Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.

Associated Article

There are media items related to this article:
Microglia Development and Function: Supplemental Video d

Associated Article

There are media items related to this article:
Microglia Development and Function: Supplemental Video a1

Associated Article

There are media items related to this article:
Microglia Development and Function: Supplemental Video a2

Associated Article

There are media items related to this article:
Microglia Development and Function: Supplemental Video c

Associated Article

There are media items related to this article:
Microglia Development and Function: Supplemental Video b

Associated Article

There are media items related to this article:
Microglia Development and Function: Supplemental Video e

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Galea I, Bechmann I, Perry VH. 1.  2007. What is immune privilege (not)?. Trends Immunol. 28:12–18 [Google Scholar]
  2. Nayak D, Zinselmeyer BH, Corps K, McGavern DB. 2.  2012. In vivo dynamics of innate immune sentinels in the CNS. IntraVital 1:95–106 [Google Scholar]
  3. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P. 3.  et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45 [Google Scholar]
  4. Greter M, Merad M. 4.  2013. Regulation of microglia development and homeostasis. Glia 61:121–27 [Google Scholar]
  5. Del Rio-Hortega P. 5.  1937. Microglia. Cytology and Cellular Pathology of the Nervous System W Penfield 481–534 New York: P.B. Hoeber [Google Scholar]
  6. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. 6.  2011. Physiology of microglia. Physiol. Rev. 91:461–553 [Google Scholar]
  7. Ransohoff RM, Engelhardt B. 7.  2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12:623–35 [Google Scholar]
  8. Goldmann T, Prinz M. 8.  2013. Role of microglia in CNS autoimmunity. Clin. Dev. Immunol. 2013:208093 [Google Scholar]
  9. Eglitis MA, Mezey É. 9.  1997. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94:4080–85 [Google Scholar]
  10. Hickey WF, Kimura H. 10.  1988. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–92 [Google Scholar]
  11. Simard AR, Rivest S. 11.  2004. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 18:998–1000 [Google Scholar]
  12. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK. 12.  et al. 2007. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10:1544–53 [Google Scholar]
  13. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A. 13.  et al. 2012. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc. Natl. Acad. Sci. USA 109:18150–55 [Google Scholar]
  14. Diserbo M, Agin A, Lamproglou I, Mauris J, Staali F. 14.  et al. 2002. Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can. J. Physiol. Pharmacol. 80:670–78 [Google Scholar]
  15. Li YQ, Chen P, Jain V, Reilly RM, Wong CS. 15.  2004. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat. Res. 161:143–52 [Google Scholar]
  16. Wirenfeldt M, Dissing-Olesen L, Babcock AA, Nielsen M, Meldgaard M. 16.  et al. 2007. Population control of resident and immigrant microglia by mitosis and apoptosis. Am. J. Pathol. 171:617–31 [Google Scholar]
  17. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. 17.  2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10:1538–43 [Google Scholar]
  18. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. 18.  2011. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14:1142–49 [Google Scholar]
  19. Cuadros MA, Martin C, Coltey P, Almendros A, Navascues J. 19.  1993. First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J. Comp. Neurol. 330:113–29 [Google Scholar]
  20. Alliot F, Godin I, Pessac B. 20.  1999. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117:145–52 [Google Scholar]
  21. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N. 21.  et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90 [Google Scholar]
  22. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C. 22.  et al. 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16:273–80 [Google Scholar]
  23. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. 23.  1991. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 88:10431–34 [Google Scholar]
  24. Huang G, Zhang P, Hirai H, Elf S, Yan X. 24.  et al. 2008. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat. Genet. 40:51–60 [Google Scholar]
  25. Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ. 25.  et al. 1996. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol. Cell. Biol. 16:1231–40 [Google Scholar]
  26. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. 26.  1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–30 [Google Scholar]
  27. Samokhvalov IM, Samokhvalova NI, Nishikawa S. 27.  2007. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446:1056–61 [Google Scholar]
