1932

Abstract

Mussels form dense aggregations that dominate temperate rocky shores, and they are key aquaculture species worldwide. Coastal environments are dynamic across a broad range of spatial and temporal scales, and their changing abiotic conditions affect mussel populations in a variety of ways, including altering their investments in structures, physiological processes, growth, and reproduction. Here, we describe four categories of ecomechanical models (biochemical, mechanical, energetic, and population) that we have developed to describe specific aspects of mussel biology, ranging from byssal attachment to energetics, population growth, and fitness. This review highlights how recent advances in these mechanistic models now allow us to link them together across molecular, material, organismal, and population scales of organization. This integrated ecomechanical approach provides explicit and sometimes novel predictions about how natural and farmed mussel populations will fare in changing climatic conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010213-135049
2015-01-03
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010213-135049.html?itemId=/content/journals/10.1146/annurev-marine-010213-135049&mimeType=html&fmt=ahah

Literature Cited

  1. Araujo MB, Rahbek C. 2006. How does climate change affect biodiversity?. Science 313:1396–97 [Google Scholar]
  2. Arnold SJ, Wade MJ. 1984a. On the measurement of natural and sexual selection: applications. Evolution 38:720–34 [Google Scholar]
  3. Arnold SJ, Wade MJ. 1984b. On the measurement of natural and sexual selection: theory. Evolution 38:709–19 [Google Scholar]
  4. Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol. Oceanogr. 57:698–710 [Google Scholar]
  5. Bell EC, Gosline JM. 1996. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199:1005–17 [Google Scholar]
  6. Bell EC, Gosline JM. 1997. Strategies for life in flow: tenacity, morphometry, and probability of dislodgment of two Mytilus species. Mar. Ecol. Prog. Ser. 159:197–208 [Google Scholar]
  7. Bierne N, Bonhomme F, Boudry P, Szulkin M, David P. 2006. Fitness landscapes support the dominance theory of post-zygotic isolation in the mussels Mytilus edulis and M. galloprovincialis. Proc. Biol. Sci. 273:1253–60 [Google Scholar]
  8. Bozinovic F, Calosi P, Spicer JI. 2011. Physiological correlates of geographic range in animals. Annu. Rev. Ecol. Evol. Syst. 42:155–79 [Google Scholar]
  9. Buckley LB. 2008. Linking traits to energetic sand population dynamics to predict lizard ranges in changing environments. Am. Nat. 171:E1–19 [Google Scholar]
  10. Buckley LB, Kingsolver JG. 2012a. The demographic impacts of shifts in climate means and extremes on alpine butterflies. Funct. Ecol. 26:969–77 [Google Scholar]
  11. Buckley LB, Kingsolver JG. 2012b. Functional and phylogenetic approaches to forecasting the ecological impacts of climate change. Annu. Rev. Ecol. Evol. Syst. 43:205–26 [Google Scholar]
  12. Carrington E. 2002a. The ecomechanics of mussel attachment: from molecules to ecosystems. Integr. Comp. Biol. 42:846–52 [Google Scholar]
  13. Carrington E. 2002b. Seasonal variation in the attachment strength of blue mussels: causes and consequences. Limnol. Oceanogr. 47:1723–33 [Google Scholar]
  14. Carrington E, Moeser GM, Dimond J, Mello JJ, Boller ML. 2009. Seasonal disturbance to mussel beds: field test of a mechanistic model predicting wave dislodgment. Limnol. Oceanogr. 54:978–86 [Google Scholar]
  15. Carrington E, Moeser GM, Thompson SB, Coutts LC, Craig CA. 2008. Mussel attachment on rocky shores: the effect of flow on byssus production. Integr. Comp. Biol. 48:801–7 [Google Scholar]
  16. Casey JR, Grinstein S, Orlowski J. 2010. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11:50–61 [Google Scholar]
  17. Caswell H. 1989. Matrix Population Models Sunderland, MA: Sinauer
  18. Cheung WWL, Dunne J, Sarmiento JL, Pauly D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68:1008–18 [Google Scholar]
