1932

Abstract

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene () and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of , whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non- factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092352
2019-12-03
2024-05-24
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-120213-092352.html?itemId=/content/journals/10.1146/annurev-genet-120213-092352&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acutis PL, Bossers A, Priem J, Riina MV, Peletto S et al. 2006. Identification of prion protein gene polymorphisms in goats from Italian scrapie outbreaks. J. Gen. Virol. 87:1029–33
    [Google Scholar]
  2. 2. 
    Agrimi U, Nonno R, Dell'Omo G, Di Bari MA, Conte M et al. 2008. Prion protein amino acid determinants of differential susceptibility and molecular feature of prion strains in mice and voles. PLOS Pathog 4:e1000113
    [Google Scholar]
  3. 3. 
    Akhtar S, Grizenkova J, Wenborn A, Hummerich H, Fernandez de Marco M et al. 2013. Sod1 deficiency reduces incubation time in mouse models of prion disease. PLOS ONE 8:e54454
    [Google Scholar]
  4. 4. 
    Alpers MP. 2008. The epidemiology of kuru: monitoring the epidemic from its peak to its end. Philos. Trans. R. Soc. B 363:3707–13
    [Google Scholar]
  5. 5. 
    Andréoletti O, Morel N, Lacroux C, Rouillon V, Barc C et al. 2006. Bovine spongiform encephalopathy agent in spleen from an ARR/ARR orally exposed sheep. J. Gen. Virol. 87:1043–46
    [Google Scholar]
  6. 6. 
    Arsac JN, Andréoletti O, Bilheude JM, Lacroux C, Benestad SL, Baron T 2007. Similar biochemical signatures and prion protein genotypes in atypical scrapie and Nor98 cases, France and Norway. Emerg. Infect. Dis. 13:58–65
    [Google Scholar]
  7. 7. 
    Asante EA, Gowland I, Grimshaw A, Linehan JM, Smidak M et al. 2009. Absence of spontaneous disease and comparative prion susceptibility of transgenic mice expressing mutant human prion proteins. J. Gen. Virol. 90:546–58
    [Google Scholar]
  8. 8. 
    Asante EA, Linehan JM, Smidak M, Tomlinson A, Grimshaw A et al. 2013. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein. PLOS Pathog 9:e1003643
    [Google Scholar]
  9. 9. 
    Asante EA, Smidak M, Grimshaw A, Houghton R, Tomlinson A et al. 2015. A naturally occurring variant of the human prion protein completely prevents prion disease. Nature 522:478–81
    [Google Scholar]
  10. 10. 
    Barron RM, Baybutt H, Tuzi NL, McCormack J, King D et al. 2005. Polymorphisms at codons 108 and 189 in murine PrP play distinct roles in the control of scrapie incubation time. J. Gen. Virol. 86:859–68
    [Google Scholar]
  11. 11. 
    Barry AE, Klyubin I, McDonald JM, Mably AJ, Farrell MA et al. 2011. Alzheimer's disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 31:7259–63
    [Google Scholar]
  12. 12. 
    Basu U, Guan LL, Moore SS 2012. Functional genomics approach for identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr. Genom. 13:369–78
    [Google Scholar]
  13. 13. 
    Baylis M, Goldmann W. 2004. The genetics of scrapie in sheep and goats. Curr. Mol. Med. 4:385–96
    [Google Scholar]
  14. 14. 
    Beck E, Daniel PM. 1987. Neuropathology of transmissible spongiform encephalopathies. Prions: Novel Infectious Pathogens Causing Scrapie and Creutzfeldt-Jakob Disease SB Prusiner, MP McKinley 331–85 San Diego, CA: Academic
    [Google Scholar]
  15. 15. 
    Beck J, Collinge J, Mead S 2012. Prion protein gene M232R variation is probably an uncommon polymorphism rather than a pathogenic mutation. Brain 135:e209
    [Google Scholar]
  16. 16. 
    Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ et al. 2013. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am. J. Hum. Genet. 92:345–53
    [Google Scholar]
  17. 17. 
    Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT et al. 2000. Genealogies of mouse inbred strains. Nat. Genet. 24:23–25
    [Google Scholar]
  18. 18. 
    Beck JA, Poulter M, Campbell TA, Adamson G, Uphill JB et al. 2010. PRNP allelic series from 19 years of prion protein gene sequencing at the MRC Prion Unit. Hum. Mutat. 31:E1551–63
    [Google Scholar]
  19. 19. 
    Benestad SL, Arsac JN, Goldmann W, Nöremark M 2008. Atypical/Nor98 scrapie: properties of the agent, genetics, and epidemiology. Vet. Res. 39:19
    [Google Scholar]
  20. 20. 
    Benestad SL, Austbo L, Tranulis MA, Espenes A, Olsaker I 2012. Healthy goats naturally devoid of prion protein. Vet. Res. 43:87
    [Google Scholar]
  21. 21. 
    Beringue V, Andréoletti O, Le Dur A, Essalmani R, Vilotte JL et al. 2007. A bovine prion acquires an epidemic bovine spongiform encephalopathy strain-like phenotype on interspecies transmission. J. Neurosci. 27:6965–71
    [Google Scholar]
  22. 22. 
    Biacabe AG, Laplanche JL, Ryder S, Baron T 2004. Distinct molecular phenotypes in bovine prion diseases. EMBO Rep 5:110–15
    [Google Scholar]
  23. 23. 
    Bishop MT, Diack AB, Ritchie DL, Ironside JW, Will RG, Manson JC 2013. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt–Jakob disease. Brain 136:1139–45
    [Google Scholar]
  24. 24. 
    Bishop MT, Kovacs GG, Sanchez-Juan P, Knight RS 2008. Cathepsin D SNP associated with increased risk of variant Creutzfeldt-Jakob disease. BMC Med. Genet. 9:31
    [Google Scholar]
  25. 25. 
    Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H et al. 2010. Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci. 13:310–18
    [Google Scholar]
  26. 26. 