  28. Zusso M, Methot L, Lo R, Greenhalgh AD, David S, Stifani S. 28.  2012. Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J. Neurosci. 32:11285–98 [Google Scholar]
  29. Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J. 29.  et al. 2000. PU.1 expression in microglia. J. Neuroimmunol. 104:109–15 [Google Scholar]
  30. Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW. 30.  et al. 2013. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 61:929–42 [Google Scholar]
  31. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ. 31.  et al. 1996. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15:5647–58 [Google Scholar]
  32. Olson MC, Scott EW, Hack AA, Su GH, Tenen DG. 32.  et al. 1995. PU.1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 3:703–14 [Google Scholar]
  33. Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA. 33.  et al. 1995. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11:1549–60 [Google Scholar]
  34. Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER. 34.  et al. 2013. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–43 [Google Scholar]
  35. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW. 35.  et al. 1990. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87:4828–32 [Google Scholar]
  36. Felix R, Cecchini MG, Hofstetter W, Elford PR, Stutzer A, Fleisch H. 36.  1990. Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J. Bone Miner. Res. 5:781–89 [Google Scholar]
  37. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG. 37.  et al. 2002. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–20 [Google Scholar]
  38. Lin H, Lee E, Hestir K, Leo C, Huang M. 38.  et al. 2008. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–11 [Google Scholar]
  39. Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G. 39.  et al. 2012. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367:100–13 [Google Scholar]
  40. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C. 40.  et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13:753–60 [Google Scholar]
  41. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N. 41.  et al. 1996. Immunodeficiency and chronic mye-logenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87:307–17 [Google Scholar]
  42. Scheller M, Foerster J, Heyworth CM, Waring JF, Lohler J. 42.  et al. 1999. Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 94:3764–71 [Google Scholar]
  43. Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K. 43.  2000. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13:155–65 [Google Scholar]
  44. Minten C, Terry R, Deffrasnes C, King NJ, Campbell IL. 44.  2012. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS ONE 7:e49851 [Google Scholar]
  45. Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM. 45.  et al. 1999. Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J. Exp. Med. 190:411–21 [Google Scholar]
  46. Gangaraju VK, Lin H. 46.  2009. MicroRNAs: key regulators of stem cells. Nat. Rev. Mol. Cell Biol. 10:116–25 [Google Scholar]
  47. Makeyev EV, Zhang J, Carrasco MA, Maniatis T. 47.  2007. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27:435–48 [Google Scholar]
  48. Yu JY, Chung KH, Deo M, Thompson RC, Turner DL. 48.  2008. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res. 314:2618–33 [Google Scholar]
  49. Cheng LC, Pastrana E, Tavazoie M, Doetsch F. 49.  2009. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12:399–408 [Google Scholar]
  50. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. 50.  2011. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med. 17:64–70 [Google Scholar]
  51. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J. 51.  et al. 2013. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16:543–51 [Google Scholar]
  52. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH. 52.  2004. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J. Cell Biol. 164:111–22 [Google Scholar]
  53. Ness JK, Wood TL. 53.  2002. Insulin-like growth factor I, but not neurotrophin-3, sustains Akt activation and provides long-term protection of immature oligodendrocytes from glutamate-mediated apoptosis. Mol. Cell Neurosci. 20:476–88 [Google Scholar]
  54. Trang T, Beggs S, Salter MW. 54.  2011. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol. 7:99–108 [Google Scholar]
  55. Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T. 55.  2001. Neurotrophin secretion from cultured microglia. J. Neurosci. Res. 65:322–31 [Google Scholar]
  56. Araujo DM, Cotman CW. 56.  1992. Basic FGF in astroglial, microglial, and neuronal cultures: characterization of binding sites and modulation of release by lymphokines and trophic factors. J. Neurosci. 12:1668–78 [Google Scholar]
  57. Yamagata T, Muroya K, Mukasa T, Igarashi H, Momoi M. 57.  et al. 1995. Hepatocyte growth factor specifically expressed in microglia activated Ras in the neurons, similar to the action of neurotrophic factors. Biochem. Biophys. Res. Commun. 210:231–37 [Google Scholar]
