1932

Abstract

Resident memory T (Trm) cells stably occupy tissues and cannot be sampled in superficial venous blood. Trm cells are heterogeneous but collectively constitute the most abundant memory T cell subset. Trm cells form an integral part of the immune sensing network, monitor for local perturbations in homeostasis throughout the body, participate in protection from infection and cancer, and likely promote autoimmunity, allergy, and inflammatory diseases and impede successful transplantation. Thus Trm cells are major candidates for therapeutic manipulation. Here we review CD8+ and CD4+ Trm ontogeny, maintenance, function, and distribution within lymphoid and nonlymphoid tissues and strategies for their study. We briefly discuss other resident leukocyte populations, including innate lymphoid cells, macrophages, natural killer and natural killer T cells, nonclassical T cells, and memory B cells. Lastly, we highlight major gaps in knowledge and propose ways in which a deeper understanding could result in new methods to prevent or treat diverse human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042617-053214
2019-04-26
2024-07-21
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042617-053214.html?itemId=/content/journals/10.1146/annurev-immunol-042617-053214&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gowans JL, Knight EJ 1964. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B 159:975257–82
    [Google Scholar]
  2. 2.
    Gowans JL 1959. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. 146:154–69
    [Google Scholar]
  3. 3.
    Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R et al. 2013. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40:6463–71
    [Google Scholar]
  4. 4.
    Cahill RN, Poskitt DC, Frost DC, Trnka Z 1977. Two distinct pools of recirculating T lymphocytes: migratory characteristics of nodal and intestinal T lymphocytes. J. Exp. Med. 145:2420–28
    [Google Scholar]
  5. 5.
    Mackay CR, Kimpton WG, Brandon MR, Cahill RN 1988. Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J. Exp. Med. 167:61755–65
    [Google Scholar]
  6. 6.
    Mackay CR, Marston WL, Dudler L 1990. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171:3801–17
    [Google Scholar]
  7. 7.
    Gallatin WM, Weissman IL, Butcher EC 1983. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:592130–34
    [Google Scholar]
  8. 8.
    Förster R, Schubel A, Breitfeld D, Kremmer E, Renner-Müller I et al. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:123–33
    [Google Scholar]
  9. 9.
    Picker LJ, Michie SA, Rott LS, Butcher EC 1990. A unique phenotype of skin-associated lymphocytes in humans: preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites. Am. J. Pathol. 136:51053–68
    [Google Scholar]
  10. 10.
    Fuhlbrigge RC, Kieffer JD, Armerding D, Kupper TS 1997. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389:6654978–81
    [Google Scholar]
  11. 11.
    Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL et al. 2003. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424:694488–93
    [Google Scholar]
  12. 12.
    Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ et al. 1993. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:1185–95
    [Google Scholar]
  13. 13.
    Springer TA 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:2301–14
    [Google Scholar]
  14. 14.
    Kunkel EJ, Butcher EC 2002. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16:11–4
    [Google Scholar]
  15. 15.
    Butcher EC, Picker LJ 1996. Lymphocyte homing and homeostasis. Science 272:525860–66
    [Google Scholar]
  16. 16.
    von Andrian UH, Mackay CR 2000. T-cell function and migration: two sides of the same coin. N. Engl. J. Med. 343:141020–34
    [Google Scholar]
  17. 17.
    Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:6754708–12
    [Google Scholar]
  18. 18.
    Kim SK, Schluns KS, Lefrançois L 1999. Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. J. Immunol. 163:84125–32
    [Google Scholar]
  19. 19.
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410:6824101–5
    [Google Scholar]
  20. 20.
    Masopust D 2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:55122413–17
    [Google Scholar]
  21. 21.
    Hogan RJ, Usherwood EJ, Zhong W, Roberts AA, Dutton RW et al. 2001. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J. Immunol. 166:31813–22
    [Google Scholar]
  22. 22.
    Wiley JA, Hogan RJ, Woodland DL, Harmsen AG 2001. Antigen-specific CD8+ T cells persist in the upper respiratory tract following influenza virus infection. J. Immunol. 167:63293–99
    [Google Scholar]
  23. 23.