    Brown CA, Schmidt C, Poulter M, Hummerich H, Klohn PC et al. 2014. In-vitro screen of prion disease susceptibility genes using the scrapie cell assay. Hum. Mol. Genet. 23:5102–8
    [Google Scholar]
  27. 27. 
    Brown DR, Besinger A, Herms JW, Kretzschmar HA 1998. Microglial expression of the prion protein. Neuro Rep 9:1425–29
    [Google Scholar]
  28. 28. 
    Bruce ME. 2003. TSE strain variation: an investigation into prion disease diversity. Br. Med. Bull. 66:99–108
    [Google Scholar]
  29. 29. 
    Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D et al. 1997. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501
    [Google Scholar]
  30. 30. 
    Büeler H, Aguzzi A, Sailer A, Greiner R-A, Autenried P et al. 1993. Mice devoid of PrP are resistant to scrapie. Cell 73:1339–47
    [Google Scholar]
  31. 31. 
    Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp H-P et al. 1992. PrP protein is not essential for normal development and behavior of the mouse. Nature 356:577–82
    [Google Scholar]
  32. 32. 
    Calero O, Bullido MJ, Clarimón J, Frank-García A, Martínez-Martín P et al. 2012. A common BACE1 polymorphism is a risk factor for sporadic Creutzfeldt-Jakob disease. PLOS ONE 7:e43926
    [Google Scholar]
  33. 33. 
    Carlson GA, Goodman PA, Lovett M, Taylor BA, Marshall ST et al. 1988. Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol. Cell. Biol. 8:5528–40
    [Google Scholar]
  34. 34. 
    Carlson GA, Kingsbury DT, Goodman PA, Coleman S, Marshall ST et al. 1986. Linkage of prion protein and scrapie incubation time genes. Cell 46:503–11
    [Google Scholar]
  35. 35. 
    Carlson GA, Westaway D, Goodman PA, Peterson M, Marshall ST, Prusiner SB 1988. Genetic control of prion incubation period in mice. Ciba Found. Symp. 135:84–99
    [Google Scholar]
  36. 36. 
    Cartoni C, Schinina ME, Maras B, Nonno R, Vaccari G et al. 2005. Identification of the pathological prion protein allotypes in scrapie-infected heterozygous bank voles (Clethrionomys glareolus) by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 1081:122–26
    [Google Scholar]
  37. 37. 
    Casalone C, Zanusso G, Acutis P, Ferrari S, Capucci L et al. 2004. Identification of a second bovine amyloidotic spongiform encephalopathy: molecular similarities with sporadic Creutzfeldt-Jakob disease. PNAS 101:3065–70
    [Google Scholar]
  38. 38. 
    Cassard H, Torres J-M, Lacroux C, Douet J-Y, Benestad SL et al. 2014. Evidence for zoonotic potential of ovine scrapie prions. Nat. Commun. 5:5821
    [Google Scholar]
  39. 39. 
    Chesebro B, Trifilo M, Race R, Meade-White K, Teng C et al. 2005. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–39
    [Google Scholar]
  40. 40. 
    Chiesa R, Piccardo P, Ghetti B, Harris DA 1998. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21:1339–51
    [Google Scholar]
  41. 41. 
    Collinge J. 1999. Variant Creutzfeldt-Jakob disease. Lancet 354:317–23
    [Google Scholar]
  42. 42. 
    Collinge J. 2001. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24:519–50
    [Google Scholar]
  43. 43. 
    Collinge J. 2005. Molecular neurology of prion disease. J. Neurol. Neurosurg. Psychiatry 76:906–19
    [Google Scholar]
  44. 44. 
    Collinge J. 2016. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 539:217–26
    [Google Scholar]
  45. 45. 
    Collinge J, Clarke A. 2007. A general model of prion strains and their pathogenicity. Science 318:930–36
    [Google Scholar]
  46. 46. 
    Collinge J, Harding AE, Owen F, Poulter M, Lofthouse R et al. 1989. Diagnosis of Gerstmann-Sträussler syndrome in familial dementia with prion protein gene analysis. Lancet 2:15–17
    [Google Scholar]
  47. 47. 
    Collinge J, Palmer MS, Dryden AJ 1991. Genetic predisposition to iatrogenic Creutzfeldt-Jakob disease. Lancet 337:1441–42
    [Google Scholar]
  48. 48. 
    Collinge J, Palmer MS, Sidle KC, Gowland I, Medori R et al. 1995. Transmission of fatal familial insomnia to laboratory animals. Lancet 346:569–70
    [Google Scholar]
  49. 49. 
    Collinge J, Sidle KC, Meads J, Ironside J, Hill AF 1996. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383:685–90
    [Google Scholar]
  50. 50. 
    Collinge J, Whitfield J, McKintosh E, Beck J, Mead S et al. 2006. Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367:2068–74
    [Google Scholar]
  51. 51. 
    Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS et al. 1994. Prion protein is necessary for normal synaptic function. Nature 370:295–97
    [Google Scholar]
  52. 52. 
    Cordier C, Bencsik A, Philippe S, Bétemps D, Ronzon F et al. 2006. Transmission and characterization of bovine spongiform encephalopathy sources in two ovine transgenic mouse lines (TgOvPrP4 and TgOvPrP59). J. Gen. Virol. 87:3763–71
    [Google Scholar]
  53. 53. 
    Cuillé J, Chelle PL. 1936. La maladie dite tremblante du mouton est-elle inocuable. ? C. R. Acad. Sci. 203:1552–54
    [Google Scholar]
  54. 54. 
    Dawson M, Hoinville LJ, Hosie BD, Hunter N 1998. Guidance on the use of PrP genotyping as an aid to the control of clinical scrapie. Scrapie Information Group. Vet. Rec. 142:623–25
    [Google Scholar]
  55. 55. 
    Dickinson AG, Mackay JMK. 1964. Genetical control of the incubation period in mice of the neurological disease, scrapie. Heredity 19:279–88
    [Google Scholar]
  56. 56. 
    Dickinson AG, Meikle VM, Fraser H 1968. Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J. Comp. Pathol. 78:293–99
    [Google Scholar]
  57. 57. 
    Dodelet VC, Cashman NR. 1998. Prion protein expression in human leukocyte differentiation. Blood 91:1556–61
    [Google Scholar]
  58. 58. 
