1932

Abstract

The phenomenon of subsurface chlorophyll maximum layers (SCMLs) is not a unique ecological response to environmental conditions; rather, a broad range of interacting processes can contribute to the formation of persistent layers of elevated chlorophyll concentration (Chl) that are nearly ubiquitous in stratified surface waters. Mechanisms that contribute to the formation and maintenance of the SCMLs include a local maximum in phytoplankton growth rate near the nutricline, photoacclimation of pigment content that leads to elevated Chl relative to phytoplankton biomass at depth, and a range of physiologically influenced swimming behaviors in motile phytoplankton and buoyancy control in diatoms and cyanobacteria that can lead to aggregations of phytoplankton in layers, subject to grazing and physical control. A postulated typical stable water structure characterizes consistent patterns in vertical profiles of Chl, phytoplankton biomass, nutrients, and light across a trophic gradient structured by the vertical flux of nutrients and characterized by the average daily irradiance at the nutricline. Hypothetical predictions can be tested using a nascent biogeochemical global ocean observing system. Partial results to date are generally consistent with predictions based on current knowledge, which has strong roots in research from the twentieth century.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010213-135111
2015-01-03
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010213-135111.html?itemId=/content/journals/10.1146/annurev-marine-010213-135111&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson GC. 1969. Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol. Oceanogr. 14:386–91 [Google Scholar]
  2. Babin M, Morel A, Claustre H, Bricaud A, Kolber Z, Falkowski PG. 1996. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Res. I 43:1241–72 [Google Scholar]
  3. Balch WM, Bowler BC, Byrne CF. 1997. Sea surface temperature gradients, baroclinicity, and vegetation gradients in the sea. J. Plankton Res. 19:1829–58 [Google Scholar]
  4. Banse K. 1987. Clouds, deep chlorophyll maxima and the nutrient supply to the mixed layer of stratified water bodies. J. Plankton Res. 9:1031–36 [Google Scholar]
  5. Banse K. 1995. Zooplankton: pivotal role in the control of ocean production. ICES J. Mar. Sci. 52:265–77 [Google Scholar]
  6. Banse K. 2004. Should we continue to use the 1% light depth convention for estimating the compensation depth of phytoplankton for another 70 years?. Limnol. Oceanogr. Bull. 13:49–52Drives home the message that percent surface irradiance is an inappropriate measure of light exposure when daily solar irradiance at the surface varies significantly, as it does with latitude, season, and cloud cover. [Google Scholar]
  7. Banse K. 2013. Reflections about chance in my career, and on the top-down regulated world. Annu. Rev. Mar. Sci. 5:1–19 [Google Scholar]
  8. Barber RT, Hilting AK. 2002. History of the study of plankton productivity. Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems PJLB Williams, DN Thomas, CS Reynolds 16–43 Oxford, UK: Blackwell Sci. [Google Scholar]
  9. Beckmann A, Hense I. 2007. Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions—a theoretical investigation. Prog. Oceanogr. 75:771–96 [Google Scholar]
  10. Behrenfeld MJ, Boss E. 2003. The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean?. Deep-Sea Res. I 50:1537–49 [Google Scholar]
  11. Behrenfeld MJ, Falkowski PG. 1997. A consumer's guide to phytoplankton primary productivity models. Limnol. Oceanogr. 42:1479–91 [Google Scholar]
  12. Berdalet E, McManus MA, Ross ON, Burchard H, Chavez FP. et al. 2014. Understanding harmful algae in stratified systems: review of progress and future directions. Deep-Sea Res. II 101:4–20 [Google Scholar]
  13. Bidigare RR, Smith RC, Baker KS, Marra J. 1987. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Glob. Biogeochem. Cycles 1:171–86 [Google Scholar]
  14. Bienfang PK, Szyper JP, Laws E. 1983. Sinking rate and pigment responses to light limitation by a marine diatom: implications to dynamics of chlorophyll maximum layers. Oceanol. Acta 6:55–62 [Google Scholar]