  58. Frade JM, Barde YA. 58.  1998. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20:35–41 [Google Scholar]
  59. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A. 59.  2008. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28:8138–43 [Google Scholar]
  60. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. 60.  2004. Microglia promote the death of developing Purkinje cells. Neuron 41:535–47 [Google Scholar]
  61. Takahashi K, Rochford CD, Neumann H. 61.  2005. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201:647–57 [Google Scholar]
  62. Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A. 62.  et al. 2010. Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 58:11–28 [Google Scholar]
  63. Calderó J, Brunet N, Ciutat D, Hereu M, Esquerda JE. 63.  2009. Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death. J. Neurosci. Res. 87:2447–66 [Google Scholar]
  64. Noda M, Doi Y, Liang J, Kawanokuchi J, Sonobe Y. 64.  et al. 2011. Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J. Biol. Chem. 286:2308–19 [Google Scholar]
  65. Li E, Noda M, Doi Y, Parajuli B, Kawanokuchi J. 65.  et al. 2012. The neuroprotective effects of milk fat globule-EGF factor 8 against oligomeric amyloid β toxicity. J. Neuroinflamm. 9:148 [Google Scholar]
  66. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. 66.  2009. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29:3974–80 [Google Scholar]
  67. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M. 67.  et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–58 [Google Scholar]
  68. Roumier A, Bechade C, Poncer JC, Smalla KH, Tomasello E. 68.  et al. 2004. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J. Neurosci. 24:11421–28 [Google Scholar]
  69. Ji K, Akgul G, Wollmuth LP, Tsirka SE. 69.  2013. Microglia actively regulate the number of functional synapses. PLoS ONE 8:e56293 [Google Scholar]
  70. Tremblay ME, Lowery RL, Majewska AK. 70.  2010. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8:e1000527 [Google Scholar]
  71. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS. 71.  et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78 [Google Scholar]
  72. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR. 72.  et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705 [Google Scholar]
  73. Chen SK, Tvrdik P, Peden E, Cho S, Wu S. 73.  et al. 2010. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–85 [Google Scholar]
  74. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB. 74.  et al. 2012. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–9 [Google Scholar]
  75. Greer JM, Capecchi MR. 75.  2002. Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34 [Google Scholar]
  76. Deschamps J, Meijlink F. 76.  1992. Mammalian homeobox genes in normal development and neoplasia. Crit. Rev. Oncog. 3:117–73 [Google Scholar]
  77. Vachon G, Cohen B, Pfeifle C, McGuffin ME, Botas J, Cohen SM. 77.  1992. Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 71:437–50 [Google Scholar]
  78. Epstein M, Pillemer G, Yelin R, Yisraeli JK, Fainsod A. 78.  1997. Patterning of the embryo along the anterior-posterior axis: the role of the caudal genes. Development 124:3805–14 [Google Scholar]
  79. van den Akker E, Reijnen M, Korving J, Brouwer A, Meijlink F, Deschamps J. 79.  1999. Targeted inactivation of Hoxb8 affects survival of a spinal ganglion and causes aberrant limb reflexes. Mech. Dev. 89:103–14 [Google Scholar]
  80. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 80.  1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23:185–88 [Google Scholar]
  81. Nan X, Campoy FJ, Bird A. 81.  1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–81 [Google Scholar]
  82. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. 82.  2003. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278:4035–40 [Google Scholar]
  83. Luikenhuis S, Giacometti E, Beard CF, Jaenisch R. 83.  2004. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl. Acad. Sci. USA 101:6033–38 [Google Scholar]
  84. Guy J, Gan J, Selfridge J, Cobb S, Bird A. 84.  2007. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–47 [Google Scholar]
  85. Ballas N, Lioy DT, Grunseich C, Mandel G. 85.  2009. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 12:311–17 [Google Scholar]
  86. Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD. 86.  et al. 2011. A role for glia in the progression of Rett's syndrome. Nature 475:497–500 [Google Scholar]
  87. Prinz M, Priller J, Sisodia SS, Ransohoff RM. 87.  2011. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 13:1227–35 [Google Scholar]
  88. Cunningham C. 88.  2013. Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90 [Google Scholar]
  89. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN. 89.  et al. 2013. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–43 [Google Scholar]
