1932

Abstract

In marine ecosystems, rising atmospheric CO and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-041911-111611
2012-01-15
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/marine/4/1/annurev-marine-041911-111611.html?itemId=/content/journals/10.1146/annurev-marine-041911-111611&mimeType=html&fmt=ahah

Literature Cited

  1. Aksnes DL, Ohman MD. 2009. Multi-decadal shoaling of the euphotic zone in the southern sector of the California Current System. Ecol. Res. 54:1272–81 [Google Scholar]
  2. Antoine D, Morel A, Gordon HR, Banzon VF, Evans RH. 2005. Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. J. Geophys. Res. 110:C06009 [Google Scholar]
  3. Arrigo KR, van Dijken G, Pabi S. 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35:L19603 [Google Scholar]
  4. Atkinson A, Siegel V, Pakhomov E, Rothery P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–3 [Google Scholar]
  5. Auad G, Miller A, Di Lorenzo E. 2006. Long-term forecast of oceanic conditions off California and their biological implications. J. Geophys. Res. 111:C09008 [Google Scholar]
  6. Bakun A, Field D, Redondo-Rodriguez A, Weeks S. 2010. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Change Biol. 16:1213–28 [Google Scholar]
  7. Barry JP, Baxter CH, Sagarin RD, Gilman SE. 1995. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267:672–75 [Google Scholar]
  8. Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL. et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752–55 [Google Scholar]
  9. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory JM. et al. 2007. Observations: oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis , et al., pp. 385–432 Cambridge: Cambridge Univ. Press [Google Scholar]
  10. Bolser RC, Hay ME. 1996. Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77:2269–86 [Google Scholar]
  11. Boyce DG, Lewis MR, Worm B. 2010. Global phytoplankton decline over the past century. Nature 466:591–96 [Google Scholar]
  12. Boyer TP, Levitus S, Antonov JI, Locarnini RA, Garcia HE. 2005. Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett. 32:L01604 [Google Scholar]
  13. Brander K. 2010. Impacts of climate change on fisheries. J. Mar. Syst. 79:389–402 [Google Scholar]
  14. Bruno JF, Stachowicz JJ, Bertness MD. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18:119–25 [Google Scholar]
  15. Bundy A, Shannon LJ, Rochet MJ, Neira S, Shin YJ. et al. 2010. The good(ish), the bad, and the ugly: a tripartite classification of ecosystem trends. ICES J. Mar. Sci. 67:745–68 [Google Scholar]
  16. Byrnes JE, Reynolds PL, Stachowicz JJ. 2007. Invasions and extinctions reshape coastal marine food webs. PLoS One 2:e295 [Google Scholar]
  17. Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S. et al. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–63 [Google Scholar]
  18. Cazenave A, Lombard A, Llovel W. 2008. Present-day sea level rise: a synthesis. C. R. Geosci. 340:761–70 [Google Scholar]
  19. Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks H. et al. 2008. Emergence of anoxia in the California Current large marine ecosystem. Science 319:920 [Google Scholar]
  20. Chavez F, Messie M, Pennington J. 2011. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3:227–60 [Google Scholar]
  21. Checkley DM, Barth JA. 2009. Patterns and processes in the California Current System. Prog. Oceanogr. 83:49–64 [Google Scholar]
  22. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10:235–51 [Google Scholar]
  23. Cohen AL, McCorkle DC, de Putron S, Gaetani GA, Rose KA. 2009. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem. Geophys. Geosyst. 10:Q07005 [Google Scholar]
  24. Davidson E. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2:659–62 [Google Scholar]
  25. Deegan LA. 1993. Nutrient and energy-transport between estuaries and coastal marine ecosystems by fish migration. Can. J. Fish. Aquat. Sci. 50:74–79 [Google Scholar]
  26. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29 [Google Scholar]
  27. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT. et al. 2010. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci. 3:762–65 [Google Scholar]