  15. Birch DA, Young WR, Franks PJS. 2009. Plankton layer profiles as determined by shearing, sinking, and swimming. Limnol. Oceanogr. 54:397–99 [Google Scholar]
  16. Boyd CM, Gradmann D. 2002. Impact of osmolytes on buoyancy of marine phytoplankton. Mar. Biol. 141:605–18 [Google Scholar]
  17. Briggs N, Perry MJ, Cetinić I, Lee C, D'Asaro E. et al. 2011. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep-Sea Res. I 58:1031–39 [Google Scholar]
  18. Cermeño P, Dutkiewicz S, Harris RP, Follows M, Schofield O, Falkowski PG. 2008. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl. Acad. Sci. USA 105:20344–49 [Google Scholar]
  19. Cetinić I, Perry MJ, Briggs NT, Kallin E, D'Asaro EA, Lee CM. 2012. Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment. J. Geophys. Res. 117:C06028 [Google Scholar]
  20. Chan AT. 1978. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J. Phycol. 14:396–402 [Google Scholar]
  21. Claustre H, Huot Y, Obernosterer I, Gentili B, Tailliez D, Lewis M. 2008. Gross community production and metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical method. Biogeosciences 5:463–74 [Google Scholar]
  22. Clegg MR, Gaedke U, Boehrer B, Spijkerman E. 2012. Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum. Oecologia 169:609–22 [Google Scholar]
  23. Cowles TJ. 2003. Planktonic layers: physical and biological interactions on the small scale. Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation L Seuront, PG Strutton 31–49 Boca Raton, FL: CRC [Google Scholar]
  24. Cullen JJ. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci. 39:791–803 [Google Scholar]
  25. Cullen JJ. 1985. Diel vertical migration by dinoflagellates: roles of carbohydrate metabolism and behavioral flexibility. Contrib. Mar. Sci. 27:Suppl.135–52 [Google Scholar]
  26. Cullen JJ. 2008. Observation and prediction of harmful algal blooms. Real-Time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms: Theory, Instrumentation and Modelling M Babin, CS Roesler, JJ Cullen 1–41 Paris: UNESCO [Google Scholar]
  27. Cullen JJ. 2012. Foreword. Biological Oceanography: An Early History, 1870–1960 by EL Mills ix–xxi Toronto: Univ. Toronto Press [Google Scholar]
  28. Cullen JJ, Davis RF, Huot Y. 2012. Spectral model of depth-integrated water column photosynthesis and its inhibition by ultraviolet radiation. Glob. Biogeochem. Cycles 26:GB1011 [Google Scholar]
  29. Cullen JJ, Horrigan SG. 1981. Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and the photosynthetic capacity of the dinoflagellate, Gymnodinium splendens. Mar. Biol. 62:81–89 [Google Scholar]
  30. Cullen JJ, MacIntyre HL, Carlson DJ. 1989. Distributions and photosynthesis of phototrophs in sea-surface films. Mar. Ecol. Prog. Ser. 55:271–78 [Google Scholar]
  31. Cullen JJ, MacIntyre JG. 1998. Behavior, physiology and the niche of depth-regulating phytoplankton. Physiological Ecology of Harmful Algal Blooms DM Anderson, AD Cembella, GM Hallegraeff 559–80 Berlin: Springer-Verlag [Google Scholar]
  32. Cullen JJ, Reid FMH, Stewart E. 1982. Phytoplankton in the surface and chlorophyll maximum off southern California in August, 1978. J. Plankton Res. 4:665–94 [Google Scholar]
  33. Davey MC, Heaney SI. 1989. The control of sub-surface maxima of diatoms in a stratified lake by physical, chemical and biological factors. J. Plankton Res. 11:1185–89 [Google Scholar]
  34. Derenbach JB, Astheimer H, Hansen HP, Leach H. 1979. Vertical microscale distribution of phytoplankton in relation to the thermocline. Mar. Ecol. Prog. Ser. 1:187–93 [Google Scholar]
  35. Durham WM, Kessler JO, Stocker R. 2009. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323:1067–70 [Google Scholar]
  36. Durham WM, Stocker R. 2012. Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu. Rev. Mar. Sci. 4:177–207 [Google Scholar]
  37. Eppley RW, Holm-Hansen O, Strickland JDH. 1968. Some observations on the vertical migration of dinoflagellates. J. Phycol. 4:333–40 [Google Scholar]
  38. Eppley RW, Peterson BJ. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–80 [Google Scholar]
