with sickle cell disease expose host-specific bacterial adaptations and deficits in current interventions. Cell Host Microbe 15:587–99
    [Google Scholar]
  11. 11. 
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–69
    [Google Scholar]
  12. 12. 
    Chao MC, Pritchard JR, Zhang YJ, Rubin EJ, Livny J et al. 2013. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res 41:9033–48
    [Google Scholar]
  13. 13. 
    Charbonneau ARL, Forman OP, Cain AK, Newland G, Robinson C et al. 2017. Defining the ABC of gene essentiality in streptococci. BMC Genom 18:426
    [Google Scholar]
  14. 14. 
    Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B et al. 2011. The essential genome of a bacterium. Mol. Syst. Biol. 7:528
    [Google Scholar]
  15. 15. 
    Coe KA, Lee W, Stone MC, Komazin-Meredith G, Meredith TC et al. 2019. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus. . PLOS Pathog 15:e1007862
    [Google Scholar]
  16. 16. 
    de Vries SP, Eleveld MJ, Hermans PW, Bootsma HJ 2013. Characterization of the molecular interplay between Moraxella catarrhalis and human respiratory tract epithelial cells. PLOS ONE 8:e72193
    [Google Scholar]
  17. 17. 
    DeJesus MA, Ambadipudi C, Baker R, Sassetti C, Ioerger TR 2015. TRANSIT–a software tool for Himar1 TnSeq analysis. PLOS Comput. Biol. 11:e1004401
    [Google Scholar]
  18. 18. 
    DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE et al. 2017. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio 8:e02133–16
    [Google Scholar]
  19. 19. 
    Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T 2005. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–83
    [Google Scholar]
  20. 20. 
    Dorman MJ, Feltwell T, Goulding DA, Parkhill J, Short FL 2018. The capsule regulatory network of Klebsiella pneumoniae defined by density-TraDISort. mBio 9:e01863–18
    [Google Scholar]
  21. 21. 
    Duncan MC, Gillette RK, Maglasang MA, Corn EA, Tai AK et al. 2019. High-throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus. . mBio 10:e01040–19
    [Google Scholar]
  22. 22. 
    Edskes HK, Mukhamedova M, Edskes BK, Wickner RB 2018. Hermes transposon mutagenesis shows [URE3] prion pathology prevented by a ubiquitin-targeting protein: evidence for carbon/nitrogen assimilation cross talk and a second function for Ure2p in Saccharomyces cerevisiae. . Genetics 209:789–800
    [Google Scholar]
  23. 23. 
    Fowler CC, Galan JE. 2018. Decoding a Salmonella Typhi regulatory network that controls typhoid toxin expression within human cells. Cell Host Microbe 23:65–76.e6
    [Google Scholar]
  24. 24. 
    Fu Y, Waldor MK, Mekalanos JJ 2013. Tn-seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14:652–63
    [Google Scholar]
  25. 25. 
    Gallagher LA, Lee SA, Manoil C 2017. Importance of core genome functions for an extreme antibiotic resistance trait. mBio 8:e01655–17
    [Google Scholar]
  26. 26. 
    Gawronski JD, Wong SM, Giannoukos G, Ward DV, Akerley BJ 2009. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. PNAS 106:16422–27
    [Google Scholar]
  27. 27. 
    Geisinger E, Mortman NJ, Dai Y, Cokol M, Syal S et al. 2020. Antibiotic hypersensitivity signatures identify targets for attack in the Acinetobacter baumannii cell envelope. bioRxiv 2020.03.11.987479. https://doi.org/10.1101/2020.03.11.987479
    [Crossref] [Google Scholar]
  28. 28. 
    Geisinger E, Vargas-Cuebas G, Mortman NJ, Syal S, Dai Y et al. 2019. The landscape of phenotypic and transcriptional responses to Ciprofloxacin in Acinetobacter baumannii: Acquired resistance alleles modulate drug-induced SOS response and prophage replication. mBio 10:e01127–19
    [Google Scholar]
  29. 29. 
    Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA et al. 2018. The essential genome of Escherichia coli K-12. mBio 9:e02096–17
    [Google Scholar]
  30. 30. 
    Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD et al. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:279–89
    [Google Scholar]
  31. 31. 
    Green B, Bouchier C, Fairhead C, Craig NL, Cormack BP 2012. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob. DNA 3:3
    [Google Scholar]
  32. 32. 
    Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLOS Pathog 7:e1002251
    [Google Scholar]
  33. 33. 
    Grosser MR, Paluscio E, Thurlow LR, Dillon MM, Cooper VS et al. 2018. Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLOS Pathog 14:e1006907
    [Google Scholar]
  34. 34. 
    Guimond N, Bideshi DK, Pinkerton AC, Atkinson PW, O'Brochta DA 2003. Patterns of Hermes transposition in Drosophila melanogaster. Mol. Genet. Genom 268:779–90
    [Google Scholar]
  35. 35. 
    Guo Y, Park JM, Cui B, Humes E, Gangadharan S et al. 2013. Integration profiling of gene function with dense maps of transposon integration. Genetics 195:599–609
    [Google Scholar]
  36. 36. 
    Halling SM, Kleckner N. 1982. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell 28:155–63
    [Google Scholar]
  37. 37. 
    Hassan KA, Cain AK, Huang T, Liu Q, Elbourne LD et al. 2016. Fluorescence-based flow sorting in parallel with transposon insertion site sequencing identifies multidrug efflux systems in Acinetobacter baumannii. . mBio 7:e01200–16
    [Google Scholar]
  38. 38. 
    Hubbard TP, Chao MC, Abel S, Blondel CJ, Abel Zur Wiesch P et al. 2016. Genetic analysis of Vibrio parahaemolyticus intestinal colonization. PNAS 113:6283–88
    [Google Scholar]
  39. 39. 
    Hubbard TP, D'Gama JD, Billings G, Davis BM, Waldor MK 2019. Unsupervised learning approach for comparing multiple transposon insertion sequencing studies. mSphere 4:e00031–19
    [Google Scholar]
  40. 40. 
    Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K et al. 2017. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat. Microbiol. 2:17079
    [Google Scholar]
  41. 41. 
    Jana B, Cain AK, Doerrler WT, Boinett CJ, Fookes MC et al. 2017. The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Sci. Rep 7:42483
    [Google Scholar]
  42. 42. 
    Jensen PA, Zhu Z, van Opijnen T 2017. Antibiotics disrupt coordination between transcriptional and phenotypic stress responses in pathogenic bacteria. Cell Rep 20:1705–16
    [Google Scholar]
  43. 43. 
    Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A 2013. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLOS Pathog 9:e1003800
    [Google Scholar]
  44. 44. 
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH et al. 2002. The human genome browser at UCSC. Genome Res 12:996–1006
    [Google Scholar]
  45. 45. 
    Kleckner N, Bender J, Gottesman S 1991. Uses of transposons with emphasis on Tn10. Methods Enzymol 204:139–80
    [Google Scholar]
  46. 46. 
    Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT 2012. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. . BMC Genom 13:578
    [Google Scholar]
  47. 47. 
    Lampe DJ, Akerley BJ, Rubin EJ, Mekalanos JJ, Robertson HM 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. PNAS 96:11428–33
    [Google Scholar]
  48. 48. 
    Lampe DJ, Grant TE, Robertson HM 1998. Factors affecting transposition of the Himar1 mariner transposon in vitro. . Genetics 149:179–87
    [Google Scholar]
  49. 49. 
    Langmead B. 2010. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinform. 32:11.7.1–14
    [Google Scholar]
  50. 50. 
    Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L et al. 2009. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19:2308–16
    [Google Scholar]
  51. 51. 
    Le Breton Y, Belew AT, Freiberg JA, Sundar GS, Islam E et al. 2017. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLOS Pathog 13:e1006584
    [Google Scholar]
  52. 52. 