  19. Coyne KJ, Qin XX, Waite JH. 1997. Extensible collagen in mussel byssus: a natural block copolymer. Science 277:1830–32 [Google Scholar]
  20. Coyne KJ, Waite JH. 2000. In search of molecular dovetails in mussel byssus: from the threads to the stem. J. Exp. Biol. 203:1425–31 [Google Scholar]
  21. Danner EW, Kan Y, Hammer MU, Israelachvili JN, Waite JH. 2012. Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue. Biochemistry 51:6511–18 [Google Scholar]
  22. de Jong G. 1994. The fitness of fitness concepts and the description of natural selection. Q. Rev. Biol. 69:3–29 [Google Scholar]
  23. Degtyar E, Harrington MJ, Politi Y, Fratzl P. 2014. The mechanical role of metal ions in biogenic protein-based materials. Angew. Chem. Int. Ed. 5312026–44
  24. Denny MW, Daniel TL, Koehl MAR. 1985. Mechanical limits to size in wave-swept organisms. Ecol. Monogr. 55:69–102 [Google Scholar]
  25. Denny MW, Gaylord B. 2010. Marine ecomechanics. Annu. Rev. Mar. Sci. 2:89–114 [Google Scholar]
  26. Deutsch C, Emerson S, Thompson L. 2005. Fingerprints of climate change in North Pacific oxygen. Geophys. Res. Lett. 32:L16604 [Google Scholar]
  27. Dolmer P, Svane I. 1994. Attachment and orientation of Mytilus edulis L. in flowing water. Ophelia 40:63–74 [Google Scholar]
  28. Elliott J, Holmes K, Chambers R, Leon K, Wimberger P. 2008. Differences in morphology and habitat use among the native mussel Mytilus trossulus, the non-native M. galloprovincialis and their hybrids in Puget Sound, Washington. Mar. Biol. 156:39–53 [Google Scholar]
  29. Endler JA. 1986. Natural Selection in the Wild Princeton, NJ: Princeton Univ. Press
  30. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J. et al. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–66 [Google Scholar]
  31. Fly EK, Hilbish TJ. 2013. Physiological energetics and biogeographic range limits of three congeneric mussel species. Oecologia 172:35–46 [Google Scholar]
  32. Freitas V, Cardoso JFMF, Lika K, Peck MA, Campos J. et al. 2010. Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species. Philos. Trans. R. Soc. B 365:3553–65 [Google Scholar]
  33. Gaylord B, Hill TM, Sanford E, Lenz EA, Jacobs LA. et al. 2011. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214:2586–94Provided the first demonstration of the negative effects of OA on mussel structural mechanics. [Google Scholar]
  34. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25:325–31 [Google Scholar]
  35. Grant J. 1996. The relationship of bioenergetics and the environment to the field growth of cultured bivalves. J. Exp. Mar. Biol. Ecol. 200:239–56 [Google Scholar]
  36. Grant J, Bacher C. 1998. Comparative models of mussel bioenergetics and their validation at field culture sites. J. Exp. Mar. Biol. Ecol. 219:21–44 [Google Scholar]
  37. Guerette PA, Hoon S, Seow Y, Raida M, Masic A. et al. 2013. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nat. Biotechnol. 31:908–15Describes a powerful molecular amplification method for identifying byssal proteins. [Google Scholar]
  38. Harley CDG. 2011. Climate change, keystone predation, and biodiversity loss. Science 334:1124–27 [Google Scholar]
  39. Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P. 2010. Ironclad fibers: a metal-based biological strategy for hard flexible coatings. Science 328:216–20Introduced the use of resonance Raman microscopy with submicron resolution and parts-per-million metal detection in invertebrate sclerotins. [Google Scholar]
  40. Harrington MJ, Waite JH. 2007. Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J. Exp. Biol. 210:4307–18 [Google Scholar]
  41. Hassenkam T, Gutsmann T, Hansma P, Sagert J, Waite JH. 2004. Giant bent core mesogens in the thread forming process of marine mussels. Biomacromolecules 5:1351–55 [Google Scholar]
  42. Hawkins AJS, Bayne BL. 1985. Seasonal variation in the relative utilization of carbon and nitrogen by the mussel Mytilus edulis: budgets, conversion efficiencies and maintenance requirements. Mar. Ecol. Prog. Ser. 25:181–88 [Google Scholar]
  43. Helmuth B. 1998. Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecol. Monogr. 68:51–74 [Google Scholar]