  39. Eppley RW, Reid FMH, Cullen JJ, Winant CD, Stewart E. 1984. Subsurface patch of dinoflagellate (Ceratium tripos) off Southern California: patch length, growth rate, associated vertically migrating species. Mar. Biol. 80:207–14 [Google Scholar]
  40. Eppley RW, Reid FMH, Strickland JDH. 1970. Estimates of phytoplankton crop size, growth rate, and primary production. See Strickland 1970 33–42
  41. Estrada M, Marrasé C, Latasa M, Berdalet E, Delgado M, Riera T. 1993. Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean. Mar. Ecol. Prog. Ser. 92:289–300 [Google Scholar]
  42. Falkowski PG, Hopkins TS, Walsh JJ. 1980. An analysis of factors affecting oxygen depletion in the New York Bight. J. Mar. Res. 38:479–506 [Google Scholar]
  43. Falkowski PG, LaRoche J. 1991. Acclimation to spectral irradiance in algae. J. Phycol. 27:8–14 [Google Scholar]
  44. Fennel K, Boss E. 2003. Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnol. Oceanogr. 48:1521–34In a sense, an update of Steele 1964—comprehensive, well rooted in the literature, and tested with modern optical observations. [Google Scholar]
  45. Fischer AD, Moberg EA, Alexander H, Brownlee EF, Hunter-Cevera KR. et al. 2014. Sixty years of Sverdrup: a retrospective of progress in the study of phytoplankton blooms. Oceanography 27:1222–35Written by graduate students, an excellent review of the legacy of a classic paper, demonstrating the value of building upon the older literature. [Google Scholar]
  46. Fleming RH. 1939. The control of diatom populations by grazing. J. Cons. Int. Explor. Mer 14:210–27 [Google Scholar]
  47. Franks PJS. 1992. Sink or swim: accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82:1–12 [Google Scholar]
  48. Geider RJ. 1992. Quantitative phytoplankton ecophysiology: implications for primary production and phytoplankton growth. ICES Mar. Sci. Symp. 194:52–62 [Google Scholar]
  49. Geider RJ, MacIntyre HL, Kana TM. 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148:187–200 [Google Scholar]
  50. Geider RJ, Osborne BA, Raven JA. 1986. Growth, photosynthesis and maintenance metabolic cost in the diatom Phaeodactylum tricornutum at very low light levels. J. Phycol. 22:39–48 [Google Scholar]
  51. Gentleman W. 2002. A chronology of plankton dynamics in silico: how computer models have been used to study marine ecosystems. Hydrobiologia 480:69–85 [Google Scholar]
  52. Gernez P, Antoine D, Huot Y. 2011. Diel cycles of the particulate beam attenuation coefficient under varying trophic conditions in the northwestern Mediterranean Sea: observations and modeling. Limnol. Oceanogr. 56:17–36 [Google Scholar]
  53. Gould WJ. 2005. From Swallow floats to Argo: the development of neutrally buoyant floats. Deep-Sea Res. II 52:529–43 [Google Scholar]
  54. Graff JR, Milligan AJ, Behrenfeld MJ. 2012. The measurement of phytoplankton biomass using flow-cytometric sorting and elemental analysis of carbon. Limnol. Oceanogr. Methods 10:910–20 [Google Scholar]
  55. Granéli E, Paasche E, Maestrini SY. 1993. Three years after the Chrysochromulina polylepsis bloom in Scandinavian waters in 1988: some conclusions of recent research and monitoring. Toxic Phytoplankton Blooms in the Sea TJ Smayda, Y Shimizu 23–32 Amsterdam: Elsevier [Google Scholar]
  56. Halpern D, Knox RA, Luthier DS, Philander SGH. 1989. Estimates of equatorial upwelling between 140° and 110°W during 1984. J. Geophys. Res. 94:8018–20 [Google Scholar]
  57. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C. et al. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–43 [Google Scholar]
  58. Hansen G, Daugbjerg N, Henriksen P. 2000. Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (= Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. J. Phycol. 36:394–410 [Google Scholar]
  59. Harris G, Heaney S, Talling J. 1979. Physiological and environmental constraints in the ecology of the planktonic dinoflagellate Ceratium hirundinella. Freshw. Biol. 9:413–28 [Google Scholar]
  60. Hasle GR. 1950. Phototactic vertical migration in marine dinoflagellates. Oikos 2:162–75 [Google Scholar]