    Felton LM, Cunningham C, Rankine EL, Waters S, Boche D, Perry VH 2005. MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol. Dis. 20:283–95
    [Google Scholar]
  59. 59. 
    Flechsig E, Shmerling D, Hegyi I, Raeber AJ, Fischer M et al. 2000. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27:399–408
    [Google Scholar]
  60. 60. 
    Fox KA, Jewell JE, Williams ES, Miller MW 2006. Patterns of PrPCWD accumulation during the course of chronic wasting disease infection in orally inoculated mule deer (Odocoileus hemionus). J. Gen. Virol. 87:3451–61
    [Google Scholar]
  61. 61. 
    Freir DB, Nicoll AJ, Klyubin I, Panico S, McDonald JM et al. 2011. Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2:336
    [Google Scholar]
  62. 62. 
    Gajdusek DC, Gibbs CJJ, Alpers M 1966. Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 209:794–96
    [Google Scholar]
  63. 63. 
    Gauczynski S, Peyrin JM, Haïk S, Leucht C, Hundt C et al. 2001. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20:5863–75
    [Google Scholar]
  64. 64. 
    Gibbs CJ Jr, Gajdusek DC, Asher DM, Alper MP, Beck E et al. 1968. Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161:388–89
    [Google Scholar]
  65. 65. 
    Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Dabaghian R et al. 2013. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. Br. Med. J. 347:f5675
    [Google Scholar]
  66. 66. 
    Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC et al. 1992. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258:806–8
    [Google Scholar]
  67. 67. 
    Goldmann W. 2008. PrP genetics in ruminant transmissible spongiform encephalopathies. Vet. Res. 39:30
    [Google Scholar]
  68. 68. 
    Goldmann W, Hunter N, Smith G, Foster J, Hope J 1994. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J. Gen. Virol. 75:989–95
    [Google Scholar]
  69. 69. 
    Goldmann W, Ryan K, Stewart P, Parnham D, Xicohtencatl R et al. 2011. Caprine prion gene polymorphisms are associated with decreased incidence of classical scrapie in goat herds in the United Kingdom. Vet. Res. 42:110
    [Google Scholar]
  70. 70. 
    Green KM, Browning SR, Seward TS, Jewell JE, Ross DL et al. 2008. The elk PRNP codon 132 polymorphism controls cervid and scrapie prion propagation. J. Gen. Virol. 89:598–608
    [Google Scholar]
  71. 71. 
    Griffith JS. 1967. Self-replication and scrapie. Nature 215:1043–44
    [Google Scholar]
  72. 72. 
    Grizenkova J, Akhtar S, Hummerich H, Tomlinson A, Asante EA et al. 2012. Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice. PNAS 109:13722–27
    [Google Scholar]
  73. 73. 
    Haase B, Doherr MG, Seuberlich T, Drögemüller C, Dolf G et al. 2007. PRNP promoter polymorphisms are associated with BSE susceptibility in Swiss and German cattle. BMC Genet 8:15
    [Google Scholar]
  74. 74. 
    Hadlow WJ. 1959. Scrapie and kuru. Lancet ii:289–90
    [Google Scholar]
  75. 75. 
    Hamir AN, Gidlewski T, Spraker TR, Miller JM, Creekmore L et al. 2006. Preliminary observations of genetic susceptibility of elk (Cervus elaphus nelsoni) to chronic wasting disease by experimental oral inoculation. J. Vet. Diagn. Investig. 18:110–14
    [Google Scholar]
  76. 76. 
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A et al. 2009. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41:1088–93
    [Google Scholar]
  77. 77. 
    Heaton MP, Leymaster KA, Freking BA, Hawk DA, Smith TP et al. 2003. Prion gene sequence variation within diverse groups of U.S. sheep, beef cattle, and deer. Mamm. Genome 14:765–77
    [Google Scholar]
  78. 78. 
    Heisey DM, Mickelsen NA, Schneider JR, Johnson CJ, Johnson CJ et al. 2010. Chronic wasting disease (CWD) susceptibility of several North American rodents that are sympatric with cervid CWD epidemics. J. Virol. 84:210–15
    [Google Scholar]
  79. 79. 
    Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I et al. 1997. The same prion strain causes vCJD and BSE. Nature 389:448–50526
    [Google Scholar]
  80. 80. 
    Hitzemann B, Dains K, Kanes S, Hitzemann R 1994. Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J. Pharmacol. Exp. Ther. 271:969–76
    [Google Scholar]
  81. 81. 
    Hosszu LL, Jackson GS, Trevitt CR, Jones S, Batchelor M et al. 2004. The residue 129 polymorphism in human prion protein does not confer susceptibility to CJD by altering the structure or global stability of PrPC. J. Biol. Chem. 279:28515–21
    [Google Scholar]
  82. 82. 
    Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F et al. 1989. Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 338:342–45
    [Google Scholar]
  83. 83. 
    Hunter N, Goldmann W, Smith G, Hope J 1994. Frequencies of PrP gene variants in healthy cattle and cattle with BSE in Scotland. Vet. Rec. 135:400–3
    [Google Scholar]
  84. 84. 
    Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH et al. 2009. A systems approach to prion disease. Mol. Syst. Biol. 5:252
    [Google Scholar]
  85. 85. 
    Iyegbe CO, Abiola OO, Towlson C, Powell JF, Whatley SA 2010. Evidence for varied aetiologies regulating the transmission of prion disease: implications for understanding the heritable basis of prion incubation times. PLOS ONE 5:e14186
    [Google Scholar]
  86. 86. 
    Jackson WS, Borkowski AW, Faas H, Steele AD, King OD et al. 2009. Spontaneous generation of prion infectivity in fatal familial insomnia knockin mice. Neuron 63:438–50
    [Google Scholar]
  87. 87. 
    Jackson WS, Borkowski AW, Watson NE, King OD, Faas H et al. 2013. Profoundly different prion diseases in knock-in mice carrying single PrP codon substitutions associated with human diseases. PNAS 110:14759–64
    [Google Scholar]
  88. 88. 