  28. Di Lorenzo E, Miller A, Schneider N, McWilliams J. 2005. The warming of the California Current System: dynamics and ecosystem implications. J. Phys. Oceanogr. 35:336–62 [Google Scholar]
  29. Doney SC. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–16 [Google Scholar]
  30. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92 [Google Scholar]
  31. Donner SD. 2009. Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS One 4:e5712 [Google Scholar]
  32. Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. USA 106:12235–40 [Google Scholar]
  33. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM. et al. 2007. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B Biol. Sci. 362:67–94 [Google Scholar]
  34. Ducklow HW, Doney SC, Steinberg DK. 2009. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Annu. Rev. Mar. Sci. 1:279–302 [Google Scholar]
  35. Durack PJ, Wijffels SE. 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23:4342–62 [Google Scholar]
  36. Eppley R. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063–85 [Google Scholar]
  37. Fabry VJ, Seibel BA, Feely RA, Orr JC. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65:414–32 [Google Scholar]
  38. Farrell A, Hinch S, Cooke S, Patterson D, Crossin G. et al. 2008. Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migrations. Physiol. Biochem. Zool. 81:697–708 [Google Scholar]
  39. Feely RA, Doney SC, Cooley SR. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47 [Google Scholar]
  40. Field DB, Baumgartner TR, Charles CD, Ferreira-Bartrina V, Ohman MD. 2006. Planktonic foraminifera of the California Current reflect 20th-century warming. Science 311:63–66 [Google Scholar]
  41. Field JC, Baltz K, Phillips AJ, Walker WA. 2007. Range expansion and trophic interactions of the jumbo squid, Dosidicus gigas, in the California Current. CalCOFI Rep. 48131–46 La Jolla, CA: Calif. Coop. Ocean. Fish. Investig. [Google Scholar]
  42. Field JC, MacCall AD, Bradley RW, Sydeman WJ. 2010. Estimating the impacts of fishing on dependent predators: a case study in the California Current. Ecol. Appl. 20:2223–36 [Google Scholar]
  43. Fine M, Tchernov D. 2007. Scleractinian coral species survive and recover from decalcification. Science 315:1811 [Google Scholar]
  44. Fischbach AS, Monson DH, Jay CV. 2009. Enumeration of Pacific walrus carcasses on beaches of the Chukchi Sea in Alaska following a mortality event, September 2009. Open File Rep. 2009-1291 US Geol. Surv., Reston, VA [Google Scholar]
  45. Food Agric. Org. U.N 2007. The world's mangroves 1980–2005. FAO For. Pap. 153 Food Agric. Org. U.N., Rome [Google Scholar]
  46. Food Agric. Org. U.N 2010. Fishery and aquaculture statistics. FAO Yearb. Food Agric. Org. U.N., Rome [Google Scholar]
  47. Ford SE. 1996. Range extension by the oyster parasite Perkinsus marinus into the northeastern United States: response to climate change?. J. Shellfish Res. 15:45–56 [Google Scholar]
  48. Gaichas S, Skaret G, Falk-Petersen J, Link JS, Overholtz W. et al. 2009. A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics. Prog. Oceanogr. 81:47–62 [Google Scholar]
  49. García-Reyes M, Largier J. 2010. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. 115:C04011 [Google Scholar]
  50. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR. 2003. Long-term region-wide declines in Caribbean corals. Science 301:958–60 [Google Scholar]
  51. Gedan KB, Bertness MD. 2009. Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecol. Lett. 12:842–48 [Google Scholar]
  52. Geller JB, Darling JA, Carlton JT. 2010. Genetic perspectives on marine biological invasions. Annu. Rev. Mar. Sci. 2:367–93 [Google Scholar]
  53. Goldewijk KK. 2005. Three centuries of global population growth: a spatial referenced population (density) database for 1700–2000. Popul. Environ. 26:343–67 [Google Scholar]
  54. Graham NAJ, Chabanet P, Evans RD, Jennings S, Letourneur Y. et al. 2011. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14:341–48 [Google Scholar]
  55. Grantham BA, Chan F, Nielsen KJ, Fox DS, Barth JA. et al. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–54 [Google Scholar]
  56. Grebmeier JM, Cooper LW, Feder HM, Sirenko BI. 2006. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog. Oceanogr. 71:331–61 [Google Scholar]