  61. Heaney SI, Davey MC, Brooks AS. 1989. Formation of sub-surface maxima of a diatom within a stratified lake and in a laboratory water column. J. Plankton Res. 11:1168–84 [Google Scholar]
  62. Heaney SI, Eppley RW. 1981. Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture. J. Plankton Res. 3:331–44 [Google Scholar]
  63. Herbland A, Voituriez B. 1979. Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean. J. Mar. Res. 37:87–101 [Google Scholar]
  64. IOCCG (Int. Ocean-Col. Coord. Group) 2000. Remote sensing of ocean colour in coastal, and other optically-complex, waters Rep. No. 3, IOCCG, Dartmouth, Can. [Google Scholar]
  65. Jamart BM, Winter D, Banse K, Anderson G, Lam R. 1977. A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern US coast. Deep-Sea Res. 24:753–73 [Google Scholar]
  66. Jamart BM, Winter DF, Banse K. 1979. Sensitivity analysis of a mathematical model of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern US coast. J. Plankton Res. 1:267–90 [Google Scholar]
  67. Jenkins WJ, Doney SC. 2003. The subtropical nutrient spiral. Glob. Biogeochem. Cycles 17:1110 [Google Scholar]
  68. Jerlov NG. 1959. Maxima in the vertical distribution of particles in the sea. Deep-Sea Res. 5:173–84 [Google Scholar]
  69. Ji R, Franks PJS. 2007. Vertical migration of dinoflagellates: model analysis of strategies, growth, and vertical distribution patterns. Mar. Ecol. Prog. Ser. 344:49–61 [Google Scholar]
  70. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H. et al. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography 22:3216–25 [Google Scholar]
  71. Kamykowski D. 1995. Trajectories of autotrophic marine dinoflagellates. J. Phycol. 31:200–8 [Google Scholar]
  72. Karl DM. 1999. A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2:181–214 [Google Scholar]
  73. Kiefer DA, Lasker R. 1975. Two blooms of Gymnodinium splendens, an unarmoured dinoflagellate. Fish. Bull. 73:675–78 [Google Scholar]
  74. Kiefer DA, Olson RJ, Holm-Hansen O. 1975. Another look at the nitrite and chlorophyll maxima in the central North Pacific. Deep-Sea Res. Oceanogr. Abstr. 23:1199–208 [Google Scholar]
  75. Kirk JTO. 2011. Light and Photosynthesis in Aquatic Ecosystems Cambridge, UK: Cambridge Univ. Press, 3rd ed.. [Google Scholar]
  76. Kitchen JC, Zaneveld JRV. 1990. On the noncorrelation of the vertical structure of light scattering and chlorophyll α in case I waters. J. Geophys. Res. 95:20237–46 [Google Scholar]
  77. Klausmeier CA, Litchman E. 2001. Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnol. Oceanogr. 46:1998–2007 [Google Scholar]
  78. Kononen K, Huttunen M, Hallfors S, Gentien P, Lunven M. et al. 2003. Development of a deep chlorophyll maximum of Heterocapsa triquetra Ehrenb. at the entrance to the Gulf of Finland. Limnol. Oceanogr. 48:594–607 [Google Scholar]
  79. Konopka A, Klemer A, Walsby A, Ibelings BW. 1993. Effects of macronutrients upon buoyancy regulation by metalimnetic Oscillatoria agardhii in Deming Lake, Minnesota. J. Plankton Res. 15:1019–34 [Google Scholar]
  80. Lande R, Li WKW, Horne EP, Wood AM. 1989. Phytoplankton growth rates estimated from depth profiles of cell concentration and turbulent diffusion. Deep-Sea Res. 36:1141–59Incisive analysis of the measured distributions of phytoplankton species in relation to turbulence, years ahead of its time and still full of useful insights. [Google Scholar]
  81. Lande R, Wood AM. 1987. Suspension times of particles in the upper ocean. Deep-Sea Res. 34:61–72 [Google Scholar]
  82. Langdon C. 1987. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis. J. Plankton Res. 9:459–82 [Google Scholar]
  83. Lasker R. 1975. Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. Fish. Bull. 73:453–62 [Google Scholar]
  84. Lee Z, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C. 2007. Euphotic zone depth: its derivation and implication to ocean-color remote sensing. J. Geophys. Res. 112:C03009 [Google Scholar]
  85. Letelier RM, Karl DM, Abbott MR, Bidigare RR. 2004. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol. Oceanogr. 49:508–19Comprehensive study illustrating ecological shifts related to vertical displacement of isolumes rather than to differences in percent surface irradiance. [Google Scholar]