    Lee SY, Hung S, Esnault C, Pathak R, Johnson KR et al. 2020. Dense transposon integration reveals essential cleavage and polyadenylation factors promote heterochromatin formation. Cell Rep 30:2686–98.e8
    [Google Scholar]
  53. 53. 
    Levitan A, Gale AN, Dallon EK, Kozan DW, Cunningham KW et al. 2020. Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality. Curr. Genet. https://doi.org/10.1007/s00294-020-01096-6
    [Crossref] [Google Scholar]
  54. 54. 
    Lewin GR, Stacy A, Michie KL, Lamont RJ, Whiteley M 2019. Large-scale identification of pathogen essential genes during coinfection with sympatric and allopatric microbes. PNAS 116:19685–94
    [Google Scholar]
  55. 55. 
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–60
    [Google Scholar]
  56. 56. 
    Mann B, van Opijnen T, Wang J, Obert C, Wang YD et al. 2012. Control of virulence by small RNAs in Streptococcus pneumoniae. . PLOS Pathog 8:e1002788
    [Google Scholar]
  57. 57. 
    Maree AF, Keulen W, Boucher CA, De Boer RJ 2000. Estimating relative fitness in viral competition experiments. J. Virol. 74:11067–72
    [Google Scholar]
  58. 58. 
    McCarthy AJ, Stabler RA, Taylor PW 2018. Genome-wide identification by transposon insertion sequencing of Escherichia coli K1 genes essential for in vitro growth, gastrointestinal colonizing capacity, and survival in serum. J. Bacteriol. 200:e00698–17
    [Google Scholar]
  59. 59. 
    McCoy KM, Antonio ML, van Opijnen T 2017. MAGenTA: a Galaxy implemented tool for complete Tn-Seq analysis and data visualization. Bioinformatics 33:2781–83
    [Google Scholar]
  60. 60. 
    Mesarich CH, Rees-George J, Gardner PP, Ghomi FA, Gerth ML et al. 2017. Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae. PLOS ONE 12:e0172790
    [Google Scholar]
  61. 61. 
    Michel AH, Hatakeyama R, Kimmig P, Arter M, Peter M et al. 2017. Functional mapping of yeast genomes by saturated transposition. eLife 6:e23570
    [Google Scholar]
  62. 62. 
    Murray JL, Kwon T, Marcotte EM, Whiteley M 2015. Intrinsic antimicrobial resistance determinants in the superbug Pseudomonas aeruginosa. . mBio 6:e01603–15
    [Google Scholar]
  63. 63. 
    Nolan LM, Whitchurch CB, Barquist L, Katrib M, Boinett CJ et al. 2018. A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Microb. Genom 4:e000229
    [Google Scholar]
  64. 64. 
    Ochsner AM, Christen M, Hemmerle L, Peyraud R, Christen B, Vorholt JA 2017. Transposon sequencing uncovers an essential regulatory function of phosphoribulokinase for methylotrophy. Curr. Biol. 27:2579–88.e6
    [Google Scholar]
  65. 65. 
    Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J et al. 2018. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557:503–9
    [Google Scholar]
  66. 66. 
    Pritchard JR, Chao MC, Abel S, Davis BM, Baranowski C et al. 2014. ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. PLOS Genet 10:e1004782
    [Google Scholar]
  67. 67. 
    Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G et al. 2010. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330:1104–7
    [Google Scholar]
  68. 68. 
    Rajagopal M, Martin MJ, Santiago M, Lee W, Kos VN et al. 2016. Multidrug intrinsic resistance factors in Staphylococcus aureus identified by profiling fitness within high-diversity transposon libraries. mBio 7:e00950–16
    [Google Scholar]
  69. 69. 
    Rego EH, Audette RE, Rubin EJ 2017. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546:153–57
    [Google Scholar]
  70. 70. 
    Reznikoff WS. 2008. Transposon Tn5. Annu. Rev. Genet 42:269–86
    [Google Scholar]
  71. 71. 
    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES et al. 2011. Integrative genomics viewer. Nat. Biotechnol. 29:24–26
    [Google Scholar]
  72. 72. 