  57. Grebmeier JM, Moore SE, Overland JE, Frey KE, Gradinger R. 2010. Biological response to recent pacific Arctic sea ice retreats. Eos 91:161–63 [Google Scholar]
  58. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M. et al. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99 [Google Scholar]
  59. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F. et al. 2008. A global map of human impact on marine ecosystems. Science 319:948–52 [Google Scholar]
  60. Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD. 2010. Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecol. Appl. 20:452–64 [Google Scholar]
  61. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP. et al. 2002. Ecology: climate warming and disease risks for terrestrial and marine biota. Science 296:2158–62 [Google Scholar]
  62. Hillyer R, Silman MR. 2010. Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Glob. Change Biol. 16:3205–14 [Google Scholar]
  63. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P. et al. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15:1–7 [Google Scholar]
  64. Hoegh-Guldberg O, Bruno JF. 2010. The impact of climate change on the world's marine ecosystems. Science 328:1523–28 [Google Scholar]
  65. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P. et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1737–42 [Google Scholar]
  66. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA. et al. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41:127–47 [Google Scholar]
  67. Hofmann M, Schellnhuber H-J. 2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc. Natl. Acad. Sci. USA 106:3017–22 [Google Scholar]
  68. Holland MM, Serreze MC, Stroeve J. 2008. The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Clim. Dyn. 34:185–200 [Google Scholar]
  69. Hsieh C-H, Kim H, Watson W, Di Lorenzo E, Sugihara G. 2009. Climate-driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Glob. Change Biol. 15:2137–52 [Google Scholar]
  70. Hyrenbach K, Veit R. 2003. Ocean warming and seabird communities of the southern California Current System (1987–98): response at multiple temporal scales. Deep-Sea Res. Part II 50:2537–65 [Google Scholar]
  71. Idjadi JA, Edmunds PJ. 2006. Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar. Ecol. Prog. Ser. 319:117–27 [Google Scholar]
  72. Ishii M, Kimoto M, Sakamoto K, Iwasaki SI. 2006. Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr. 62:155–70 [Google Scholar]
  73. Jackson JBC. 2010. The future of the oceans past. Philos. Trans. R. Soc. B Biol. Sci. 365:3765–78 [Google Scholar]
  74. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL. 2008. Recent global sea level acceleration started over 200 years ago?. Geophys. Res. Lett. 35:8–11 [Google Scholar]
  75. Joint I, Doney SC, Karl DM. 2011. Will ocean acidification affect marine microbes?. ISME J. 5:1–7 [Google Scholar]
  76. Jones A, Berkelmans R. 2010. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant versus sensitive symbiont types. PLoS One 5:e10437 [Google Scholar]
  77. Jones G, McCormick M, Srinivasan M, Eagle J. 2004. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. USA 101:8251–53 [Google Scholar]
  78. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229 [Google Scholar]
  79. Keller AA, Simon V, Chan F, Wakefield WW, Clarke ME. et al. 2010. Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the US West Coast. Fish. Oceanogr. 19:76–87 [Google Scholar]
  80. Kerr RA. 2008. Global warming: Hurricanes won't go wild, according to climate models. Science 320:999 [Google Scholar]
  81. Kim H-J, Miller A, McGowan J, Carter M. 2009. Coastal phytoplankton blooms in the Southern California Bight. Prog. Oceanogr. 82:137–47 [Google Scholar]
  82. King JR, Agostini VN, Harvey CJ, McFarlane GA, Foreman MGG. et al. 2011. Climate forcing and the California Current ecosystem. ICES J. Mar. Sci. 68:1199–216 [Google Scholar]
  83. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine C, Robbins L. 2006. Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Rep. Natl. Sci. Found., Natl. Ocean. Atmos. Adm., and US Geol. Surv., Washington, DC [Google Scholar]