  86. Lévy M. 2003. Mesoscale variability of phytoplankton and of new production: impact of the large scale nutrient distribution. J. Geophys. Res. 108:3358 [Google Scholar]
  87. Lévy M. 2008. The modulation of biological production by oceanic mesoscale turbulence. Transport and Mixing in Geophysical Flows JB Weiss, A Provenzale 219–61 Berlin: Springer-Verlag [Google Scholar]
  88. Lewis MR, Harrison WG, Oakey NS, Hebert D, Platt T. 1986. Vertical nitrate fluxes in the oligotrophic ocean. Science 234:870–73 [Google Scholar]
  89. Li QP, Franks PJS, Landry MR, Goericke R, Taylor AG. 2010. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems. J. Geophys. Res. 115:G04003 [Google Scholar]
  90. Lorenzen CJ. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res. 13:223–27 [Google Scholar]
  91. Lorenzen CJ. 1976. Primary production in the sea. Ecology of the Seas DH Cushing, JJ Walsh 173–85 Oxford, UK: Blackwell Sci. [Google Scholar]
  92. Margalef R. 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1:493–509 [Google Scholar]
  93. Margalef R, Estrada M, Blasco D. 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. Toxic Dinoflagellate Blooms DL Taylor, HH Seliger 89–94 New York: Elsevier–North Holland [Google Scholar]
  94. Marra J. 2004. The compensation irradiance for phytoplankton in nature. Geophys. Res. Lett. 31:L06305 [Google Scholar]
  95. McGillicuddy DJ Jr, Anderson LA, Bates NR, Bibby T, Buesseler KO. et al. 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316:1021–26 [Google Scholar]
  96. McGillicuddy DJ Jr, Robinson AR. 1997. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I 44:1427–50 [Google Scholar]
  97. Michaels AF, Silver MW. 1988. Primary production, sinking fluxes and the microbial food web. Deep-Sea Res. 35:473–90 [Google Scholar]
  98. Mignot A, Claustre H, D'Ortenzio F, Xing X, Poteau A, Ras J. 2011. From the shape of the vertical profile of in vivo fluorescence to chlorophyll-a concentration. Biogeosciences 8:2391–406 [Google Scholar]
  99. Mignot A, Claustre H, Uitz J, Poteau A, D'Ortenzio F, Xing X. 2014. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a Bio-Argo float investigation. Glob. Biogeochem. Cycles 28856–76A recent study that relates vertical structure to isolumes, revealing patterns that appear to be generic and that the authors conclude are potentially characteristic of all areas where the SCML forms. [Google Scholar]
  100. Morel A. 1988. Optical modelling of the upper ocean in relation to its biogenous matter content (Case I waters). J. Geophys. Res. 93:10749–68 [Google Scholar]
  101. Morel A, Berthon J-F. 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 34:1545–62 [Google Scholar]
  102. Munk W. 2002. The U.S. Commission on Ocean Policy: Testimony in San Pedro, California, 18 April 2002. http://govinfo.library.unt.edu/oceancommission/meetings/apr18_19_02/munk_statement.pdf [Google Scholar]
  103. Oliver RL. 1994. Floating and sinking in gas-vacuolate cyanobacteria. J. Phycol. 30:161–73 [Google Scholar]
  104. Passow U, Alldredge AL, Logan BE. 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Res. I 41:335–57 [Google Scholar]
  105. Pingree RD, Pugh PR, Holligan PM, Forster GR. 1975. Summer phytoplankton blooms and red tides along tidal fronts in the approaches to the English Channel. Nature 258:672–77 [Google Scholar]
  106. Platt T, Rao DS. 1970. Primary production measurements on a natural plankton bloom. J. Fish. Board Can. 27:887–99 [Google Scholar]
  107. Platt T, Sathyendranath S. 1988. Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–20 [Google Scholar]
  108. Platt T, Sathyendranath S. 1993. Estimators of primary production for the interpretation of remotely sensed data on ocean color. J. Geophys. Res. 98:14561–96 [Google Scholar]
  109. Prairie JC, Franks PJS, Jaffe JS, Doubell MJ, Yamazaki H. 2011. Physical and biological controls of vertical gradients in phytoplankton. Limnol. Oceanogr. Fluids Environ. 1:75–90 [Google Scholar]