    Zeitz M, Greene WC, Peffer NJ, James SP 1988. Lymphocytes isolated from the intestinal lamina propria of normal nonhuman primates have increased expression of genes associated with T-cell activation. Gastroenterology 94:3647–55
    [Google Scholar]
  24. 24.
    Kim SK, Reed DS, Heath WR, Carbone F, Lefrançois L 1997. Activation and migration of CD8 T cells in the intestinal mucosa. J. Immunol. 159:94295–4306
    [Google Scholar]
  25. 25.
    Bunting CH, Huston J 1921. Fate of the lymphocyte. J. Exp. Med. 33:5593–600
    [Google Scholar]
  26. 26.
    Masopust D, Jiang J, Shen H, Lefrançois L 2001. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection. J. Immunol. 166:42348–56
    [Google Scholar]
  27. 27.
    Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V et al. 2004. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20:2167–79
    [Google Scholar]
  28. 28.
    Teraki Y, Moriya N, Shiohara T 1994. Drug-induced expression of intercellular adhesion molecule-1 on lesional keratinocytes in fixed drug eruption. Am. J. Pathol. 145:3550–60
    [Google Scholar]
  29. 29.
    Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO 2004. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J. Exp. Med. 199:5731–36
    [Google Scholar]
  30. 30.
    Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K-I et al. 2006. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176:74431–39
    [Google Scholar]
  31. 31.
    Masopust D, Vezys V, Usherwood EJ, Cauley LS, Olson S et al. 2004. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J. Immunol. 172:84875–82
    [Google Scholar]
  32. 32.
    Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J et al. 2010. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207:3553–64
    [Google Scholar]
  33. 33.
    Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrançois L 2004. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20:5551–62
    [Google Scholar]
  34. 34.
    Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL 2003. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:5593–603
    [Google Scholar]
  35. 35.
    Wakim LM, Waithman J, Van Rooijen N, Heath WR, Carbone FR 2008. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319:5860198–202
    [Google Scholar]
  36. 36.
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR 2009. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10:5524–30
    [Google Scholar]
  37. 37.
    Wakim LM, Woodward-Davis A, Bevan MJ 2010. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. PNAS 107:4217872–79
    [Google Scholar]
  38. 38.
    Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG et al. 2011. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477:7363216–19
    [Google Scholar]
  39. 39.
    Collins N, Jiang X, Zaid A, Macleod BL, Li J et al. 2016. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7:11514
    [Google Scholar]
  40. 40.
    Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrançois L, Farber DL 2011. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187:115510–14
    [Google Scholar]
  41. 41.
    Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS 2012. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483:7388227–31
    [Google Scholar]
  42. 42.
    Glennie ND, Yeramilli VA, Beiting DP, Volk SW, Weaver CT, Scott P 2015. Skin-resident memory CD4+ T cells enhance protection against Leishmaniamajor infection. J. Exp. Med. 212:91405–14
    [Google Scholar]
  43. 43.
    Shin H, Iwasaki A 2012. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491:7424463–67
    [Google Scholar]
  44. 44.
    Iijima N, Iwasaki A 2014. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346:620593–98
    [Google Scholar]
  45. 45.
    Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS et al. 2015. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161:4737–49
    [Google Scholar]
  46. 46.
    Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A et al. 2016. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45:4889–902
    [Google Scholar]
  47. 47.
    Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D et al. 2015. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348:6241aaa8205–5
    [Google Scholar]
  48. 48.
    Shiow LR, Rosen DB, Brdičková N, Xu Y, An J et al. 2006. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:7083540–44
    [Google Scholar]
  49. 49.
    Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA et al. 2016. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:7600512–16
    [Google Scholar]
  50. 50.
    Beura LK, Wijeyesinghe S, Thompson EA, Macchietto MG, Rosato PC et al. 2018. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48:2327–38.e5
    [Google Scholar]
  51. 51.