  90. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T. 90.  et al. 2010. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330:1774 [Google Scholar]
  91. Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G. 91.  et al. 2009. Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia. Nat. Neurosci. 12:1361–63 [Google Scholar]
  92. Vom Berg J, Prokop S, Miller KR, Obst J, Kalin RE. 92.  et al. 2012. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat. Med. 18:1812–19 [Google Scholar]
  93. Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L. 93.  et al. 2010. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepi-nephrine. Proc. Natl. Acad. Sci. USA 107:6058–63 [Google Scholar]
  94. Hickman SE, Allison EK, El Khoury J. 94.  2008. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28:8354–60 [Google Scholar]
  95. Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD. 95.  et al. 2013. Functional impairment of microglia coincides with β-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE 8:e60921 [Google Scholar]
  96. Ryu JK, Cho T, Choi HB, Wang YT, McLarnon JG. 96.  2009. Microglial VEGF receptor response is an integral chemotactic component in Alzheimer's disease pathology. J. Neurosci. 29:3–13 [Google Scholar]
  97. Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K. 97.  2006. Role of Toll-like receptor signalling in Aβ uptake and clearance. Brain 129:3006–19 [Google Scholar]
  98. Richard KL, Filali M, Prefontaine P, Rivest S. 98.  2008. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β1-42 and delay the cognitive decline in a mouse model of Alzheimer's disease. J. Neurosci. 28:5784–93 [Google Scholar]
  99. Song M, Jin J, Lim JE, Kou J, Pattanayak A. 99.  et al. 2011. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease. J. Neuroinflamm. 8:92 [Google Scholar]
  100. Michaud JP, Halle M, Lampron A, Theriault P, Prefontaine P. 100.  et al. 2013. Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer's disease-related pathology. Proc. Natl. Acad. Sci. USA 110:1941–46 [Google Scholar]
  101. Stuart LM, Bell SA, Stewart CR, Silver JM, Richard J. 101.  et al. 2007. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J. Biol. Chem. 282:27392–401 [Google Scholar]
  102. Fang F, Lue LF, Yan S, Xu H, Luddy JS. 102.  et al. 2010. RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J. 24:1043–55 [Google Scholar]
  103. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F. 103.  et al. 2012. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)–and amyloid beta 1–42-induced signal transduction in glial cells. Mol. Neurodegener. 7:55 [Google Scholar]
  104. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I. 104.  et al. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–66 [Google Scholar]
  105. Matzinger P. 105.  1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045 [Google Scholar]
  106. Liu Z, Condello C, Schain A, Harb R, Grutzendler J. 106.  2010. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J. Neurosci. 30:17091–101 [Google Scholar]
  107. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE. 107.  et al. 2010. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Am. J. Pathol. 177:2549–62 [Google Scholar]
  108. Cho SH, Sun B, Zhou Y, Kauppinen TM, Halabisky B. 108.  et al. 2011. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem. 286:32713–22 [Google Scholar]
  109. Fuhrmann M, Bittner T, Jung CK, Burgold S, Page RM. 109.  et al. 2010. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat. Neurosci. 13:411–13 [Google Scholar]
  110. Thanopoulou K, Fragkouli A, Stylianopoulou F, Georgopoulos S. 110.  2010. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc. Natl. Acad. Sci. USA 107:20816–21 [Google Scholar]
  111. Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D. 111.  et al. 2011. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci. 31:11159–71 [Google Scholar]
  112. McGeer PL, Itagaki S, Boyes BE, McGeer EG. 112.  1988. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38:1285–91 [Google Scholar]
  113. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A. 113.  et al. 2009. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Investig. 119:182–92 [Google Scholar]
  114. Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ. 114.  et al. 2011. CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson's disease. J. Neuroinflamm. 8:154 [Google Scholar]
  115. Shan S, Hong-Min T, Yi F, Jun-Peng G, Yue F. 115.  et al. 2011. New evidences for fractalkine/CX3CL1 involved in substantia nigral microglial activation and behavioral changes in a rat model of Parkinson's disease. Neurobiol. Aging 32:443–58 [Google Scholar]
  116. Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY. 116.  et al. 2010. α-Synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J. Immunol. 185:615–23 [Google Scholar]