  110. Ralston DK, McGillicuddy DJ Jr, Townsend DW. 2007. Asynchronous vertical migration and bimodal distribution of motile phytoplankton. J. Plankton Res. 29:803–21 [Google Scholar]
  111. Richardson TL, Ciotti AM, Cullen JJ, Villareal TA. 1996. Physiological and optical properties of Rhizosolenia formosa (Bacillariophyceae) in the context of open-ocean vertical migration. J. Phycol. 32:741–57 [Google Scholar]
  112. Richardson TL, Cullen JJ. 1995. Changes in buoyancy and chemical composition during growth of a coastal marine diatom: ecological and biogeochemical consequences. Mar. Ecol. Prog. Ser. 128:77–90 [Google Scholar]
  113. Richardson TL, Cullen JJ, Kelley DE, Lewis MR. 1998. Potential contributions of vertically migrating Rhizosolenia to nutrient cycling and new production in the open ocean. J. Plankton Res. 20:219–42 [Google Scholar]
  114. Riley GA. 1946. Factors controlling phytoplankton populations on Georges Bank. J. Mar. Res. 6:54–73 [Google Scholar]
  115. Riley GA, Stommel H, Bumpus DF. 1949. Quantitative Ecology of the Plankton of the Western North Atlantic Bull. Bingham Oceanogr. Coll. 12 New Haven, CT: Bingham Oceanogr. Lab. [Google Scholar]
  116. Rines JEB, McFarland MN, Donaghay PL, Sullivan JM. 2010. Thin layers and species-specific characterization of the phytoplankton community in Monterey Bay, California, USA. Cont. Shelf Res. 30:66–80 [Google Scholar]
  117. Riser SC, Johnson KS. 2008. Net production of oxygen in the subtropical ocean. Nature 451:323–25 [Google Scholar]
  118. Roesler CS, Barnard AH. 2014. Optical proxy for phytoplankton biomass in the absence of photophysiology: rethinking the absorption line height. Methods Oceanogr. 7:79–94 [Google Scholar]
  119. Rossby H, Levine E, Connors D. 1985. The isopycnal Swallow float—a simple device for tracking water parcels in the ocean. Prog. Oceanogr. 14:511–25 [Google Scholar]
  120. Ryan JP, McManus MA, Sullivan JM. 2010. Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont. Shelf Res. 30:7–16 [Google Scholar]
  121. Ryther JH. 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr. 1:61–70 [Google Scholar]
  122. Sharples J, Moore CM, Rippeth TP, Holligan PM, Hydes DJ. et al. 2001. Phytoplankton distribution and survival in the thermocline. Limnol. Oceanogr. 46:486–96 [Google Scholar]
  123. Shulenberger E, Reid JL. 1981. The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity reconsidered. Deep-Sea Res. 28:901–19 [Google Scholar]
  124. Smayda TJ. 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Annu. Rev. 8:353–414 [Google Scholar]
  125. Smayda TJ. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137–53 [Google Scholar]
  126. Smetacek VS. 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar. Biol. 84:239–51 [Google Scholar]
  127. Sommer U. 1982. Vertical niche separation between two closely related planktonic flagellate species (Rhodomonas lens and Rhodomonas minuta v. nannoplanctica). J. Plankton Res. 4:137–42 [Google Scholar]
  128. Stacey MT, McManus MA, Steinbuck JV. 2007. Convergences and divergences and thin layer formation and maintenance. Limnol. Oceanogr. 52:1523 [Google Scholar]
  129. Steele JH. 1956. Plant production on the Fladen Ground. J. Mar. Biol. Assoc. UK 35:1–33 [Google Scholar]
  130. Steele JH. 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7:137–50Remembered best for its photosynthesis-versus-irradiance equations, this study includes a model of photoacclimation that was 35 years ahead of its time. [Google Scholar]
  131. Steele JH. 1964. A study of production in the Gulf of Mexico. J. Mar. Res. 22:211–22Predicts the vertical structure of Chl across a trophic gradient, including the formation of an SCML due primarily to photoacclimation. [Google Scholar]
  132. Steele JH, Yentsch CS. 1960. The vertical distribution of chlorophyll. J. Mar. Biol. Assoc. UK 39:217–26 [Google Scholar]
  133. Steinbuck JV, Genin A, Monismith SG, Koseff JR, Holzman R, Labiosa RG. 2010. Turbulent mixing in fine-scale phytoplankton layers: observations and inferences of layer dynamics. Cont. Shelf Res. 30:442–55 [Google Scholar]
  134. Strickland JDH. 1968. A comparison of profiles of nutrient and chlorophyll concentrations taken from discrete depths and by continuous recording. Limnol. Oceanogr. 13:388–91 [Google Scholar]