    Jewell JE, Conner MM, Wolfe LL, Miller MW, Williams ES 2005. Low frequency of PrP genotype 225SF among free-ranging mule deer (Odocoileus hemionus) with chronic wasting disease. J. Gen. Virol. 86:2127–34
    [Google Scholar]
  89. 89. 
    Johnson C, Johnson J, Vanderloo JP, Keane D, Aiken JM, McKenzie D 2006. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J. Gen. Virol. 87:2109–14
    [Google Scholar]
  90. 90. 
    Johnson CJ, Herbst A, Duque-Velasquez C, Vanderloo JP, Bochsler P et al. 2011. Prion protein polymorphisms affect chronic wasting disease progression. PLOS ONE 6:e17450
    [Google Scholar]
  91. 91. 
    Joyce PI, Fratta P, Fisher EMC, Acevedo-Arozena A 2011. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm. Genome 22:420–48
    [Google Scholar]
  92. 92. 
    Jucker M, Walker LC. 2013. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51
    [Google Scholar]
  93. 93. 
    Kaski D, Mead S, Hyare H, Cooper S, Jampana R et al. 2009. Variant CJD in an individual heterozygous for PRNP codon 129. Lancet 374:2128
    [Google Scholar]
  94. 94. 
    Kaski DN, Pennington C, Beck J, Poulter M, Uphill J et al. 2011. Inherited prion disease with 4-octapeptide repeat insertion: Disease requires the interaction of multiple genetic risk factors. Brain 134:1829–38
    [Google Scholar]
  95. 95. 
    Kelly AC, Mateus-Pinilla NE, Diffendorfer J, Jewell E, Ruiz MO et al. 2008. Prion sequence polymorphisms and chronic wasting disease resistance in Illinois white-tailed deer (Odocoileus virginianus). Prion 2:28–36
    [Google Scholar]
  96. 96. 
    Kempster S, Collins ME, Aronow BJ, Simmons M, Green RB, Edington N 2004. Clusterin shortens the incubation and alters the histopathology of bovine spongiform encephalopathy in mice. Neuroreport 15:1735–38
    [Google Scholar]
  97. 97. 
    Kingsbury DT, Kasper KC, Stites DP, Watson JD, Hogan RN, Prusiner SB 1983. Genetic control of scrapie and Creutzfeldt-Jakob disease in mice. J. Immunol. 131:491–96
    [Google Scholar]
  98. 98. 
    Kovacs GG, Sanchez-Juan P, Ströbel T, Schuur M, Poleggi A et al. 2010. Cathepsin D (C224T) polymorphism in sporadic and genetic Creutzfeldt-Jakob disease. Alzheimer Dis. Assoc. Disord. 24:104–7
    [Google Scholar]
  99. 99. 
    Krasnianski A, Bartl M, Sanchez-Juan PJ, Heinemann U, Meissner B et al. 2008. Fatal familial insomnia: clinical features and early identification. Ann. Neurol. 63:658–61
    [Google Scholar]
  100. 100. 
    Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ 1986. Scrapie prion proteins are synthesized in neurons. Am. J. Pathol. 122:1–5
    [Google Scholar]
  101. 101. 
    Küffer A, Lakkaraju AKK, Mogha A, Petersen SC, Airich K et al. 2016. The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature 536:464–68
    [Google Scholar]
  102. 102. 
    Lambert J-C, Heath S, Even G, Campion D, Sleegers K et al. 2009. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41:1094–99
    [Google Scholar]
  103. 103. 
    Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM 2009. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457:1128–32
    [Google Scholar]
  104. 104. 
    Le Pichon CE, Valley MT, Polymenidou M, Chesler AT, Sagdullaev BT et al. 2009. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat. Neurosci. 12:60–69
    [Google Scholar]
  105. 105. 
    Lloyd S, Collinge J. 2005. Genetic susceptibility to prion diseases in humans and mice. Curr. Genom. 6:1–11
    [Google Scholar]
  106. 106. 
    Lloyd S, Onwuazor ON, Beck JA, Mallinson G, Farrall M et al. 2001. Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. PNAS 98:6279–83
    [Google Scholar]
  107. 107. 
    Lloyd S, Thompson SR, Beck JA, Linehan JM, Wadsworth JD et al. 2004. Identification and characterization of a novel mouse prion gene allele. Mamm. Genome 15:383–89
    [Google Scholar]
  108. 108. 
    Lloyd S, Uphill JB, Targonski PV, Fisher EM, Collinge J 2002. Identification of genetic loci affecting mouse-adapted bovine spongiform encephalopathy incubation time in mice. Neurogenetics 4:77–81
    [Google Scholar]
  109. 109. 
    Lloyd SE, Maytham EG, Grizenkova J, Hummerich H, Collinge J 2010. A copine family member, Cpne8, is a candidate quantitative trait gene for prion disease incubation time in mouse. Neurogenetics 11:185–91
    [Google Scholar]
  110. 110. 
    Lloyd SE, Maytham EG, Pota H, Grizenkova J, Molou E et al. 2009. HECTD2 is associated with susceptibility to mouse and human prion disease. PLOS Genet 5:e1000383
    [Google Scholar]
  111. 111. 
    Lühken G, Buschmann A, Brandt H, Eiden M, Groschup MH, Erhardt G 2007. Epidemiological and genetical differences between classical and atypical scrapie cases. Vet. Res. 38:65–80
    [Google Scholar]
  112. 112. 
    Lukic A, Beck J, Joiner S, Fearnley J, Sturman S et al. 2010. Heterozygosity at polymorphic codon 219 in variant Creutzfeldt-Jakob disease. Arch. Neurol. 67:1021–23
    [Google Scholar]
  113. 113. 
    Mallucci GR, Ratté S, Asante EA, Linehan J, Gowland I et al. 2002. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–10
    [Google Scholar]
  114. 114. 
    Manolakou K, Beaton J, McConnell I, Farquar C, Manson J et al. 2001. Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. PNAS 98:7402–7
    [Google Scholar]
  115. 115. 
    Manson J, West JD, Thomson V, McBride P, Kaufman MH, Hope J 1992. The prion protein gene: a role in mouse embryogenesis?. Development 115:117–22
    [Google Scholar]
  116. 116. 
