1932

Abstract

The battle for survival between bacteria and bacteriophages (phages) is an arms race where bacteria develop defenses to protect themselves from phages and phages evolve counterstrategies to bypass these defenses. CRISPR-Cas adaptive immune systems represent a widespread mechanism by which bacteria protect themselves from phage infection. In response to CRISPR-Cas, phages have evolved protein inhibitors known as anti-CRISPRs. Here, we describe the discovery and mechanisms of action of anti-CRISPR proteins. We discuss the potential impact of anti-CRISPRs on bacterial evolution, speculate on their evolutionary origins, and contemplate the possible next steps in the CRISPR-Cas evolutionary arms race. We also touch on the impact of anti-CRISPRs on the development of CRISPR-Cas-based biotechnological tools.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031321
2018-11-23
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031321.html?itemId=/content/journals/10.1146/annurev-genet-120417-031321&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A 2010. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395:270–81
    [Google Scholar]
  2. 2.  Andersson DI, Jerlstrom-Hultqvist J, Nasvall J 2015. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb. Perspect. Biol. 7:a017996
    [Google Scholar]
  3. 3.  Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12
    [Google Scholar]
  4. 4.  Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E et al. 2018. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164:464–74
    [Google Scholar]
  5. 5.  Battle SE, Meyer F, Rello J, Kung VL, Hauser AR 2008. Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J. Bacteriol. 190:7130–40
    [Google Scholar]
  6. 6.  Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA 2012. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:177–86
    [Google Scholar]
  7. 7.  Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–37
    [Google Scholar]
  8. 8.  Bolotin A, Quinquis B, Sorokin A, Ehrlich SD 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–61
    [Google Scholar]
  9. 9.  Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF et al. 2015. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–39
    [Google Scholar]
  10. 10.  Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–32
    [Google Scholar]
  11. 11.  Boudry P, Semenova E, Monot M, Datsenko KA, Lopatina A et al. 2015. Function of the CRISPR-Cas system of the human pathogen Clostridium difficile. mBio 6:e01112–15
    [Google Scholar]
  12. 12.  Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64
    [Google Scholar]
  13. 13.  Bryson AL, Hwang Y, Sherrill-Mix S, Wu GD, Lewis JD et al. 2015. Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9. mBio 6:e00648
    [Google Scholar]
  14. 14.  Burstein D, Sun CL, Brown CT, Sharon I, Anantharaman K et al. 2016. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat. Commun. 7:10613
    [Google Scholar]
  15. 15.  Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RS et al. 2011. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. Microbiology 157:430–37
    [Google Scholar]
  16. 16.  Carte J, Christopher RT, Smith JT, Olson S, Barrangou R et al. 2014. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol. Microbiol. 93:98–112
    [Google Scholar]
  17. 17.  Charpentier E, Richter H, van der Oost J, White MF 2015. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 39:428–41
    [Google Scholar]
  18. 18.  Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–91
    [Google Scholar]
  19. 19.  Chopin MC, Chopin A, Bidnenko E 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8:473–79
    [Google Scholar]
  20. 20.  Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN et al. 2017. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169:47–57.e11
    [Google Scholar]
  21. 21.  Cobian Guemes AG, Youle M, Cantu VA, Felts B, Nulton J, Rohwer F 2016. Viruses as winners in the game of life. Annu. Rev. Virol. 3:197–214
    [Google Scholar]
  22. 22.  Cumby N, Edwards AM, Davidson AR, Maxwell KL 2012. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J. Bacteriol. 194:5012–19
    [Google Scholar]
  23. 23.  Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E 2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3:945
    [Google Scholar]
  24. 24.  Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–7
    [Google Scholar]
  25. 25.  Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol 190:1390–400
    [Google Scholar]