    Robinson MD, McCarthy DJ, Smyth GK 2010. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–40
    [Google Scholar]
  73. 73. 
    Rowe HM, Karlsson E, Echlin H, Chang TC, Wang L et al. 2019. Bacterial factors required for transmission of Streptococcus pneumoniae in mammalian hosts. Cell Host Microbe 25:884–91.e6
    [Google Scholar]
  74. 74. 
    Rubin BE, Wetmore KM, Price MN, Diamond S, Shultzaberger RK et al. 2015. The essential gene set of a photosynthetic organism. PNAS 112:E6634–43
    [Google Scholar]
  75. 75. 
    Ruiz L, Bottacini F, Boinett CJ, Cain AK, O'Connell-Motherway M et al. 2017. The essential genomic landscape of the commensal Bifidobacterium breve UCC2003. Sci. Rep. 7:5648
    [Google Scholar]
  76. 76. 
    Sanchez MR, Payen C, Cheong F, Hovde BT, Bissonnette S et al. 2019. Transposon insertional mutagenesis in Saccharomyces uvarum reveals trans-acting effects influencing species-dependent essential genes. Genome Res 29:396–406
    [Google Scholar]
  77. 77. 
    Sanchez-Larrayoz AF, Elhosseiny NM, Chevrette MG, Fu Y, Giunta P et al. 2017. Complexity of complement resistance factors expressed by Acinetobacter baumannii needed for survival in human serum. J. Immunol. 199:2803–14
    [Google Scholar]
  78. 78. 
    Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S, Meredith TC 2015. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genom 16:252
    [Google Scholar]
  79. 79. 
    Sarmiento F, Mrazek J, Whitman WB 2013. Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. . PNAS 110:4726–31
    [Google Scholar]
  80. 80. 
    Segal ES, Gritsenko V, Levitan A, Yadav B, Dror N et al. 2018. Gene essentiality analyzed by in vivo transposon mutagenesis and machine learning in a stable haploid isolate of Candida albicans. . mBio 9:e02048–18
    [Google Scholar]
  81. 81. 
    Shevchenko Y, Bouffard GG, Butterfield YS, Blakesley RW, Hartley JL et al. 2002. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res 30:2469–77
    [Google Scholar]
  82. 82. 
    Solaimanpour S, Sarmiento F, Mrazek J 2015. Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLOS ONE 10:e0126070
    [Google Scholar]
  83. 83. 
    Subashchandrabose S, Smith S, DeOrnellas V, Crepin S, Kole M et al. 2016. Acinetobacter baumannii genes required for bacterial survival during bloodstream infection. mSphere 1:e00013–15
    [Google Scholar]
  84. 84. 
    Subashchandrabose S, Smith SN, Spurbeck RR, Kole MM, Mobley HL 2013. Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLOS Pathog 9:e1003788
    [Google Scholar]
  85. 85. 
    Subramaniyam S, DeJesus MA, Zaveri A, Smith CM, Baker RE et al. 2019. Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression. BMC Bioinform 20:603
    [Google Scholar]
  86. 86. 
    Surujon D, van Opijnen T 2020. ShinyOmics: collaborative exploration of omics-data. BMC Bioinform 21:22
    [Google Scholar]
  87. 87. 
    Thibault D, Jensen PA, Wood S, Qabar C, Clark S et al. 2019. Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes. Nat. Commun. 10:5729
    [Google Scholar]
  88. 88. 
    Troy EB, Lin T, Gao L, Lazinski DW, Lundt M et al. 2016. Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of Borrelia burgdorferi. Mol. Microbiol 101:1003–23
    [Google Scholar]
  89. 89. 
    Valentino MD, Foulston L, Sadaka A, Kos VN, Villet RA et al. 2014. Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. mBio 5:e01729–14
    [Google Scholar]
  90. 90. 