  44. Hilbish TJ, Koehn RK. 1985. Dominance in physiological phenotypes and fitness at an enzyme locus. Science 229:52–54 [Google Scholar]
  45. Holling CS. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91:385–98 [Google Scholar]
  46. Holten-Andersen N, Fantner GE, Hohlbauch S, Waite JH, Zok FW. 2007. Protective coatings on extensible biofibers. Nat. Mater. 6:669–72 [Google Scholar]
  47. Holten-Andersen N, Mates TE, Toprak MS, Stucky GD, Zok FW, Waite JH. 2009. Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 25:3323–26 [Google Scholar]
  48. Hunt HL, Scheibling RE. 2001. Patch dynamics of mussels on rocky shores: Integrating process to understand pattern. Ecology 82:3213–31 [Google Scholar]
  49. Hwang DS, Waite JH. 2012. Three intrinsically unstructured adhesive proteins, mfp-1, mfp-2 and mfp-3: analysis by circular dichroism. Protein Sci. 21:1689–95 [Google Scholar]
  50. Hwang DS, Zeng H, Masic A, Harrington MJ, Israelachvili JN, Waite JH. 2010. Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 285:25850–58 [Google Scholar]
  51. Jager T, Klok C. 2010. Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets. Philos. Trans. R. Soc. B 365:3531–40 [Google Scholar]
  52. Jusup M, Klanjscek T, Matsuda H, Kooijman SALM. 2011. A full lifecycle bioenergetic model for bluefin tuna. PLoS ONE 6:e21903 [Google Scholar]
  53. Kearney M. 2012. Metabolic theory, life history and the distribution of a terrestrial ectotherm. Funct. Ecol. 26:167–79 [Google Scholar]
  54. Kearney M, Matzelle A, Helmuth B. 2012. Biomechanics meets the ecological niche: the importance of temporal data resolution. J. Exp. Biol. 215:922–33 [Google Scholar]
  55. Kearney M, Porter WP. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12:334–50A pivotal article that proposed using the ecological niche as a foundation for mechanistic approaches in ecological research. [Google Scholar]
  56. Kearney M, Simpson SJ, Raubenheimer D, Helmuth B. 2010. Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B 365:3469–83 [Google Scholar]
  57. Kooijman SALM. 2010. Dynamic Energy Budget Theory for Metabolic Organization Cambridge, UK: Cambridge Univ. Press, 3rd ed..
  58. Kozlowski J. 1993. Measuring fitness in life history studies. Trends Ecol. Evol. 8:84–85A key review of the importance and pitfalls of estimating fitness in theory and in real populations. [Google Scholar]
  59. Kozlowski J, Czarnoleski M, Danko M. 2004. Can optimal resource allocation models explain why ectotherms grow larger in cold?. Integr. Comp. Biol. 44:480–93 [Google Scholar]
  60. Lachance AA, Myrand B, Tremblay R, Koutitonsky V, Carrington E. 2008. Biotic and abiotic influences on the attachment strength of blue mussels (Mytilus edulis) from suspended culture. Aquat. Biol. 2:119–29 [Google Scholar]
  61. Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution 37:1210–26 [Google Scholar]
  62. Laughlin DC, Joshi C, van Bodegom PM, Bastow ZA, Fule PZ. 2012. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15:1291–99 [Google Scholar]
  63. Lee BP, Messersmith PB, Israelachvili JN, Waite JH. 2011. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41:99–132 [Google Scholar]
  64. Lee CY, Lim SS, Owen MD. 1990. The rate and strength of byssal reattachment by blue mussels (Mytilus edulis L.). Can. J. Zool. 68:2005–9 [Google Scholar]
  65. Lee H, Scherer NF, Messersmith PB. 2006. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103:12999–3003 [Google Scholar]
  66. Leslie PH. 1948. Some further notes on the use of matrices in population mathematics. Biometrika 35:213–45 [Google Scholar]
  67. Loreau M. 2010. From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis Princeton, NJ: Princeton Univ. Press
  68. Lurman GL, Hilton Z, Ragg NLC. 2013. Energetics of byssus attachment and feeding in the green-lipped mussel Perna canaliculus. Biol. Bull. 224:19–88 [Google Scholar]
  69. Maeder F. 2008. Sea-silk in aquincum: first production proof in antiquity. Purpureae Vestes I. Textiles y tintes del Mediterráneo en época romana CA Giner 112–15 Valencia, Spain: Univ. Valencia [Google Scholar]