    Manson JC, Jamieson E, Baybutt H, Tuzi NL, Barron R et al. 1999. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J 18:6855–64
    [Google Scholar]
  117. 117. 
    Masters CL, Gajdusek DC, Gibbs CJJ 1981. Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Sträussler syndrome with an analysis of the various forms of amyloid plaque deposition in the virus-induced spongiform encephalopathies. Brain 104:559–88
    [Google Scholar]
  118. 118. 
    McCormack JE, Baybutt HN, Everington D, Will RG, Ironside JW, Manson JC 2002. PRNP contains both intronic and upstream regulatory regions that may influence susceptibility to Creutzfeldt-Jakob disease. Gene 288:139–46
    [Google Scholar]
  119. 119. 
    McGowan JP. 1922. Scrapie in sheep. Scott. J. Agric. 5:365–75
    [Google Scholar]
  120. 120. 
    McHattie S, Wells GAH, Bee J, Edington N 1999. Clusterin in bovine spongiform encephalopathy (BSE). J. Comp. Pathol. 121:159–71
    [Google Scholar]
  121. 121. 
    McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A et al. 2004. Prion protein accumulation and neuroprotection in hypoxic brain damage. Am. J. Pathol. 165:227–35
    [Google Scholar]
  122. 122. 
    Mead S. 2019. Genetic risk factors for sporadic CJD: replication, expression, function. Prion 13:4 Abstr .)
    [Google Scholar]
  123. 123. 
    Mead S, Gandhi S, Beck J, Caine D, Gallujipali D et al. 2013. A novel prion disease associated with diarrhea and autonomic neuropathy. N. Engl. J. Med. 369:1904–14
    [Google Scholar]
  124. 124. 
    Mead S, Mahal SP, Beck J, Campbell T, Farrall M et al. 2001. Sporadic—but not variant—Creutzfeldt-Jakob disease is associated with polymorphisms upstream of PRNP exon 1. Am. J. Hum. Genet. 69:1225–35
    [Google Scholar]
  125. 125. 
    Mead S, Poulter M, Beck J, Webb TE, Campbell TA et al. 2006. Inherited prion disease with six octapeptide repeat insertional mutation–molecular analysis of phenotypic heterogeneity. Brain 129:2297–317
    [Google Scholar]
  126. 126. 
    Mead S, Poulter M, Uphill J, Beck J, Whitfield J et al. 2009. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol 8:57–66
    [Google Scholar]
  127. 127. 
    Mead S, Stumpf MPH, Whitfield J, Beck JA, Poulter M et al. 2003. Balancing selection at the prion protein gene consistent with prehistoric kuru-like epidemics. Science 300:640–43
    [Google Scholar]
  128. 128. 
    Mead S, Uphill J, Beck J, Poulter M, Campbell T et al. 2012. Genome-wide association study in multiple human prion diseases suggests genetic risk factors additional to PRNP. Hum. Mol. Genet 21:1897–906
    [Google Scholar]
  129. 129. 
    Mead S, Webb TE, Campbell TA, Beck J, Linehan JM et al. 2007. Inherited prion disease with 5-OPRI: phenotype modification by repeat length and codon 129. Neurology 69:730–38
    [Google Scholar]
  130. 130. 
    Mead S, Whitfield J, Poulter M, Shah P, Uphill J et al. 2008. Genetic susceptibility, evolution and the kuru epidemic. Philos. Trans. R. Soc. B 363:3741–46
    [Google Scholar]
  131. 131. 
    Mead S, Whitfield J, Poulter M, Shah P, Uphill J et al. 2009. A novel protective prion protein variant that colocalizes with kuru exposure. N. Engl. J. Med. 361:2056–65
    [Google Scholar]
  132. 132. 
    Meade-White K, Race B, Trifilo M, Bossers A, Favara C et al. 2007. Resistance to chronic wasting disease (CWD) in transgenic mice expressing a naturally occurring allelic variant of deer prion protein. J. Virol. 81:4533–39
    [Google Scholar]
  133. 133. 
    Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE et al. 2016. Quantifying prion disease penetrance using large population control cohorts. Sci. Transl. Med. 8:322ra9
    [Google Scholar]
  134. 134. 
    Minikel EV, Vallabh SM, Orseth MC, Brandel J-P, Haïk S et al. 2019. Age at onset in genetic prion disease and the design of preventive clinical trials. Neurology 93:2e125–34
    [Google Scholar]
  135. 135. 
    Minikel EV, Zerr I, Collins SJ, Ponto C, Boyd A et al. 2014. Ascertainment bias causes false signal of anticipation in genetic prion disease. Am. J. Hum. Genet. 95:371–82
    [Google Scholar]
  136. 136. 
    Mitrová E, Kosorinová D, Gajdoš M, Šebeková K, Tomečková I 2014. A pilot study of a genetic CJD risk factor (E200K) in the general Slovak population. Eur. J. Epidemiol. 29:595–97
    [Google Scholar]
  137. 137. 
    Mok T, Jaunmuktane Z, Joiner S, Campbell T, Morgan C et al. 2017. Variant Creutzfeldt-Jakob disease in a patient with heterozygosity at PRNP codon 129. N. Engl. J. Med. 376:292–94
    [Google Scholar]
  138. 138. 
    Moore RC, Hope J, McBride PA, McConnell I, Selfridge J et al. 1998. Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat. Genet. 18:118–25
    [Google Scholar]
  139. 139. 
    Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM 2003. Detection of new quantitative trait loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 165:2085–91
    [Google Scholar]
  140. 140. 
    Moreno CR, Moazami-Goudarzi K, Briand S, Robert-Granié C, Weisbecker JL et al. 2010. Mapping of quantitative trait loci affecting classical scrapie incubation time in a population comprising several generations of scrapie-infected sheep. J. Gen. Virol. 91:575–79
    [Google Scholar]
  141. 141. 
    Moreno JA, Radford H, Peretti D, Steinert JR, Verity N et al. 2012. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507–11
    [Google Scholar]
  142. 142. 