    Hofmann M, Pircher H 2011. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. PNAS 108:4016741–46
    [Google Scholar]
  52. 52.
    Finerty JC 1952. Parabiosis in physiological studies. Physiol. Rev. 32:3277–302
    [Google Scholar]
  53. 53.
    Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y et al. 2008. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. PNAS 105:3110871–76
    [Google Scholar]
  54. 54.
    Ely KH, Cookenham T, Roberts AD, Woodland DL 2006. Memory T cell populations in the lung airways are maintained by continual recruitment. J. Immunol. 176:1537–43
    [Google Scholar]
  55. 55.
    Luettig B, Pape L, Bode U, Bell EB, Sparshott SM et al. 1999. Naive and memory T lymphocytes migrate in comparable numbers through normal rat liver: Activated T cells accumulate in the periportal field. J. Immunol. 163:84300–7
    [Google Scholar]
  56. 56.
    Cose S, Brammer C, Khanna KM, Masopust D, Lefrançois L 2006. Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur. J. Immunol. 36:61423–33
    [Google Scholar]
  57. 57.
    Harp JR, Onami TM 2010. Naïve T cells re-distribute to the lungs of selectin ligand deficient mice. PLOS ONE 5:6e10973
    [Google Scholar]
  58. 58.
    Caucheteux SM, Torabi-Parizi P, Paul WE 2013. Analysis of naïve lung CD4 T cells provides evidence of functional lung to lymph node migration. PNAS 110:51821–26
    [Google Scholar]
  59. 59.
    Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B 2001. Antigen-specific primary activation of CD8+ T cells within the liver. J. Immunol. 166:95430–38
    [Google Scholar]
  60. 60.
    Galkina E, Thatte J, Dabak V, Williams MB, Ley K, Braciale TJ 2005. Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J. Clin. Investig. 115:123473–83
    [Google Scholar]
  61. 61.
    Anderson KG, Sung H, Skon CN, Lefrançois L, Deisinger A et al. 2012. Cutting edge: Intravascular staining redefines lung CD8 T cell responses. J. Immunol. 189:62702–6
    [Google Scholar]
  62. 62.
    Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR et al. 2014. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9:1209–22
    [Google Scholar]
  63. 63.
    Doerschuk CM, Beyers N, Coxson HO, Wiggs B, Hogg JC 1993. Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J. Appl. Physiol. 74:63040–45
    [Google Scholar]
  64. 64.
    Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS 2011. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLOS ONE 6:1e16245
    [Google Scholar]
  65. 65.
    Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37:2364–76
    [Google Scholar]
  66. 66.
    Li W, Germain RN, Gerner MY 2017. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). PNAS 114:35E7321–30
    [Google Scholar]
  67. 67.
    McNamee EN, Korns Johnson D, Homann D, Clambey ET 2013. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol. Res. 55:1–358–70
    [Google Scholar]
  68. 68.
    Buck MD, O'Sullivan D, Pearce EL 2015. T cell metabolism drives immunity. J. Exp. Med. 212:91345–60
    [Google Scholar]
  69. 69.
    Pan Y, Tian T, Park CO, Lofftus SY, Mei S et al. 2017. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543:7644252–56
    [Google Scholar]
  70. 70.
    Freeman BE, Hammarlund E, Raué H-P, Slifka MK 2012. Regulation of innate CD8+ T-cell activation mediated by cytokines. PNAS 109:259971–76
    [Google Scholar]
  71. 71.
    Mackay LK, Braun A, Macleod BL, Collins N, Tebartz C et al. 2015. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194:52059–63
    [Google Scholar]
  72. 72.
    Skon CN, Lee J-Y, Anderson KG, Masopust D, Hogquist KA, Jameson SC 2013. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14:121285–93
    [Google Scholar]
  73. 73.
    Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT et al. 2013. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14:121294–301
    [Google Scholar]
  74. 74.
    Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J et al. 2012. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189:73462–71
    [Google Scholar]
  75. 75.
    Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ et al. 2009. T-bet–dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206:112469–81
    [Google Scholar]
  76. 76.
    Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA et al. 2015. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43:61101–11
    [Google Scholar]
  77. 77.
    Mackay LK, Minnich M, Kragten NAM, Liao Y, Nota B et al. 2016. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352:6284459–63
    [Google Scholar]
  78. 78.
    Li J, Olshansky M, Carbone FR, Ma JZ 2016. Transcriptional analysis of T cells resident in human skin. PLOS ONE 11:1e0148351
    [Google Scholar]
  79. 79.
    Hombrink P, Helbig C, Backer RA, Piet B, Oja AE et al. 2016. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17:121467–78
    [Google Scholar]
  80. 80.
    Kumar BV, Ma W, Miron M, Granot T, Guyer RS et al. 2017. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep 20:122921–34
    [Google Scholar]
  81. 81.
    Schenkel JM, Fraser KA, Casey KA, Beura LK, Pauken KE et al. 2016. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. J. Immunol. 196:93920–26
    [Google Scholar]
  82. 82.
    Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC et al. 2012. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188:104866–75
    [Google Scholar]
  83. 83.
    Zhang N, Bevan MJ 2013. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39:4687–96
    [Google Scholar]
  84. 84.
    Hofmann M, Oschowitzer A, Kurzhals SR, Krüger CC, Pircher H 2013. Thymus-resident memory CD8+ T cells mediate local immunity. Eur. J. Immunol. 43:92295–304
    [Google Scholar]
  85. 85.
    Masopust D, Vezys V, Wherry EJ, Barber DL, Ahmed R 2006. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176:42079–83
    [Google Scholar]
  86. 86.
    Li H, Liu J, Carville A, Mansfield KG, Lynch D, Barouch DH 2011. Durable mucosal simian immunodeficiency virus-specific effector memory T lymphocyte responses elicited by recombinant adenovirus vectors in rhesus monkeys. J. Virol. 85:2111007–15
    [Google Scholar]
  87. 87.
    Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ et al. 2012. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. PNAS 109:187037–42
    [Google Scholar]
  88. 88.
    Liang S, Mozdzanowska K, Palladino G, Gerhard W 1994. Heterosubtypic immunity to influenza type A virus in mice: effector mechanisms and their longevity. J. Immunol. 152:41653–61
    [Google Scholar]
  89. 89.
    Slütter B, Van Braeckel-Budimir N, Abboud G, Varga SM, Salek-Ardakani S, Harty JT 2017. Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci. Immunol. 2:7eaag2031
    [Google Scholar]
  90. 90.
    Takamura S, Yagi H, Hakata Y, Motozono C, McMaster SR et al. 2016. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J. Exp. Med. 213:133057–73
    [Google Scholar]
  91. 91.
    Wu T, Hu Y, Lee Y-T, Bouchard KR, Benechet A et al. 2014. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95:2215–24
    [Google Scholar]
  92. 92.
    Jozwik A, Habibi MS, Paras A, Zhu J, Guvenel A et al. 2015. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat. Commun 6: 10224. Erratum. 2016 Nat. Commun 7:11011
    [Google Scholar]
  93. 93.
    Campbell DJ, Butcher EC 2002. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195:1135–41
    [Google Scholar]
  94. 94.
    Mikhak Z, Strassner JP, Luster AD 2013. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J. Exp. Med. 210:91855–69
    [Google Scholar]
  95. 95.
    Kaufman DR, Liu J, Carville A, Mansfield KG, Havenga MJE et al. 2008. Trafficking of antigen-specific CD8+ T lymphocytes to mucosal surfaces following intramuscular vaccination. J. Immunol. 181:64188–98
    [Google Scholar]
  96. 96.
    Agrewala JN, Brown DM, Lepak NM, Duso D, Huston G, Swain SL 2007. Unique ability of activated CD4+ T cells but not rested effectors to migrate to non-lymphoid sites in the absence of inflammation. J. Biol. Chem. 282:96106–15
    [Google Scholar]
  97. 97.