  135. Strickland JDH. 1970. The Ecology of the Plankton off La Jolla, California, in the Period April Through September, 1967 Bull. Scripps Inst. Oceanogr 17 Berkeley: Univ. Calif. Press [Google Scholar]
  136. Strom SL, Miller CB, Frost BW. 2000. What sets lower limits to phytoplankton stocks in high-nitrate, low-chlorophyll regions of the open ocean?. Mar. Ecol. Prog. Ser. 193:19–31 [Google Scholar]
  137. Sullivan JM, Donaghay PL, Rines JEB. 2010. Coastal thin layer dynamics: consequences to biology and optics. Cont. Shelf Res. 30:50–65 [Google Scholar]
  138. Taylor AG, Landry MR, Selph KE, Wokuluk JJ. 2014. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep-Sea Res. II. In press. doi: 10.1016/j.dsr2.2014.02.006 [Google Scholar]
  139. Taylor AH, Geider RJ, Gilbert FJH. 1997. Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modelling study. Mar. Ecol. Prog. Ser. 152:51–66 [Google Scholar]
  140. Taylor AH, Harris JRW, Aiken J. 1986. The interaction of physical and biological processes in a model of the vertical distribution of phytoplankton under stratification. Marine Interfaces Ecohydrodynamics JCJ Nihoul 313–30 Elsevier Oceanogr. Ser 42 Amsterdam: Elsevier [Google Scholar]
  141. Tyler MA, Seliger HH. 1978. Annual subsurface transport of a red tide dinoflagellate to its bloom area: water circulation patterns and organism distributions in the Chesapeake Bay. Limnol. Oceanogr. 23:227–46 [Google Scholar]
  142. Tyler MA, Seliger HH. 1981. Selection for a red tide organism: physiological responses to the physical environment. Limnol. Oceanogr. 26:310–24 [Google Scholar]
  143. Uitz J, Claustre H, Morel A, Hooker SB. 2006. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J. Geophys. Res. 111:C08005 [Google Scholar]
  144. Venrick EL. 1988. The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment. J. Plankton Res. 10:987–98 [Google Scholar]
  145. Venrick EL, McGowan J, Mantyla A. 1973. Deep maxima of photosynthetic chlorophyll in the Pacific Ocean. Fish. Bull. 71:41–52 [Google Scholar]
  146. Verity PG, Smetacek V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130:277–93 [Google Scholar]
  147. Villareal TA, Woods S, Moore JK, Culver-Rymsza K. 1996. Vertical migration of Rhizosolenia mats and their significance to NO3 fluxes in the central North Pacific gyre. J. Plankton Res. 18:1103–21 [Google Scholar]
  148. Walsby A. 1978. The properties and buoyancy-providing role of gas vacuoles in Trichodesmium Ehrenberg. Br. Phycol. J. 13:103–16 [Google Scholar]
  149. Weiler CS, Balch WM, Chisholm SW, Cullen JJ, Harrison WG. et al. 1990. Richard W. Eppley's contributions to phytoplankton physiology and biological oceanography. Oceanography 3:242–46 [Google Scholar]
  150. White AE, Spitz YH, Letelier RM. 2006. Modeling carbohydrate ballasting by Trichodesmium spp. Mar. Ecol. Prog. Ser. 323:35–45 [Google Scholar]
  151. Williams RG, Follows MJ. 2003. Physical transport of nutrients and the maintenance of biological production. Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change MJR Fasham 19–51 Berlin: Springer-Verlag [Google Scholar]
  152. Xing X, Claustre H, Blain S, D'Ortenzio F, Antoine D. et al. 2012. Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean). Limnol. Oceanogr. Methods 10:483–95 [Google Scholar]
  153. Xing X, Morel A, Claustre H, Antoine D, D'Ortenzio F. et al. 2011. Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: chlorophyll a retrieval. J. Geophys. Res. 116:C06020 [Google Scholar]
  154. Yentsch CS. 1974. The influence of geostrophy on primary production. Tethys 6:111–18 [Google Scholar]
  155. Yentsch CS. 1980. Phytoplankton growth in the sea: a coalescence of disciplines. Primary Productivity in the Sea PG Falkowski 17–31 New York: PlenumExcellent example of Yentsch's deep appreciation of interdisciplinary oceanography and of oceanographers. [Google Scholar]
/content/journals/10.1146/annurev-marine-010213-135111
Loading
/content/journals/10.1146/annurev-marine-010213-135111
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error