  70. Matzelle A, Montalto V, Sarà G, Zippay M, Helmuth B. 2014. Dynamic Energy Budget model parameter estimation for the bivalve Mytilus californianus: application of the covariation method. J. Sea Res. In press. doi: 10.1016/j.seares.2014.01.009
  71. Maury O, Poggiale J-C. 2013. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity. J. Theor. Biol. 324:52–71 [Google Scholar]
  72. McDowell LM, Burzio LA, Waite JH, Schaefer J. 1999. REDOR detection of cross-links formed in mussel byssus under high flow stress. J. Biol. Chem. 274:20293–95 [Google Scholar]
  73. McGraw JB, Caswell H. 1996. Estimation of individual fitness from life-history data. Am. Nat. 147:57–64Provides a very useful examination of the fitness concept applied to individuals or trait groups within populations. [Google Scholar]
  74. Melzner F, Stange P, Trübenbach K, Thomsen J, Casties I. et al. 2011. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6:e24223 [Google Scholar]
  75. Metz JAJ, Nisbet RM, Geritz SAH. 1992. How should we define “fitness” for general ecological scenarios?. Trends Ecol. Evol. 7:198–202 [Google Scholar]
  76. Miller AD, Roxburgh SH, Shea K. 2011. How frequency and intensity shape diversity–disturbance relationships. Proc. Natl. Acad. Sci. USA 108:5643–48 [Google Scholar]
  77. Moeser GM, Carrington E. 2006. Seasonal variation in mussel byssal thread mechanics. J. Exp. Biol. 209:1996–2003Describes the breakthrough discovery that mussel byssus quality depends on environmental conditions. [Google Scholar]
  78. Moeser GM, Leba H, Carrington E. 2006. Seasonal influence of wave action on thread production in Mytilus edulis. J. Exp. Biol. 209:881–90 [Google Scholar]
  79. Montalto V, Palmeri V, Rinaldi A, Kooijman SALM, Sarà G. 2014a. Dynamic Energy Budget parameterisation of Brachidontes pharaonis, a Lessepsian bivalve in the Mediterranean sea. J. Sea Res. In press. doi: 10.1016/j.seares.2014.05.007
  80. Montalto V, Sarà G, Ruti P, Dell'Aquila A, Helmuth B. 2014b. Testing the effects of temporal data resolution on predictions of bivalve fitness in the context of global warming. Ecol. Model. 278:1–14 [Google Scholar]
  81. Nisbet RM, Jusup M, Klanjscek T, Pecquerie L. 2012. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. J. Exp. Biol. 215:892–902A foundational article on the role of DEB theory in current bioenergetics research. [Google Scholar]
  82. O'Donnell MJ, George MN, Carrington E. 2013. Ocean acidification weakens mussel byssus attachment. Nat. Clim. Change 3:587–90 [Google Scholar]
  83. Paine RT, Levin SA. 1981. Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 512:145–78 [Google Scholar]
  84. Pelletier F, Clutton-Brock T, Pemberton J, Tuljapurkar S, Coulson T. 2007. The evolutionary demography of ecological change: linking trait variation and population growth. Science 315:1571–74 [Google Scholar]
  85. Persikov AV, Ramshaw JA, Brodsky B. 2005. Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280:19343–49 [Google Scholar]
  86. Pfister CA, Esbaugh AJ, Frieder CA, Baumann H, Bockmon EE. et al. 2014. Detecting the unexpected: a research framework for ocean acidification. Environ. Sci. Technol. 489982–94
  87. Price HA. 1980. Seasonal variation in the strength of byssal attachment of the common mussel Mytilus edulis L. J. Mar. Biol. Assoc. UK 60:1035–37 [Google Scholar]
  88. Qin Z, Buehler MJ. 2013. Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4:2187 [Google Scholar]
  89. Rinaldi A, Montalto V, Manganaro A, Mazzola A, Mirto S. et al. 2014. Predictive mechanistic bioenergetics to model habitat suitability of shellfish culture in coastal lakes. Estuar. Coast. Shelf Sci. 14489–98
  90. Sagert J, Waite JH. 2009. Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis. J. Exp. Biol. 210:2224–36 [Google Scholar]
  91. Sanford E. 2000. Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr. Comp. Biol. 42:881–91 [Google Scholar]