  117. Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG. 117.  et al. 2012. LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 32:1602–11 [Google Scholar]
  118. Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F. 118.  et al. 2012. IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. Cell Death Dis. 3:e379 [Google Scholar]
  119. Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W, Wenning GK. 119.  2011. Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am. J. Pathol. 179:954–63 [Google Scholar]
  120. Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F. 120.  et al. 2012. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci. Rep. 2:809 [Google Scholar]
  121. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J. 121.  et al. 2010. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat. Genet. 42:781–85 [Google Scholar]
  122. Harms AS, Cao S, Rowse AL, Thome AD, Li X. 122.  et al. 2013. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J. Neurosci. 33:9592–600 [Google Scholar]
  123. Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. 123.  2005. A possible role for humoral immunity in the pathogenesis of Parkinson's disease. Brain 128:2665–74 [Google Scholar]
  124. Lira A, Kulczycki J, Slack R, Anisman H, Park DS. 124.  2011. Involvement of the Fcγ receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss. J. Biol. Chem. 286:28783–93 [Google Scholar]
  125. Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE. 125.  et al. 2005. Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease. Ann. Neurol. 58:963–67 [Google Scholar]
  126. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. 126.  1988. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240:516–18 [Google Scholar]
  127. Chao CC, Hu S, Gekker G, Novick WJ Jr, Remington JS, Peterson PK. 127.  1993. Effects of cytokines on multiplication of Toxoplasma gondii in microglial cells. J. Immunol. 150:3404–10 [Google Scholar]
  128. Luder CG, Giraldo-Velasquez M, Sendtner M, Gross U. 128.  1999. Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp. Parasitol. 93:23–32 [Google Scholar]
  129. Dellacasa-Lindberg I, Fuks JM, Arrighi RB, Lambert H, Wallin RP. 129.  et al. 2011. Migratory activation of primary cortical microglia upon infection with Toxoplasma gondii. Infect. Immun. 79:3046–52 [Google Scholar]
  130. Sher A, Oswald IP, Hieny S, Gazzinelli RT. 130.  1993. Toxoplasma gondii induces a T-independent IFN-gamma response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-alpha. J. Immunol. 150:3982–89 [Google Scholar]
  131. Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T. 131.  2005. Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int. J. Parasitol. 35:83–90 [Google Scholar]
  132. Suzuki Y, Wang X, Jortner BS, Payne L, Ni Y. 132.  et al. 2010. Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells. Am. J. Pathol. 176:1607–13 [Google Scholar]
  133. Strack A, Asensio VC, Campbell IL, Schluter D, Deckert M. 133.  2002. Chemokines are differentially expressed by astrocytes, microglia and inflammatory leukocytes in Toxoplasma encephalitis and critically regulated by interferon-γ. Acta Neuropathol. 103:458–68 [Google Scholar]
  134. Norose K, Kikumura A, Luster AD, Hunter CA, Harris TH. 134.  2011. CXCL10 is required to maintain T-cell populations and to control parasite replication during chronic ocular toxoplasmosis. Investig. Ophthalmol. Vis. Sci. 52:389–98 [Google Scholar]
  135. Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED. 135.  et al. 2012. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486:545–48 [Google Scholar]
  136. Viswanathan GM, Buldyrev SV, Havlin S, da Luz MG, Raposo EP, Stanley HE. 136.  1999. Optimizing the success of random searches. Nature 401:911–14 [Google Scholar]
  137. Rozenfeld C, Martinez R, Seabra S, Sant'anna C, Goncalves JG. 137.  et al. 2005. Toxoplasma gondii prevents neuron degeneration by interferon-γ-activated microglia in a mechanism involving inhibition of inducible nitric oxide synthase and transforming growth factor-β1 production by infected microglia. Am. J. Pathol. 167:1021–31 [Google Scholar]
  138. Schlüter D, Kaefer N, Hof H, Wiestler OD, Deckert-Schlüter M. 138.  1997. Expression pattern and cellular origin of cytokines in the normal and Toxoplasma gondii-infected murine brain. Am. J. Pathol. 150:1021–35 [Google Scholar]
  139. Deckert-Schlüter M, Buck C, Weiner D, Kaefer N, Rang A. 139.  et al. 1997. Interleukin-10 downregulates the intracerebral immune response in chronic Toxoplasma encephalitis. J. Neuroimmunol 76:167–76 [Google Scholar]
  140. Luder CG, Lang C, Giraldo-Velasquez M, Algner M, Gerdes J, Gross U. 140.  2003. Toxoplasma gondii inhibits MHC class II expression in neural antigen-presenting cells by down-regulating the class II transactivator CIITA. J. Neuroimmunol. 134:12–24 [Google Scholar]