    Liu L, Fuhlbrigge RC, Karibian K, Tian T, Kupper TS 2006. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25:3511–20
    [Google Scholar]
  98. 98.
    Wakim LM, Smith J, Caminschi I, Lahoud MH, Villadangos JA 2015. Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection. Mucosal Immunol 8:51060–71
    [Google Scholar]
  99. 99.
    McMaster SR, Wein AN, Dunbar PR, Hayward SL, Cartwright EK et al. 2018. Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma. Mucosal Immunol 11:41071–78
    [Google Scholar]
  100. 100.
    Sheridan BS, Pham Q-M, Lee Y-T, Cauley LS, Puddington L, Lefrançois L 2014. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40:5747–57
    [Google Scholar]
  101. 101.
    Muschaweckh A, Buchholz VR, Fellenzer A, Hessel C, König P-A et al. 2016. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J. Exp. Med. 213:133075–86
    [Google Scholar]
  102. 102.
    Khan TN, Mooster JL, Kilgore AM, Osborn JF, Nolz JC 2016. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213:6951–66
    [Google Scholar]
  103. 103.
    Gerlach C, Moseman EA, Loughhead SM, Alvarez D, Zwijnenburg AJ et al. 2016. The Chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45:61270–84
    [Google Scholar]
  104. 104.
    Kinnear E, Lambert L, McDonald JU, Cheeseman HM, Caproni LJ, Tregoning JS 2018. Airway T cells protect against RSV infection in the absence of antibody. Mucosal Immunol 11:1249–56
    [Google Scholar]
  105. 105.
    Smith NM, Wasserman GA, Coleman FT, Hilliard KL, Yamamoto K et al. 2018. Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia. Mucosal Immunol 11:1220–35
    [Google Scholar]
  106. 106.
    Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE et al. 2018. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat. Med. 24:2130–43
    [Google Scholar]
  107. 107.
    Conti HR, Peterson AC, Brane L, Huppler AR, Hernández-Santos N et al. 2014. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candidaalbicans infections. J. Exp. Med. 211:102075–84
    [Google Scholar]
  108. 108.
    Zhu J, Peng T, Johnston C, Phasouk K, Kask AS et al. 2013. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497:7450494–97
    [Google Scholar]
  109. 109.
    Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML et al. 2007. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204:3595–603
    [Google Scholar]
  110. 110.
    Ariotti S, Beltman JB, Chodaczek G, Hoekstra ME, van Beek AE et al. 2012. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. PNAS 109:4819739–44
    [Google Scholar]
  111. 111.
    Beura LK, Mitchell JS, Thompson EA, Schenkel JM, Mohammed J et al. 2018. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19:2173–82
    [Google Scholar]
  112. 112.
    McNamara HA, Cai Y, Wagle MV, Sontani Y, Roots CM 2017. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2:eaaj1996
    [Google Scholar]
  113. 113.
    Miller MJ, Wei SH, Parker I, Cahalan MD 2002. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–73
    [Google Scholar]
  114. 114.
    Schenkel JM, Fraser KA, Vezys V, Masopust D 2013. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14:5509–13
    [Google Scholar]
  115. 115.
    Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D 2014. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346:620598–101
    [Google Scholar]
  116. 116.
    Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME et al. 2014. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346:6205101–5
    [Google Scholar]
  117. 117.
    Tan H-X, Wheatley AK, Esterbauer R, Jegaskanda S, Glass JJ et al. 2018. Induction of vaginal-resident HIV-specific CD8 T cells with mucosal prime-boost immunization. Mucosal Immunol 11:3994–1007
    [Google Scholar]
  118. 118.
    Park SL, Zaid A, Hor JL, Christo SN, Prier JE et al. 2018. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19:2183–91
    [Google Scholar]
  119. 119.
    Wang B, Wu S, Zeng H, Liu Z, Dong W et al. 2015. CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J. Urol. 194:2556–62
    [Google Scholar]
  120. 120.
    Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G et al. 2015. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194:73475–86
    [Google Scholar]
  121. 121.