  92. Sanford E. 2002. The feeding, growth, and energetics of two rocky intertidal predators (Pisaster ochraceus and Nucella canaliculata) under water temperatures simulating episodic upwelling. J. Exp. Mar. Biol. Ecol. 273:199–218 [Google Scholar]
  93. Sarà G, Kearney M, Helmuth B. 2011. Combining heat-transfer and energy budget models to predict local and geographic patterns of mortality in Mediterranean intertidal mussels. Chem. Ecol. 27:135–45 [Google Scholar]
  94. Sarà G, Mazzola A. 2004. The carrying capacity for Mediterranean bivalve suspension feeders: evidence from analysis of food availability and hydrodynamics and their integration into a local model. Ecol. Model. 179:281–96 [Google Scholar]
  95. Sarà G, Milanese M, Prusina I, Sarà A, Angel DL. et al. 2014a. The impact of climate change on Mediterranean intertidal communities: losses in coastal ecosystem integrity and services. Reg. Environ. Change 14:5–17 [Google Scholar]
  96. Sarà G, Palmeri V, Montalto V, Rinaldi A, Widdows J. 2013a. Parameterisation of bivalve functional traits for mechanistic eco-physiological dynamic energy budget (DEB) models. Mar. Ecol. Prog. Ser. 480:99–117 [Google Scholar]
  97. Sarà G, Palmeri V, Rinaldi A, Montalto V, Helmuth B. 2013b. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a study case with the bivalve Brachidontes pharaonis. Divers. Distr. 19:1235–47 [Google Scholar]
  98. Sarà G, Reid G, Rinaldi A, Palmeri V, Troell M, Kooijman SALM. 2012. Growth and reproductive simulation of candidate shellfish species at fish cages in the southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture 324–25:259–66 [Google Scholar]
  99. Sarà G, Rinaldi A, Montalto V. 2014b. Thinking beyond organism energy use: a trait-based bioenergetic mechanistic approach for predictions of life history traits in marine organisms. Mar. Ecol. In press. doi: 10.1111/maec.12106
  100. Sarà G, Vizzini S, Mazzola A. 2003. Sources of carbon and dietary habits of new Lessepsian entry Brachidontes pharaonis (Bivalvia, Mytilidae) in the western Mediterranean. Mar. Biol. 143:713–22 [Google Scholar]
  101. Schoener TW. 1986. Mechanistic approaches to community ecology: a new reductionism?. Am. Zool. 26:81–106 [Google Scholar]
  102. Sebens KP. 1982a. Competition for space: growth rate, reproductive output, and escape in size. Am. Nat. 120:189–97 [Google Scholar]
  103. Sebens KP. 1982b. The limits to indeterminate growth: an optimal size model applied to passive suspension feeders. Ecology 63:209–22 [Google Scholar]
  104. Sebens KP. 1987. The ecology of indeterminate growth in animals. Annu. Rev. Ecol. Syst. 18:371–407 [Google Scholar]
  105. Sebens KP. 2002. Energetic constraints, size gradients and size limits in benthic marine invertebrates. Integr. Comp. Biol. 42:853–61Combines energetics and life history models to provide estimates of fitness in model populations. [Google Scholar]
  106. Shields JL, Barnes P, Heath DD. 2008. Growth and survival differences among native, introduced and hybrid blue mussels (Mytilus spp.): genotype, environment and interaction effects. Mar. Biol. 154:919–28 [Google Scholar]
  107. Silverman HG, Roberto FE. 2007. Understanding marine mussel adhesion. Mar. Biotechnol. 9:661–81 [Google Scholar]
  108. Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:81–102 [Google Scholar]
  109. Smyth JD. 1954. A technique for the histochemical demonstration of polyphenol oxidase and its application to egg-shell formation in helminths and byssus formation in Mytilus. Q. J. Microsc. Sci. 95:139–52 [Google Scholar]
  110. Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA. 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79:1–15 [Google Scholar]
  111. Stearns SC. 1992. The Evolution of Life Histories Oxford, UK: Oxford Univ. Press
  112. Strathmann RR, Strathmann MF. 1982. The relationship between adult size and brooding in marine invertebrates. Am. Nat. 119:91–101 [Google Scholar]
  113. Suhre MH, Gertz M, Steegborn C, Scheibel T. 2014. Structural and functional features of a collagen-binding matrix protein from the mussel byssus. Nat. Commun. 5:3392 [Google Scholar]