  141. Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO. 141.  et al. 2011. The neuropathology of fatal cerebral malaria in Malawian children. Am. J. Pathol. 178:2146–58 [Google Scholar]
  142. Janota I, Doshi B. 142.  1979. Cerebral malaria in the United Kingdom. J. Clin. Pathol. 32:769–72 [Google Scholar]
  143. Medana IM, Hunt NH, Chan-Ling T. 143.  1997. Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 19:91–103 [Google Scholar]
  144. Schluesener HJ, Kremsner PG, Meyermann R. 144.  1998. Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells. Acta Neuropathol. 96:575–80 [Google Scholar]
  145. Deininger MH, Kremsner PG, Meyermann R, Schluesener H. 145.  2002. Macrophages/microglial cells in patients with cerebral malaria. Eur. Cytokine Netw. 13:173–85 [Google Scholar]
  146. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE. 146.  et al. 2013. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498:502–5 [Google Scholar]
  147. Rowe JA, Claessens A, Corrigan RA, Arman M. 147.  2009. Adhesion of Plasmodium falciparum–infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Exp. Rev. Mol. Med. 11:e16 [Google Scholar]
  148. Deininger MH, Kremsner PG, Meyermann R, Schluesener HJ. 148.  2000. Focal accumulation of cyclooxygenase-1 (COX-1) and COX-2 expressing cells in cerebral malaria. J. Neuroimmunol. 106:198–205 [Google Scholar]
  149. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C. 149.  et al. 2007. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13:1042–49 [Google Scholar]
  150. Deininger MH, Winkler S, Kremsner PG, Meyermann R, Schluesener HJ. 150.  2003. Angiogenic proteins in brains of patients who died with cerebral malaria. J. Neuroimmunol. 142:101–11 [Google Scholar]
  151. Lutsik BD, Stekhnovich IV, Lutsik AD. 151.  1991. Use of lectins in histochemical examination of microglia of the human brain in bacterial meningoencephalitis. Zh. Nevropatol. Psikhiatr. Im. S S Korsakova 91:41–44 [Google Scholar]
  152. Olson JK, Miller SD. 152.  2004. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173:3916–24 [Google Scholar]
  153. Kim YS, Tauber MG. 153.  1996. Neurotoxicity of glia activated by gram-positive bacterial products depends on nitric oxide production. Infect. Immun. 64:3148–53 [Google Scholar]
  154. Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H. 154.  et al. 1999. Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J. Neuropathol. Exp. Neurol. 58:1078–89 [Google Scholar]
  155. Kielian T. 155.  2004. Immunopathogenesis of brain abscess. J. Neuroinflamm. 1:16 [Google Scholar]
  156. Hoffmann O, Braun JS, Becker D, Halle A, Freyer D. 156.  et al. 2007. TLR2 mediates neuroinflammation and neuronal damage. J. Immunol. 178:6476–81 [Google Scholar]
  157. Ribes S, Ebert S, Regen T, Agarwal A, Tauber SC. 157.  et al. 2010. Toll-like receptor stimulation enhances phagocytosis and intracellular killing of nonencapsulated and encapsulated Streptococcus pneumoniae by murine microglia. Infect. Immun. 78:865–71 [Google Scholar]
  158. Liu X, Chauhan VS, Young AB, Marriott I. 158.  2010. NOD2 mediates inflammatory responses of primary murine glia to Streptococcus pneumoniae. Glia 58:839–47 [Google Scholar]
  159. Sharief MK, Ciardi M, Thompson EJ. 159.  1992. Blood-brain barrier damage in patients with bacterial meningitis: association with tumor necrosis factor-α but not interleukin-1β. J. Infect. Dis. 166:350–58 [Google Scholar]
  160. Hanamsagar R, Torres V, Kielian T. 160.  2011. Inflammasome activation and IL-1β/IL-18 processing are influenced by distinct pathways in microglia. J. Neurochem. 119:736–48 [Google Scholar]
  161. Diab A, Abdalla H, Li HL, Shi FD, Zhu J. 161.  et al. 1999. Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1α attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect. Immun. 67:2590–601 [Google Scholar]
  162. Spanaus KS, Nadal D, Pfister HW, Seebach J, Widmer U. 162.  et al. 1997. C-X-C and C-C chemokines are expressed in the cerebrospinal fluid in bacterial meningitis and mediate chemotactic activity on peripheral blood-derived polymorphonuclear and mononuclear cells in vitro. J. Immunol. 158:1956–64 [Google Scholar]
  163. Dominguez-Punaro MC, Segura M, Plante MM, Lacouture S, Rivest S, Gottschalk M. 163.  2007. Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J. Immunol. 179:1842–54 [Google Scholar]
  164. Hoffmann O, Mahrhofer C, Rueter N, Freyer D, Bert B. 164.  et al. 2007. Pneumococcal cell wall-induced meningitis impairs adult hippocampal neurogenesis. Infect. Immun. 75:4289–97 [Google Scholar]
  165. Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ. 165.  et al. 2006. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J. Immunol. 177:583–92 [Google Scholar]