  84. Knowlton N, Jackson JBC. 2008. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6:e54 [Google Scholar]
  85. Kroeker KJ, Kordas RL, Crim RN, Singh GG. 2009. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13:1419–34 [Google Scholar]
  86. Lavaniegos B, Ohman M. 2003. Long-term changes in pelagic tunicates of the California Current. Deep-Sea Res. Part II 50:2473–98 [Google Scholar]
  87. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L. et al. 2009. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2:831–36 [Google Scholar]
  88. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV. 2009. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36:L07608 [Google Scholar]
  89. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science 326:539 [Google Scholar]
  90. Lipcius RN, Eggleston DB, Schreiber SJ, Seitz RD, Shen J. et al. 2008. Importance of metapopulation connectivity to restocking and restoration of marine species. Rev. Fish. Sci. 16:101–10 [Google Scholar]
  91. Lucey SM, Nye JA. 2010. Shifting species assemblages in the Northeast US Continental Shelf Large Marine Ecosystem. Mar. Ecol. Prog. Ser. 415:23–33 [Google Scholar]
  92. Mackas D, Batten S, Trudel M. 2007. Effects on zooplankton of a warmer ocean: recent evidence from the Northeast Pacific. Prog. Oceanogr. 75:223–52 [Google Scholar]
  93. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J. et al. 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett. 34:L24501 [Google Scholar]
  94. McClain CR. 2009. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 1:19–42 [Google Scholar]
  95. McClatchie S, Goericke R, Cosgrove R, Auad G, Vetter R. 2010. Oxygen in the Southern California Bight: multidecadal trends and implications for demersal fisheries. Geophys. Res. Lett. 37:1–5 [Google Scholar]
  96. McGowan J, Bograd S, Lynn R, Miller A. 2003. The biological response to the 1977 regime shift in the California Current. Deep-Sea Res. Part II 50:2567–82 [Google Scholar]
  97. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D. et al. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–73 [Google Scholar]
  98. Moore SE. 2008. Marine mammals as ecosystem sentinels. J. Mammal. 89:534–40 [Google Scholar]
  99. Moran XAG, Lopez-Urrutia A, Calvo-Diaz A, Li WKW. 2010. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16:1137–44 [Google Scholar]
  100. Mueter FJ, Litzow MA. 2008. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl. 18:309–20 [Google Scholar]
  101. Muller EM, Rogers CS, Spitzack AS, van Woesik R. 2007. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St. John, US Virgin Islands. Coral Reefs 27:191–95 [Google Scholar]
  102. Mumby PJ, Hastings A. 2008. The impact of ecosystem connectivity on coral reef resilience. J. Appl. Ecol. 45:854–62 [Google Scholar]
  103. Mumby PJ, Iglesias-Prieto R, Hooten AJ, Sale PF, Hoegh-Guldberg O. et al. 2011. Revisiting climate thresholds and ecosystem collapse. Front. Ecol. Environ. 9:94–96 [Google Scholar]
  104. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS. et al. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA 106:1848–52 [Google Scholar]
  105. Natl. Res. Counc 2010. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. Washington, DC: Natl. Res. Counc. [Google Scholar]
  106. Natl. Res. Counc 2011. Climate Stabilization Targets: Emissions, Concentrations and Impacts over Decades to Millennia. Washington, DC: Natl. Res. Counc. [Google Scholar]
  107. Navarrete SA, Wieters EA, Broitman BR, Castilla JC. 2005. Scales of benthic-pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Proc. Natl. Acad. Sci. USA 102:18046–51 [Google Scholar]
  108. Nye JA, Link JS, Hare JA, Overholtz WJ. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393:111–29 [Google Scholar]
  109. O'Connor MI. 2009. Warming strengthens an herbivore-plant interaction. Ecology 90:388–98 [Google Scholar]
  110. O'Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF. 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7:e1000178 [Google Scholar]
  111. Palacios DP, Bograd SJ, Mendelssohn R, Schwing FB. 2004. Long-term and seasonal trends in stratification in the California Current, 1950–1993. J. Geophys. Res. 109:C10016 [Google Scholar]