    Van den Berge K, Perraudeau F, Soneson C, Love MI, Risso D et al. 2018. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications. Genome Biol 19:24
    [Google Scholar]
  91. 91. 
    van Opijnen T, Bodi KL, Camilli A 2009. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6:767–72
    [Google Scholar]
  92. 92. 
    van Opijnen T, Boerlijst MC, Berkhout B 2006. Effects of random mutations in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J. Virol. 80:6678–85
    [Google Scholar]
  93. 93. 
    van Opijnen T, Camilli A 2012. A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res 22:2541–51
    [Google Scholar]
  94. 94. 
    van Opijnen T, Camilli A 2013. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat. Rev. Microbiol. 11:435–42
    [Google Scholar]
  95. 95. 
    van Opijnen T, Dedrick S, Bento J 2016. Strain dependent genetic networks for antibiotic-sensitivity in a bacterial pathogen with a large pan-genome. PLOS Pathog 12:e1005869
    [Google Scholar]
  96. 96. 
    Verhagen LM, de Jonge MI, Burghout P, Schraa K, Spagnuolo L et al. 2014. Genome-wide identification of genes essential for the survival of Streptococcus pneumoniae in human saliva. PLOS ONE 9:e89541
    [Google Scholar]
  97. 97. 
    Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P et al. 2019. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLOS Pathog 15:e1007652
    [Google Scholar]
  98. 98. 
    Wetmore KM, Price MN, Waters RJ, Lamson JS, He J et al. 2015. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio 6:e00306–15
    [Google Scholar]
  99. 99. 
    Willcocks SJ, Stabler RA, Atkins HS, Oyston PF, Wren BW 2018. High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis. . BMC Microbiol 18:46
    [Google Scholar]
  100. 100. 
    Wong YC, Abd El Ghany M, Naeem R, Lee KW, Tan YC et al. 2016. Candidate essential genes in Burkholderia cenocepacia J2315 identified by genome-wide TraDIS. Front. Microbiol. 7:1288
    [Google Scholar]
  101. 101. 
    Wu S, Ying G, Wu Q, Capecchi MR 2007. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39:922–30
    [Google Scholar]
  102. 102. 
    Yasir M, Turner AK, Bastkowski S, Baker D, Page AJ et al. 2020. TraDIS-Xpress: A high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance. Genome Res 30:239–49
    [Google Scholar]
  103. 103. 
    Zafar MA, Hammond AJ, Hamaguchi S, Wu W, Kono M et al. 2019. Identification of pneumococcal factors affecting pneumococcal shedding shows that the dlt locus promotes inflammation and transmission. mBio 10:e01032–19
    [Google Scholar]
  104. 104. 
    Zhang C, Phillips APR, Wipfler RL, Olsen GJ, Whitaker RJ 2018. The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat. Commun 9:4908
    [Google Scholar]
  105. 105. 
    Zhang M, Wang C, Otto TD, Oberstaller J, Liao X et al. 2018. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360:eaap7847
    [Google Scholar]
  106. 106. 
    Zhang X, de Maat V, Guzman Prieto AM, Prajsnar TK, Bayjanov JR et al. 2017. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genom 18:893
    [Google Scholar]
  107. 107. 
    Zhao L, Anderson MT, Wu W, Mobley HLT, Bachman MA 2017. TnseqDiff: identification of conditionally essential genes in transposon sequencing studies. BMC Bioinform 18:326
    [Google Scholar]
  108. 108. 
    Zhu J, Gong R, Zhu Q, He Q, Xu N et al. 2018. Genome-wide determination of gene essentiality by transposon insertion sequencing in yeast Pichia pastoris. Sci. Rep 8:10223
    [Google Scholar]
  109. 109. 
    Zhu L, Olsen RJ, Beres SB, Eraso JM, Saavedra MO et al. 2019. Gene fitness landscape of group A streptococcus during necrotizing myositis. J. Clin. Invest. 129:887–901
    [Google Scholar]
  110. 110. 
    Zomer A, Burghout P, Bootsma HJ, Hermans PW, van Hijum SA 2012. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLOS ONE 7:e43012
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043838
Loading
/content/journals/10.1146/annurev-genet-112618-043838
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error