  166. Park JY, Choi HJ, Prabagar MG, Choi WS, Kim SJ. 166.  et al. 2009. The C-type lectin CD209b is expressed on microglia and it mediates the uptake of capsular polysaccharides of Streptococcus pneumoniae. Neurosci. Lett. 450:246–51 [Google Scholar]
  167. Gasque P, Singhrao SK, Neal JW, Wang P, Sayah S. 167.  et al. 1998. The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J. Immunol. 160:3543–54 [Google Scholar]
  168. Chauhan VS, Sterka DG Jr, Gray DL, Bost KL, Marriott I. 168.  2008. Neurogenic exacerbation of microglial and astrocyte responses to Neisseria meningitidis and Borrelia burgdorferi. J. Immunol. 180:8241–49 [Google Scholar]
  169. Brandenburg LO, Varoga D, Nicolaeva N, Leib SL, Wilms H. 169.  et al. 2008. Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J. Neuropathol. Exp. Neurol. 67:1041–54 [Google Scholar]
  170. Choi KY, Mookherjee N. 170.  2012. Multiple immune-modulatory functions of cathelicidin host defense peptides. Front. Immunol. 3:149 [Google Scholar]
  171. Michel U, Gerber J, O'Connor AE, Bunkowski S, Bruck W. 171.  et al. 2003. Increased activin levels in cerebrospinal fluid of rabbits with bacterial meningitis are associated with activation of microglia. J. Neurochem. 86:238–45 [Google Scholar]
  172. Ebert S, Zeretzke M, Nau R, Michel U. 172.  2007. Microglial cells and peritoneal macrophages release activin A upon stimulation with Toll-like receptor agonists. Neurosci. Lett. 413:241–44 [Google Scholar]
  173. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM. 173.  et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16:1211–18 [Google Scholar]
  174. Wilms H, Schwark T, Brandenburg LO, Sievers J, Dengler R. 174.  et al. 2010. Regulation of activin A synthesis in microglial cells: pathophysiological implications for bacterial meningitis. J. Neurosci. Res 88:16–23 [Google Scholar]
  175. McGavern DB, Kang SS. 175.  2011. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 11:318–29 [Google Scholar]
  176. Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD. 176.  2003. Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler's virus model of multiple sclerosis. J. Neuroimmunol. 144:68–79 [Google Scholar]
  177. Lauterbach H, Zuniga EI, Truong P, Oldstone MB, McGavern DB. 177.  2006. Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J. Exp. Med. 203:1963–75 [Google Scholar]
  178. D'Agostino PM, Kwak C, Vecchiarelli HA, Toth JG, Miller JM. 178.  et al. 2012. Viral-induced encephalitis initiates distinct and functional CD103+ CD11b+ brain dendritic cell populations within the olfactory bulb. Proc. Natl. Acad. Sci. USA 109:6175–80 [Google Scholar]
  179. Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF. 179.  et al. 2001. Developmental plasticity of CNS microglia. Proc. Natl. Acad. Sci. USA 98:6295–300 [Google Scholar]
  180. Anandasabapathy N, Victora GD, Meredith M, Feder R, Dong B. 180.  et al. 2011. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J. Exp. Med. 208:1695–705 [Google Scholar]
  181. Denk W, Strickler JH, Webb WW. 181.  1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76 [Google Scholar]
  182. Nayak D, Johnson KR, Heydari S, Roth TL, Zinselmeyer BH, McGavern DB. 182.  2013. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog. 9:e1003395 [Google Scholar]
  183. Kallfass C, Ackerman A, Lienenklaus S, Weiss S, Heimrich B, Staeheli P. 183.  2012. Visualizing production of beta interferon by astrocytes and microglia in brain of La Crosse virus-infected mice. J. Virol. 86:11223–30 [Google Scholar]
  184. Sadler AJ, Williams BR. 184.  2008. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8:559–68 [Google Scholar]
  185. Kang SS, McGavern DB. 185.  2008. Lymphocytic choriomeningitis infection of the central nervous system. Front. Biosci. 13:4529–43 [Google Scholar]
  186. Ousman SS, Wang J, Campbell IL. 186.  2005. Differential regulation of interferon regulatory factor (IRF)-7 and IRF-9 gene expression in the central nervous system during viral infection. J. Virol. 79:7514–27 [Google Scholar]
  187. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J. 187.  et al. 1994. Functional role of type I and type II interferons in antiviral defense. Science 264:1918–21 [Google Scholar]
  188. Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC. 188.  2006. Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 80:9192–99 [Google Scholar]
  189. Haller O, Kochs G, Weber F. 189.  2006. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119–30 [Google Scholar]
  190. Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. 190.  2005. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res. 111:194–213 [Google Scholar]
  191. Naito M, Jogasaki M, Takahashi K, Matsumi S, Hattori T, Takatsuki K. 191.  1989. Ultrastructural behavior of human immunodeficiency virus (HIV) in multinucleated giant cells in the brain of a Japanese hemophiliac presenting AIDS encephalopathy. Ultrastruct. Pathol. 13:433–41 [Google Scholar]