    Moum T, Olsaker I, Hopp P, Moldal T, Valheim M et al. 2005. Polymorphisms at codons 141 and 154 in the ovine prion protein gene are associated with scrapie Nor98 cases. J. Gen. Virol. 86:231–35
    [Google Scholar]
  143. 143. 
    Nicholson EM, Brunelle BW, Richt JA, Kehrli ME Jr, Greenlee JJ 2008. Identification of a heritable polymorphism in bovine PRNP associated with genetic transmissible spongiform encephalopathy: evidence of heritable BSE. PLOS ONE 3:e2912
    [Google Scholar]
  144. 144. 
    Nonno R, Di Bari MA, Cardone F, Vaccari G, Fazzi P et al. 2006. Efficient transmission and characterization of Creutzfeldt-Jakob disease strains in bank voles. PLOS Pathog 2:112–20
    [Google Scholar]
  145. 145. 
    Nozaki I, Hamaguchi T, Sanjo N, Noguchi-Shinohara M, Sakai K et al. 2010. Prospective 10-year surveillance of human prion diseases in Japan. Brain 133:3043–57
    [Google Scholar]
  146. 146. 
    Oesch B, Westaway D, Wälchli M, McKinley MP, Kent SBH et al. 1985. A cellular gene encodes scrapie Prp 27–30 protein. Cell 40:735–46
    [Google Scholar]
  147. 147. 
    O'Rourke KI, Besser TE, Miller MW, Cline TF, Spraker TR et al. 1999. PrP genotypes of captive and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease. J. Gen. Virol. 80:2765–69
    [Google Scholar]
  148. 148. 
    O'Rourke KI, Spraker TR, Hamburg LK, Besser TE, Brayton KA, Knowles DP 2004. Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J. Gen. Virol. 85:1339–46
    [Google Scholar]
  149. 149. 
    O'Shea M, Maytham EG, Linehan JM, Brandner S, Collinge J, Lloyd S 2008. Investigation of Mcp1 as a quantitative trait gene for prion disease incubation time in mouse. Genetics 180:559–66
    [Google Scholar]
  150. 150. 
    Otterson GA, Flynn GC, Kratzke RA, Coxon A, Johnston PG, Kaye FJ 1994. Stch encodes the ‘ATPase core’ of a microsomal stress 70 protein. EMBO J 13:1216–25
    [Google Scholar]
  151. 151. 
    Owen F, Poulter M, Collinge J, Crow TJ 1990. Codon 129 changes in the prion protein gene in Caucasians. Am. J. Hum. Genet. 46:1215–16
    [Google Scholar]
  152. 152. 
    Owen F, Poulter M, Lofthouse R, Collinge J, Crow TJ et al. 1989. Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet 1:51–52
    [Google Scholar]
  153. 153. 
    Owen J, Beck J, Campbell T, Adamson G, Gorham M et al. 2014. Predictive testing for inherited prion disease: report of 22 years experience. Eur. J. Hum. Genet. 22:1351–56
    [Google Scholar]
  154. 154. 
    Palmer MS, Dryden AJ, Hughes JT, Collinge J 1991. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352:340–42
    [Google Scholar]
  155. 155. 
    Papasavva-Stylianou P, Windl O, Saunders G, Mavrikiou P, Toumazos P, Kakoyiannis C 2011. PrP gene polymorphisms in Cyprus goats and their association with resistance or susceptibility to natural scrapie. Vet. J. 187:245–50
    [Google Scholar]
  156. 156. 
    Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB et al. 2007. Cellular prion protein regulates β-secretase cleavage of the Alzheimer's amyloid precursor protein. PNAS 104:11062–67
    [Google Scholar]
  157. 157. 
    Perucchini M, Griffin K, Miller MW, Goldmann W 2008. PrP genotypes of free-ranging wapiti (Cervus elaphus nelsoni) with chronic wasting disease. J. Gen. Virol. 89:Part 51324–28
    [Google Scholar]
  158. 158. 
    Pocchiari M, Poleggi A, Puopolo M, D'Alessandro M, Tiple D, Ladogana A 2013. Age at death of Creutzfeldt-Jakob disease in subsequent family generation carrying the E200K mutation of the prion protein gene. PLOS ONE 8:e60376
    [Google Scholar]
  159. 159. 
    Pocchiari M, Puopolo M, Croes EA, Budka H, Gelpi E et al. 2004. Predictors of survival in sporadic Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies. Brain 127:2348–59
    [Google Scholar]
  160. 160. 
    Poleggi A, van der Lee S, Capellari S, Puopolo M, Ladogana A et al. 2018. Age at onset of genetic (E200K) and sporadic Creutzfeldt-Jakob diseases is modulated by the CYP4X1 gene. J. Neurol. Neurosurg. Psychiatry 89:1243–49
    [Google Scholar]
  161. 161. 
    Poulter M, Baker HF, Frith CD, Leach M, Lofthouse R et al. 1992. Inherited prion disease with 144 base pair gene insertion: 1. Genealogical and molecular studies. Brain 115:675–85
    [Google Scholar]
  162. 162. 
    Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. Science 216:136–44
    [Google Scholar]
  163. 163. 
    Prusiner SB, Scott M, Foster D, Pan KM, Groth D et al. 1990. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63:673–86
    [Google Scholar]
  164. 164. 
    Qina T, Sanjo N, Hizume M, Higuma M, Tomita M et al. 2014. Clinical features of genetic Creutzfeldt-Jakob disease with V180I mutation in the prion protein gene. Br. Med. J. Open 4:e004968
    [Google Scholar]
  165. 165. 
    Race B, Meade-White K, Miller MW, Fox KM, Chesebro B 2011. In vivo comparison of chronic wasting disease infectivity from deer with variation at prion protein residue 96. J. Virol. 85:9235–38
    [Google Scholar]
  166. 166. 
    Race RE, Graham K, Ernst D, Caughey B, Chesebro B 1990. Analysis of linkage between scrapie incubation period and the prion protein gene in mice. J. Gen. Virol. 71:493–97
    [Google Scholar]
  167. 167. 