    Boddupalli CS, Bar N, Kadaveru K, Krauthammer M, Pornputtapong N et al. 2016. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight 1:21e88955
    [Google Scholar]
  122. 122.
    Ganesan A-P, Clarke J, Wood O, Garrido-Martin EM, Chee SJ et al. 2017. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18:8940–50
    [Google Scholar]
  123. 123.
    Koh J, Kim S, Kim M-Y, Go H, Jeon YK, Chung DH 2017. Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 8:813762–69
    [Google Scholar]
  124. 124.
    Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH 2014. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20:2434–44
    [Google Scholar]
  125. 125.
    Ademmer K, Ebert M, Müller-Ostermeyer F, Friess H, Büchler MW et al. 1998. Effector T lymphocyte subsets in human pancreatic cancer: detection of CD8+CD18+ cells and CD8+CD103+ cells by multi-epitope imaging. Clin. Exp. Immunol. 112:121–26
    [Google Scholar]
  126. 126.
    Zhang H-G, Chen H-S, Peng J-R, Shang X-Y, Zhang J et al. 2007. Specific CD8+ T cell responses to HLA-A2 restricted MAGE-A3 p271–279 peptide in hepatocellular carcinoma patients without vaccination. Cancer Immunol. Immunother. 56:121945–54
    [Google Scholar]
  127. 127.
    Nizard M, Roussel H, Tartour E 2016. Resident memory T cells as surrogate markers of the efficacy of cancer vaccines. Clin. Cancer Res. 22:3530–32
    [Google Scholar]
  128. 128.
    Malik BT, Byrne KT, Vella JL, Zhang P, Shabaneh TB et al. 2017. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2:10eaam6346
    [Google Scholar]
  129. 129.
    Milner JJ, Toma C, Yu B, Zhang K, Omilusik K et al. 2017. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552:7684253–57
    [Google Scholar]
  130. 130.
    Hondowicz BD, An D, Schenkel JM, Kim KS, Steach HR et al. 2016. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44:1155–66
    [Google Scholar]
  131. 131.
    Cheuk S, Wikén M, Blomqvist L, Nylén S, Talme T et al. 2014. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 192:73111–20
    [Google Scholar]
  132. 132.
    Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang SC et al. 2017. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46:2287–300
    [Google Scholar]
  133. 133.
    Kleinschek MA, Boniface K, Sadekova S, Grein J, Murphy EE et al. 2009. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 206:3525–34
    [Google Scholar]
  134. 134.
    Sasaki K, Bean A, Shah S, Schutten E, Huseby PG et al. 2014. Relapsing-remitting central nervous system autoimmunity mediated by GFAP-specific CD8 T cells. J. Immunol. 192:73029–42
    [Google Scholar]
  135. 135.
    Yednock TA, Rosen SD 1989. Lymphocyte homing. Adv. Immunol. 44:313–78
    [Google Scholar]
  136. 136.
    Kotas ME, Locksley RM 2018. Why innate lymphoid cells?. Immunity 48:61081–90
    [Google Scholar]
  137. 137.
    Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY 2015. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350:6263981–85
    [Google Scholar]
  138. 138.
    Huang Y, Mao K, Chen X, Sun M-A, Kawabe T et al. 2018. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359:6371114–19
    [Google Scholar]
  139. 139.
    Ginhoux F, Guilliams M 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:3439–49
    [Google Scholar]
  140. 140.
    McDonald BD, Jabri B, Bendelac A 2018. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 18:8514–25
    [Google Scholar]
  141. 141.
    Onodera T, Takahashi Y, Yokoi Y, Ato M, Kodama Y et al. 2012. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. PNAS 109:72485–90
    [Google Scholar]
  142. 142.
    Landsverk OJB, Snir O, Casado RB, Richter L, Mold JE et al. 2017. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214:2309–17
    [Google Scholar]
  143. 143.
    Lim WA, June CH 2017. The principles of engineering immune cells to treat cancer. Cell 168:4724–40
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042617-053214
Loading
/content/journals/10.1146/annurev-immunol-042617-053214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error