  112. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637–69 [Google Scholar]
  113. Patti B, Guisande C, Riveiro I, Thejll P, Cuttitta A. et al. 2010. Effect of atmospheric CO2 and solar activity on wind regime and water column stability in the major global upwelling areas. Estuar. Coast. Shelf Sci. 88:45–52 [Google Scholar]
  114. Pennings SC, Silliman BR. 2005. Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology 86:2310–19 [Google Scholar]
  115. Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science 308:1912–15 [Google Scholar]
  116. Petchey OL, McPhearson PT, Casey TM, Morin PJ. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72 [Google Scholar]
  117. Peterson WT, Schwing FB. 2003. A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett. 30:1896 [Google Scholar]
  118. Petit JR, Raynaud D, Basile I, Chappellaz J, Davisk M. et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–36 [Google Scholar]
  119. Philippart CJM, van Aken HM, Beukema JJ, Bos OG, Cadee GC, Dekker R. 2003. Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr. 48:2171–85 [Google Scholar]
  120. Polovina JJ, Dunne JP, Woodworth PA, Howell EA. 2011. Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J. Mar. Sci. 68:986–95 [Google Scholar]
  121. Polyakov IV, Timokhov LA, Alexeev VA, Bacon S, Dmitrenko IA. et al. 2010. Arctic ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr. 40:2743–56 [Google Scholar]
  122. Pörtner HO. 2010. Oxygen and capacity limitation of thermal tolerance: a matrix for integrating climate related stressors in marine ecosystems. J. Exp. Biol. 213:881–93 [Google Scholar]
  123. Pörtner HO, Knust R. 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97 [Google Scholar]
  124. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619 [Google Scholar]
  125. Raymond PA, Oh N-H, Turner RE, Broussard W. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–52 [Google Scholar]
  126. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ. et al. 2006. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J. Clim. 19:446–69 [Google Scholar]
  127. Reid PC, Johns DG, Edwards M, Starr M, Poulin M, Snoeijs P. 2007. A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Glob. Change Biol. 13:1910–21 [Google Scholar]
  128. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S. 2007. Decadal spinup of the South Pacific Subtropical Gyre. J. Phys. Oceanogr. 37:162–73 [Google Scholar]
  129. Roemmich D, McGowan J. 1995. Climatic warming and the decline of zooplankton in the California Current. Science 267:1324–26 [Google Scholar]
  130. Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH. 2000. Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu. Rev. Ecol. Evol. Syst. 31:481–531 [Google Scholar]
  131. Rykaczewski RR, Checkley DM. 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. USA 105:1965–70 [Google Scholar]
  132. Rykaczewski RR, Dunne JP. 2010. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37:L21606 [Google Scholar]
  133. Salvat B, Allemand D. 2009. Acidification and Coral Reefs New Caledonia, France: Coral Reef Initiat. Pac. [Google Scholar]
  134. Samhouri JF, Levin PS, Harvey CJ. 2009. Quantitative evaluation of marine ecosystem indicator performance using food web models. Ecosystems 12:1283–98 [Google Scholar]
  135. Sanford E. 1999. Regulation of keystone predation by small changes in ocean temperature. Science 283:2095–97 [Google Scholar]
  136. Sarmento H, Montoya J, Vazquez-Domingues E, Vaque D, Gasol J. 2010. Warming effects on microbial food web processes: How far can we go when it comes to predictions?. Philos. Trans. R. Soc. B Biol. Sci. 365:2137–49 [Google Scholar]
  137. Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Fraser WR. 2010. How do polar marine ecosystems respond to rapid climate change?. Science 328:1520–23 [Google Scholar]
  138. Schwing FB, Mendelssohn R, Bograd SJ, Overland JE, Wang M, Ito S-I. 2010. Climate change, teleconnection patterns, and regional processes forcing marine populations in the Pacific. J. Mar. Syst. 79:245–57 [Google Scholar]
  139. Smith KJ, Ruhl H, Bett B, Billett D, Lampitt R, Kaufmann R. 2009. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Natl. Acad. Sci. USA 106:19211–18 [Google Scholar]