  26. 26.  Diez-Villasenor C, Guzman NM, Almendros C, Garcia-Martinez J, Mojica FJ 2013. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol 10:792–802
    [Google Scholar]
  27. 27.  Dong, Guo M, Wang S, Zhu Y, Wang S et al. 2017. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546:436–39
    [Google Scholar]
  28. 28.  Dy RL, Richter C, Salmond GP, Fineran PC 2014. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 1:307–31
    [Google Scholar]
  29. 29.  Edgar R, Qimron U 2010. The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J. Bacteriol. 192:6291–94
    [Google Scholar]
  30. 30.  Esvelt KM, Smidler AL, Catteruccia F, Church GM 2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3:e03401
    [Google Scholar]
  31. 31.  Fineran PC, Gerritzen MJ, Suarez-Diez M, Kunne T, Boekhorst J et al. 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. PNAS 111:E1629–38
    [Google Scholar]
  32. 32.  Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM et al. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. PNAS 112:E6736–43
    [Google Scholar]
  33. 33.  Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71
    [Google Scholar]
  34. 34.  Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86
    [Google Scholar]
  35. 35.  Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51
    [Google Scholar]
  36. 36.  Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S et al. 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 34:169–83
    [Google Scholar]
  37. 37.  Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P et al. 2017. Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell 171:414–26.e12
    [Google Scholar]
  38. 38.  Hale CR, Zhao P, Olson S, Duff MO, Graveley BR et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–56
    [Google Scholar]
  39. 39.  Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C et al. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34:78–83
    [Google Scholar]
  40. 40.  Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ et al. 2017. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170:1224–33.e15
    [Google Scholar]
  41. 41.  Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA 2010. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–58
    [Google Scholar]
  42. 42.  He F, Bhoobalan-Chitty Y, Van LB, Kjeldsen AL, Dedola M et al. 2018. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat. Microbiol. 3:461–59
    [Google Scholar]
  43. 43.  Heler R, Samai P, Modell JW, Weiner C, Goldberg GW et al. 2015. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519:199–202
    [Google Scholar]
  44. 44.  Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510–17
    [Google Scholar]
  45. 45.  Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH et al. 2014. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. PNAS 111:6618–23
    [Google Scholar]
  46. 46.  Hong S, Ka D, Yoon SJ, Suh N, Jeong M et al. 2018. CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type I-F CRISPR-Cas system. J. Biol. Chem. 293:2744–54 Erratum 2018. J. Biol. Chem. 293:9233
    [Google Scholar]
  47. 47.  Hoyland-Kroghsbo NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E et al. 2017. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. PNAS 114:131–35
    [Google Scholar]
  48. 48.  Hynes AP, Rousseau GM, Lemay ML, Horvath P, Romero DA et al. 2017. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat. Microbiol. 2:1374–80
    [Google Scholar]
  49. 49.  Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H 1991. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J 10:4381–89
    [Google Scholar]
  50. 50.  Jiang W, Samai P, Marraffini LA 2016. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164:710–21
    [Google Scholar]
  51. 51.  Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  52. 52.  Juranek S, Eban T, Altuvia Y, Brown M, Morozov P et al. 2012. A genome-wide view of the expression and processing patterns of Thermus thermophilus HB8 CRISPR RNAs. RNA 18:783–94
    [Google Scholar]
  53. 53.  Ka D, An SY, Suh JY, Bae E 2018. Crystal structure of an anti-CRISPR protein, AcrIIA1. Nucleic Acids Res 46:485–92
    [Google Scholar]
  54. 54.  Kala S, Cumby N, Sadowski PD, Hyder BZ, Kanelis V et al. 2014. HNH proteins are a widespread component of phage DNA packaging machines. PNAS 111:6022–27
    [Google Scholar]
  55. 55.  Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ et al. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12:401–3