    Richt JA, Hall SM. 2008. BSE case associated with prion protein gene mutation. PLOS Pathog 4:e1000156
    [Google Scholar]
  168. 168. 
    Robinson SJ, Samuel MD, Johnson CJ, Adams M, McKenzie DI 2012. Emerging prion disease drives host selection in a wildlife population. Ecol. Appl. 22:1050–59
    [Google Scholar]
  169. 169. 
    Robinson SJ, Samuel MD, O'Rourke KI, Johnson CJ 2012. The role of genetics in chronic wasting disease of North American cervids. Prion 6:153–62
    [Google Scholar]
  170. 170. 
    Rogaeva E, Zadikoff C, Ponesse J, Schmitt-Ulms G, Kawarai T et al. 2006. Childhood onset in familial prion disease with a novel mutation in the PRNP gene. Arch. Neurol. 63:1016–21
    [Google Scholar]
  171. 171. 
    Rosenmann H, Kahana E, Korczyn AD, Kahana I, Chapman J, Gabizon R 1999. Preliminary evidence for anticipation in genetic E200K Creutzfeldt-Jakob disease. Neurology 53:1328–29
    [Google Scholar]
  172. 172. 
    Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D et al. 2015. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 138:3386–99
    [Google Scholar]
  173. 173. 
    Rudge P, Jaunmuktane Z, Hyare H, Ellis M, Koltzenburg M et al. 2019. Early neurophysiological biomarkers and spinal cord pathology in inherited prion disease. Brain 142:760–70
    [Google Scholar]
  174. 174. 
    Sanchez-Juan P, Bishop MT, Aulchenko YS, Brandel J-P, Rivadeneira F et al. 2011. Genome-wide study links MTMR7 gene to variant Creutzfeldt-Jakob risk. Neurobiol. Aging 33:1487e21–28
    [Google Scholar]
  175. 175. 
    Sander P, Hamann H, Drögemüller C, Kashkevich K, Schiebel K, Leeb T 2005. Bovine prion protein gene (PRNP) promoter polymorphisms modulate PRNP expression and may be responsible for differences in BSE susceptibility. J. Biol. Chem. 280:37408–14
    [Google Scholar]
  176. 176. 
    Sander P, Hamann H, Pfeiffer I, Wemheuer W, Brenig B et al. 2004. Analysis of sequence variability of the bovine prion protein gene (PRNP) in German cattle breeds. Neurogenetics 5:19–25
    [Google Scholar]
  177. 177. 
    Santuccione A, Sytnyk V, Leshchyns'ka I, Schachner M 2005. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol. 169:341–54
    [Google Scholar]
  178. 178. 
    Saunders GC, Cawthraw S, Mountjoy SJ, Hope J, Windl O 2006. PrP genotypes of atypical scrapie cases in Great Britain. J. Gen. Virol. 87:3141–49
    [Google Scholar]
  179. 179. 
    Schmitt-Ulms G, Ehsani S, Watts JC, Westaway D, Wille H 2009. Evolutionary descent of prion genes from the ZIP family of metal ion transporters. PLOS ONE 4:e7208
    [Google Scholar]
  180. 180. 
    Schultz J, Schwarz A, Neidhold S, Burwinkel M, Riemer C et al. 2004. Role of interleukin-1 in prion disease-associated astrocyte activation. Am. J. Pathol. 165:671–78
    [Google Scholar]
  181. 181. 
    Shibuya S, Higuchi J, Shin RW, Tateishi J, Kitamoto T 1998. Protective prion protein polymorphisms against sporadic Creutzfeldt-Jakob disease. Lancet 351:419
    [Google Scholar]
  182. 182. 
    Shmerling D, Hegyi I, Fischer M, Blättler T, Brandner S et al. 1998. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93:203–14
    [Google Scholar]
  183. 183. 
    Slate J. 2005. Molecular evolution of the sheep prion protein gene. Proc. R. Soc. B 272:2337–44
    [Google Scholar]
  184. 184. 
    Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z et al. 2014. R47H TREM2 variant increases risk of typical early-onset alzheimer's disease but not of prion or frontotemporal dementia. Alzheimers Dement 10:602–8.e4
    [Google Scholar]
  185. 185. 
    Soldevila M, Andrés AM, Ramírez-Soriano A, Marquès-Bonet T, Calafell F et al. 2006. The prion protein gene in humans revisited: lessons from a worldwide resequencing study. Genome Res 16:231–39
    [Google Scholar]
  186. 186. 
    Soldevila M, Calafell F, Andrés AM, Yague J, Helgason A et al. 2003. Prion susceptibility and protective alleles exhibit marked geographic differences. Hum. Mutat. 22:104–5
    [Google Scholar]
  187. 187. 
    Stahl N, Borchelt DR, Hsiao K, Prusiner SB 1987. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–40
    [Google Scholar]
  188. 188. 
    Stephenson DA, Chiotti K, Ebeling C, Groth D, DeArmond SJ et al. 2000. Quantitative trait loci affecting prion incubation time in mice. Genomics 69:47–53
    [Google Scholar]
  189. 189. 
    Stöhr J, Watts JC, Legname G, Oehler A, Lemus A et al. 2011. Spontaneous generation of anchorless prions in transgenic mice. PNAS 108:21223–28
    [Google Scholar]
  190. 190. 
    Swerdlow AJ, Higgins CD, Adlard P, Jones ME, Preece MA 2003. Creutzfeldt-Jakob disease in United Kingdom patients treated with human pituitary growth hormone. Neurology 61:783–91
    [Google Scholar]
  191. 191. 
    Tamguney G, Giles K, Glidden DV, Lessard P, Wille H et al. 2008. Genes contributing to prion pathogenesis. J. Gen. Virol. 89:1777–88
    [Google Scholar]
  192. 192. 
    Tan BC, Blanco ARA, Houston EF, Stewart P, Goldmann W et al. 2012. Significant differences in incubation times in sheep infected with BSE result from variation at codon 141 in the PRNP gene. J. Gen. Virol. 93:2749–56
    [Google Scholar]
  193. 193. 