  114. Sun CJ, Lucas JM, Waite JH. 2002. Collagen binding matrix proteins from elastomeric extraorganismic byssal threads. Biomacromolecules 3:1240–48 [Google Scholar]
  115. Sun CJ, Waite JH. 2005. Mapping chemical gradients within and along a fibrous structural tissue: mussel byssal threads. J. Biol. Chem. 280:39332–36 [Google Scholar]
  116. Taylor SW, Luther GW, Waite JH. 1994. Polarographic and spectrophotometric investigation of iron(III) complexation to 3,4-dihydroxyphenylalanine-containing peptides and proteins from Mytilus edulis. Inorg. Chem. 33:5819–24 [Google Scholar]
  117. Teal LR, van Hal R, van Kooten T, Ruardij P, Rijnsdorp AD. 2012. Bio-energetics underpins the spatial response of North Sea plaice (Pleuronectes platessa L.) and sole (Solea solea L.) to climate change. Glob. Change Biol. 18:3291–305 [Google Scholar]
  118. Tech. Univ. Braunschw 2014. EC 1.10.3.1 - catechol oxidase. BRENDA: The Comprehensive Enzyme Information System, release 2014.1, updated Jan. 2014. http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.10.3.1
  119. Thoday JM. 1953. Components of fitness. Symp. Soc. Exp. Biol. 7:96–113 [Google Scholar]
  120. Van Winkle W. 1970. Effect of environmental factors on byssal thread formation. Mar. Biol. 7:143–48 [Google Scholar]
  121. Vitellaro-Zuccarello L. 1980. The collagen gland of Mytilus galloprovincialis: an ultrastructural and cytochemical study on secretory granules. J. Ultrastruct. Res. 73:135–45 [Google Scholar]
  122. Vitellaro-Zuccarello L. 1981. Ultrastructural and cytochemical study on the enzyme gland of the foot of a mollusc. Tissue Cell 13:701–13 [Google Scholar]
  123. Waite JH. 1985. Catechol oxidase in the byssus of the common mussel, Mytilus edulis L. J. Mar. Biol. Assoc. UK 65:359–71 [Google Scholar]
  124. Waite JH, Broomell CC. 2012. Changing environments and structure-property relationships in marine biomaterials. J. Exp. Biol. 215:873–83 [Google Scholar]
  125. Waite JH, Qin XX, Coyne KJ. 1998. The peculiar collagens of mussel byssus. Matrix Biol. 17:93–106 [Google Scholar]
  126. Waite JH, Vaccaro E, Sun CJ, Lucas JM. 2002. Elastomeric gradients: a hedge against stress concentration in marine holdfasts?. Philos. Trans. R. Soc. B. 357:143–53 [Google Scholar]
  127. Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL. 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol. Lett. 13:267–83 [Google Scholar]
  128. Wei W, Tan Y, Martinez N, Yu J, Israelachvili JN, Waite JH. 2014. A mussel-derived one-component adhesive coacervate. Acta Biomater. 10:1663–70 [Google Scholar]
  129. Wei W, Yu J, Broomell CC, Israelachvili JN, Waite JH. 2013. Hydrophobic enhancement of Dopa-mediated adhesion in a mussel foot protein. J. Am. Chem. Soc. 135:377–83 [Google Scholar]
  130. Wethey DS, Brin LD, Helmuth B, Mislan KAS. 2011. Predicting intertidal organism temperatures with modified land surface models. Ecol. Model. 222:3568–76 [Google Scholar]
  131. Widdows J, Donkin P. 1992. Mussels and environmental contaminants: bioaccumulation and physiological aspects. The Mussel Mytilus: Ecology, Physiology, Genetics and Culture E Gosling 383–424 Amsterdam: Elsevier [Google Scholar]
  132. Wootton JT, Pfister CA. 2012. Carbon system measurements and potential climatic drivers at a site of rapidly declining ocean pH. PLoS ONE 7:e53396 [Google Scholar]
  133. Yu J, Wei W, Danner E, Ashley RK, Israelachvili JN, Waite JH. 2011. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7:588–90 [Google Scholar]
  134. Zardi GI, McQuaid CD, Nicastro KR. 2007. Balancing survival and reproduction: seasonality of wave action, attachment strength and reproductive output in indigenous Perna perna and invasive Mytilus galloprovincialis mussels. Mar. Ecol. Prog. Ser. 334:155–63 [Google Scholar]
  135. Zhao H, Waite JH. 2006. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281:26150–58 [Google Scholar]
/content/journals/10.1146/annurev-marine-010213-135049
Loading
/content/journals/10.1146/annurev-marine-010213-135049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error