    [Google Scholar]
  56. 56.  Koonin EV, Makarova KS, Zhang F 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37:67–78
    [Google Scholar]
  57. 57.  Kuo CH, Ochman H 2009. Deletional bias across the three domains of life. Genome Biol. Evol. 1:145–52
    [Google Scholar]
  58. 58.  Labrie SJ, Samson JE, Moineau S 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317–27
    [Google Scholar]
  59. 59.  Levy A, Goren MG, Yosef I, Auster O, Manor M et al. 2015. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–10
    [Google Scholar]
  60. 60.  Liu XS, Wu H, Krzisch M, Wu X, Graef J et al. 2018. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172:979–92.e6
    [Google Scholar]
  61. 61.  Lu MJ, Henning U 1994. Superinfection exclusion by T-even-type coliphages. Trends Microbiol 2:137–39
    [Google Scholar]
  62. 62.  Luo ML, Mullis AS, Leenay RT, Beisel CL 2015. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 43:674–81
    [Google Scholar]
  63. 63.  Makarova KS, Aravind L, Wolf YI, Koonin EV 2011. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6:38
    [Google Scholar]
  64. 64.  Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13:722–36
    [Google Scholar]
  65. 65.  Marraffini LA, Sontheimer EJ 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–45
    [Google Scholar]
  66. 66.  Maxwell KL, Garcia B, Bondy-Denomy J, Bona D, Hidalgo-Reyes Y, Davidson AR 2016. The solution structure of an anti-CRISPR protein. Nat. Commun. 7:13134
    [Google Scholar]
  67. 67.  Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–40
    [Google Scholar]
  68. 68.  Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:174–82
    [Google Scholar]
  69. 69.  Mulepati S, Bailey S 2011. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J. Biol. Chem. 286:31896–903
    [Google Scholar]
  70. 70.  Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S et al. 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3:90–98
    [Google Scholar]
  71. 71.  Patterson AG, Jackson SA, Taylor C, Evans GB, Salmond GPC et al. 2016. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol. Cell 64:1102–8
    [Google Scholar]
  72. 72.  Pausch P, Muller-Esparza H, Gleditzsch D, Altegoer F, Randau L, Bange G 2017. Structural variation of type I-F CRISPR RNA guided DNA surveillance. Mol. Cell 67:622–32.e4
    [Google Scholar]
  73. 73.  Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y et al. 2016. Naturally occurring off-switches for CRISPR-Cas9. Cell 167:1829–38.e9
    [Google Scholar]
  74. 74.  Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR 2014. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5:e00896
    [Google Scholar]
  75. 75.  Pawluk A, Shah M, Mejdani M, Calmettes C, Moraes TF et al. 2017. Disabling a type I-E CRISPR-Cas nuclease with a bacteriophage-encoded anti-CRISPR protein. mBio 8:e01751–17
    [Google Scholar]
  76. 76.  Pawluk A, Staals RH, Taylor C, Watson BN, Saha S et al. 2016. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1:16085
    [Google Scholar]
  77. 77.  Peng R, Xu Y, Zhu T, Li N, Qi J et al. 2017. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Res 27:853–64
    [Google Scholar]
  78. 78.  Pingoud A, Wilson GG, Wende W 2014. Type II restriction endonucleases–a historical perspective and more. Nucleic Acids Res 42:7489–527
    [Google Scholar]
  79. 79.  Ponchon L, Boulanger P, Labesse G, Letellier L 2006. The endonuclease domain of bacteriophage terminases belongs to the resolvase/integrase/ribonuclease H superfamily: a bioinformatics analysis validated by a functional study on bacteriophage T5. J. Biol. Chem. 281:5829–36
    [Google Scholar]
  80. 80.  Pourcel C, Salvignol G, Vergnaud G 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–63
    [Google Scholar]
  81. 81.  Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–83
    [Google Scholar]
  82. 82.  Rath D, Amlinger L, Hoekzema M, Devulapally PR, Lundgren M 2015. Efficient programmable gene silencing by Cascade. Nucleic Acids Res 43:237–46
    [Google Scholar]
  83. 83.  Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ et al. 2017. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168:150–58.e10
    [Google Scholar]
  84. 84.  Samson JE, Magadan AH, Sabri M, Moineau S 2013. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11:675–87
    [Google Scholar]
  85. 85.  Saravanan M, Bujnicki JM, Cymerman IA, Rao DN, Nagaraja V 2004. Type II restriction endonuclease R.KpnI is a member of the HNH nuclease superfamily. Nucleic Acids Res 32:6129–35