  140. Snyder M, Sloan L, Diffenbaugh N, Bell J. 2003. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30:1823 [Google Scholar]
  141. Solomon S, Qin D, Manning M, Chen Z, Marquis M. et al. 2007. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge: Cambridge Univ. Press [Google Scholar]
  142. Somero G. 2012. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4:39–61 [Google Scholar]
  143. Sorte CJB, Williams SL, Zerebecki RA. 2010. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91:2198–204 [Google Scholar]
  144. Spencer P. 2008. Density-independent and density-dependent factors affecting temporal changes in spatial distributions of eastern Bering Sea flatfish. Fish. Oceanogr. 17:396–410 [Google Scholar]
  145. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW. 2002. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proc. Natl. Acad. Sci. USA 99:15497–500 [Google Scholar]
  146. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113:C03S90 [Google Scholar]
  147. Steinacher M, Joos F, Froelicher TL, Bopp L, Cadule P. et al. 2010. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005 [Google Scholar]
  148. Steinacher M, Joos F, Froelicher TL, Plattner GK, Doney SC. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–33 [Google Scholar]
  149. Stramma L, Johnson GC, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–58 [Google Scholar]
  150. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M. 2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34:L09501 [Google Scholar]
  151. Sydeman W, Bradley R, Warzybok P, Abraham C, Jahncke J. et al. 2006. Planktivorous auklet Ptychoramphus aleuticus responses to ocean climate, 2005: unusual atmospheric blocking?. Geophys. Res. Lett. 33:L22S09 [Google Scholar]
  152. Sydeman W, Mills K, Santora J, Thompson S. 2009. Seabirds and climate in the California Current: a synthesis of change. CalCOFI Rep. 5082–104 La Jolla, CA: Calif. Coop. Ocean. Fish. Investig. [Google Scholar]
  153. Valentine JF, Heck KL, Blackmon D, Goecker ME, Christian J. et al. 2008. Exploited species impacts on trophic linkages along reef-seagrass interfaces in the Florida keys. Ecol. Appl. 18:1501–15 [Google Scholar]
  154. Veit RR, Pyle P, McGowan JA. 1996. Ocean warming and long-term change in pelagic bird abundance within the California Current System. Mar. Ecol. Prog. Ser. 139:11–8 [Google Scholar]
  155. Vermeij GJ, Roopnarine PD. 2008. Ecology: the coming Arctic invasion. Science 321:780–81 [Google Scholar]
  156. Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J. et al. 2003. Trophic levels are differentially sensitive to climate. Ecology 84:2444–53 [Google Scholar]
  157. Walsh JE, Chapman WL. 2001. 20th-century sea-ice variations from observational data. Ann. Glaciol. 33:444–48 [Google Scholar]
  158. Wassmann P, Duarte CM, Agusti S, Sejr MK. 2011. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17:1235–49 [Google Scholar]
  159. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC. et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106:12377–81 [Google Scholar]
  160. Welch D, Ishida Y, Nagasawa K. 1998. Thermal limits and ocean migrations of sockeye salmon (Oncorhynchus nerka): long-term consequences of global warming. Can. J. Fish. Aquat. Sci. 55:937–48 [Google Scholar]
  161. Whitney F, Freeland H, Robert M. 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75:179–99 [Google Scholar]
  162. Williams JW, Jackson ST. 2007. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5:475–82 [Google Scholar]
  163. Wilson S, Fischetti T. 2010. Coastline population trends in the United States: 1960 to 2008. Curr. Popul. Rep. US Census Bur., Washington, DC [Google Scholar]
  164. Wootton JT, Pfister CA, Forester JD. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc. Natl. Acad. Sci. USA 105:18848–53 [Google Scholar]
  165. Wu R. 2002. Hypoxia: from molecular responses to ecosystem responses. Mar. Pollut. Bull. 45:35–45 [Google Scholar]
/content/journals/10.1146/annurev-marine-041911-111611
Loading
/content/journals/10.1146/annurev-marine-041911-111611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error