  192. Eugenin EA, Dyer G, Calderon TM, Berman JW. 192.  2005. HIV-1 tat protein induces a migratory phenotype in human fetal microglia by a CCL2 (MCP-1)-dependent mechanism: possible role in NeuroAIDS. Glia 49:501–10 [Google Scholar]
  193. Chen CJ, Ou YC, Chang CY, Pan HC, Liao SL. 193.  et al. 2012. Glutamate released by Japanese encephalitis virus-infected microglia involves TNF-α signaling and contributes to neuronal death. Glia 60:487–501 [Google Scholar]
  194. Stein VM, Czub M, Schreiner N, Moore PF, Vandevelde M. 194.  et al. 2004. Microglial cell activation in demyelinating canine distemper lesions. J. Neuroimmunol. 153:122–31 [Google Scholar]
  195. Kim TS, Perlman S. 195.  2005. Viral expression of CCL2 is sufficient to induce demyelination in RAG1−/− mice infected with a neurotropic coronavirus. J. Virol. 79:7113–20 [Google Scholar]
  196. Li X, Hanson C, Cmarik JL, Ruscetti S. 196.  2009. Neurodegeneration induced by PVC-211 murine leukemia virus is associated with increased levels of vascular endothelial growth factor and macrophage inflammatory protein 1α and is inhibited by blocking activation of microglia. J. Virol. 83:4912–22 [Google Scholar]
  197. Scheller C, Sopper S, Jenuwein M, Neuen-Jacob E, Tatschner T. 197.  et al. 2005. Early impairment in dopaminergic neurotransmission in brains of SIV-infected rhesus monkeys due to microglia activation. J. Neurochem. 95:377–87 [Google Scholar]
  198. Nimmerjahn A, Kirchhoff F, Helmchen F. 198.  2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18 [Google Scholar]
  199. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y. 199.  et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58 [Google Scholar]
  200. Thomas WE. 200.  1990. Characterization of the dynamic nature of microglial cells. Brain Res. Bull. 25:351–54 [Google Scholar]
  201. Booth PL, Thomas WE. 201.  1991. Evidence for motility and pinocytosis in ramified microglia in tissue culture. Brain Res. 548:163–71 [Google Scholar]
  202. Brockhaus J, Moller T, Kettenmann H. 202.  1996. Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16:81–90 [Google Scholar]
  203. Dailey ME, Waite M. 203.  1999. Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods 18:222–30 177 [Google Scholar]
  204. Stence N, Waite M, Dailey ME. 204.  2001. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–66 [Google Scholar]
  205. Heppner FL, Skutella T, Hailer NP, Haas D, Nitsch R. 205.  1998. Activated microglial cells migrate towards sites of excitotoxic neuronal injury inside organotypic hippocampal slice cultures. Eur. J. Neurosci. 10:3284–90 [Google Scholar]
  206. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW. 206.  et al. 2000. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20:4106–14 [Google Scholar]
  207. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y. 207.  et al. 2001. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 21:1975–82 [Google Scholar]
  208. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME. 208.  et al. 2006. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9:1512–19 [Google Scholar]
  209. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K. 209.  et al. 2007. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446:1091–95 [Google Scholar]
  210. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S. 210.  2007. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55:604–16 [Google Scholar]
  211. Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E. 211.  et al. 2010. P2Y12 receptor-mediated integrin-β1 activation regulates microglial process extension induced by ATP. Glia 58:790–801 [Google Scholar]
  212. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. 212.  2014. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505:223–28 [Google Scholar]
  213. Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB. 213.  2010. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5:201–8 [Google Scholar]
  214. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. 214.  2011. The role of microglia in the healthy brain. J. Neurosci. 31:16064–69 [Google Scholar]
  215. Orlowski D, Soltys Z, Janeczko K. 215.  2003. Morphological development of microglia in the postnatal rat brain. A quantitative study. Int. J. Dev. Neurosci. 21:445–50 [Google Scholar]
  216. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A. 216.  et al. 2008. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451:720–24 [Google Scholar]
  217. Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA. 217.  et al. 2008. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J. Neurosci. 28:4283–92 [Google Scholar]
  218. McGavern DB, Truong P. 218.  2004. Rebuilding an immune-mediated central nervous system disease: weighing the pathogenicity of antigen-specific versus bystander T cells. J. Immunol. 173:4779–90 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error