    [Google Scholar]
  86. 86.  Sashital DG, Wiedenheft B, Doudna JA 2012. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46:606–15
    [Google Scholar]
  87. 87.  Seed KD 2015. Battling phages: how bacteria defend against viral attack. PLOS Pathog 11:e1004847
    [Google Scholar]
  88. 88.  Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098–103
    [Google Scholar]
  89. 89.  Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ et al. 2017. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3:e1701620
    [Google Scholar]
  90. 90.  Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov KV, Koonin EV 2017. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8:e01397–17
    [Google Scholar]
  91. 91.  Sternberg SH, LaFrance B, Kaplan M, Doudna JA 2015. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–13
    [Google Scholar]
  92. 92.  Stone P, Hilbert BJ, Hidalgo D, Halloran KT, Lee J et al. 2018. A hyperthermophilic phage decoration protein suggests common evolutionary origin with Herpesvirus triplex proteins and an anti-CRISPR protein. Structure 26:936–47.e3
    [Google Scholar]
  93. 93.  Strotskaya A, Savitskaya E, Metlitskaya A, Morozova N, Datsenko KA et al. 2017. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Res 45:1946–57
    [Google Scholar]
  94. 94.  Suttle CA 2005. Viruses in the sea. Nature 437:356–61
    [Google Scholar]
  95. 95.  Suttle CA 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12
    [Google Scholar]
  96. 96.  Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH et al. 2014. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:258–61
    [Google Scholar]
  97. 97.  Swarts DC, Mosterd C, van Passel MW, Brouns SJ 2012. CRISPR interference directs strand specific spacer acquisition. PLOS ONE 7:e35888
    [Google Scholar]
  98. 98.  van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB et al. 2015. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio 6:e01796–15
    [Google Scholar]
  99. 99.  van Erp PB, Jackson RN, Carter J, Golden SM, Bailey S, Wiedenheft B 2015. Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res 43:8381–91
    [Google Scholar]
  100. 100.  van Houte S, Ekroth AK, Broniewski JM, Chabas H, Ashby B et al. 2016. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385–88
    [Google Scholar]
  101. 101.  Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T et al. 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLOS Genet 9:e1003454
    [Google Scholar]
  102. 102.  Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE et al. 2015. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res 43:10848–60
    [Google Scholar]
  103. 103.  Walker DC, Georgiou T, Pommer AJ, Walker D, Moore GR et al. 2002. Mutagenic scan of the H-N-H motif of colicin E9: implications for the mechanistic enzymology of colicins, homing enzymes and apoptotic endonucleases. Nucleic Acids Res 30:3225–34
    [Google Scholar]
  104. 104.  Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T et al. 2002. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9:187–94
    [Google Scholar]
  105. 105.  Wang J, Ma J, Cheng Z, Meng X, You L et al. 2016. A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res 26:1165–68
    [Google Scholar]
  106. 106.  Wang X, Yao D, Xu JG, Li AR, Xu J et al. 2016. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat. Struct. Mol. Biol. 23:868–70
    [Google Scholar]
  107. 107.  Wei Y, Terns RM, Terns MP 2015. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29:356–61
    [Google Scholar]
  108. 108.  Westra ER, van Erp PB, Kunne T, Wong SP, Staals RH et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46:595–605
    [Google Scholar]
  109. 109.  Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS 108:10092–97
    [Google Scholar]
  110. 110.  Yang H, Patel DJ 2017. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol. Cell 67:117–27.e5
    [Google Scholar]
  111. 111.  Yaung SJ, Esvelt KM, Church GM 2014. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4. PLOS ONE 9:e98811
    [Google Scholar]
  112. 112.  Yosef I, Goren MG, Qimron U 2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–76
    [Google Scholar]
  113. 113.  Young JC, Dill BD, Pan C, Hettich RL, Banfield JF et al. 2012. Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PLOS ONE 7:e38077
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031321
Loading
/content/journals/10.1146/annurev-genet-120417-031321
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error