    Terry C, Harniman RL, Sells J, Wenborn A, Joiner S et al. 2019. Structural features distinguishing infectious ex vivo mammalian prions from non-infectious fibrillar assemblies generated in vitro. Sci. Rep. 9:376
    [Google Scholar]
  194. 194. 
    Thackray AM, McKenzie AN, Klein MA, Lauder A, Bujdoso R 2004. Accelerated prion disease in the absence of interleukin-10. J. Virol. 78:13697–707
    [Google Scholar]
  195. 195. 
    Thompson AG, Lowe J, Fox Z, Lukic A, Porter MC et al. 2013. The Medical Research Council Prion Disease Rating Scale: a new outcome measure for prion disease therapeutic trials developed and validated using systematic observational studies. Brain 136:1116–27
    [Google Scholar]
  196. 196. 
    Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M et al. 1996. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639–42
    [Google Scholar]
  197. 197. 
    Tomsig JL, Creutz CE. 2002. Copines: a ubiquitous family of Ca2+-dependent phospholipid-binding proteins. Cell Mol. Life Sci. 59:1467–77
    [Google Scholar]
  198. 198. 
    Tribouillard-Tanvier D, Striebel JF, Peterson KE, Chesebro B 2009. Analysis of protein levels of 24 cytokines in scrapie-infected brain and glial cell cultures of mice differing in prion protein expression. J. Virol. 83:11244–53
    [Google Scholar]
  199. 199. 
    Tsangaras K, Kolokotronis S-O, Ulrich RG, Morand S, Michaux J, Greenwood AD 2014. Negative purifying selection drives prion and Doppel protein evolution. J. Mol. Evol. 79:12–20
    [Google Scholar]
  200. 200. 
    Uflacker A, Doraiswamy PM, Rechitsky S, See T, Geschwind M, Tur-Kaspa I 2014. Preimplantation genetic diagnosis (PGD) for genetic prion disorder due to F198S mutation in the PRNP gene. JAMA Neurol 71:484–86
    [Google Scholar]
  201. 201. 
    Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M et al. 2013. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 79:887–902
    [Google Scholar]
  202. 202. 
    Vaccari G, Panagiotidis CH, Acin C, Peletto S, Barillet F et al. 2009. State-of-the-art review of goat TSE in the European Union, with special emphasis on PRNP genetics and epidemiology. Vet. Res. 40:48
    [Google Scholar]
  203. 203. 
    Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P et al. 2006. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat. Genet. 38:879–87
    [Google Scholar]
  204. 204. 
    Van Everbroeck B, Dewulf E, Pals P, Lübke U, Martin J-J, Cras P 2002. The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol. Aging 23:59–64
    [Google Scholar]
  205. 205. 
    Vikøren T, Våge J, Madslien KI, Røed KH, Rolandsen CM et al. 2019. First detection of chronic wasting disease in a wild red deer (Cervus elaphus) in Europe. J. Wildl. Dis. 55:4970–72
    [Google Scholar]
  206. 206. 
    Vollmert C, Windl O, Xiang W, Rosenberger A, Zerr I et al. 2006. Significant association of a M129V independent polymorphism in the 5′ UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study. J. Med. Genet. 43:e53
    [Google Scholar]
  207. 207. 
    Wadsworth JD, Joiner S, Linehan J, Cooper S, Powell C et al. 2006. Phenotypic heterogeneity in inherited prion disease (P102L) is associated with differential propagation of protease-resistant wild-type and mutant prion protein. Brain 129:1557–69
    [Google Scholar]
  208. 208. 
    Walz R, Amaral OB, Rockenbach IC, Roesler R, Izquierdo I et al. 1999. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40:1679–82
    [Google Scholar]
  209. 209. 
    Watts JC, Giles K, Stöhr J, Oehler A, Bhardwaj S et al. 2012. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein. PNAS 109:3498–503
    [Google Scholar]
  210. 210. 
    Webb TEF, Poulter M, Beck J, Uphill J, Adamson G et al. 2008. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. Brain 131:2632–46
    [Google Scholar]
  211. 211. 
    Webb TEF, Whittaker J, Collinge J, Mead S 2009. Age of onset and death in inherited prion disease are heritable. Am. J. Med. Genet. 150B:496–501
    [Google Scholar]
  212. 212. 
    Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, Prusiner SB 1987. Distinct prion proteins in short and long scrapie incubation period mice. Cell 51:651–62
    [Google Scholar]
  213. 213. 
    Wickner RB. 2016. Yeast and fungal prions. Cold Spring Harb. Perspect. Biol. 8:a023531
    [Google Scholar]
  214. 214. 
    Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K et al. 1996. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347:921–25
    [Google Scholar]
  215. 215. 
    Wilson GA, Nakada SM, Bollinger TK, Pybus MJ, Merrill EH, Coltman DW 2009. Polymorphisms at the PRNP gene influence susceptibility to chronic wasting disease in two species of deer (Odocoileus spp.) in Western Canada. J. Toxicol. Environ. Health A 72:1025–29
    [Google Scholar]
  216. 216. 
    Xue G, Sakudo A, Kim CK, Itohara S, Onodera T 2008. Coordinate regulation of bovine prion protein gene promoter activity by two Sp1 binding site polymorphisms. Biochem. Biophys. Res. Commun. 372:530–35
    [Google Scholar]
  217. 217. 
    Yamagata N, Furuno K, Sonoda M, Sugimura H, Yamamoto K 2008. Stomach cancer-derived del223V-226L mutation of the STCH gene causes loss of sensitization to TRAIL-mediated apoptosis. Biochem. Biophys. Res. Commun. 376:499–503
    [Google Scholar]
  218. 218. 
    Zampieri M, Legname G, Segre D, Altafini C 2011. A system-level approach for deciphering the transcriptional response to prion infection. Bioinformatics 27:3407–14
    [Google Scholar]
  219. 219. 
    Zhang C, De Koning DJ, Hernández-Sánchez J, Haley CS, Williams JL, Wiener P 2004. Mapping of multiple quantitative trait loci affecting bovine spongiform encephalopathy. Genetics 167:1863–72
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092352
Loading
/content/journals/10.1146/annurev-genet-120213-092352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error