Rapid mass loss from the Greenland Ice Sheet has sparked interest in its glacial fjords for two main reasons: Increased submarine melting of glaciers terminating in fjords is a plausible trigger for glacier retreat, and the anomalous freshwater discharged from Greenland is transformed by fjord processes before being released into the large-scale ocean. Knowledge of the fjords' dynamics is thus key to understanding ice sheet variability and its impact on climate. Although Greenland's fjords share some commonalities with other fjords, their deep sills and deeply grounded glaciers, the presence of Atlantic and Polar Waters on the continental shelves outside the fjords' mouths, and the seasonal discharge at depth of large amounts of surface melt make them unique systems that do not fit existing paradigms. Major gaps in understanding include the interaction of the buoyancy-driven circulation (forced by the glacier) and shelf-driven circulation, and the dynamics in the near-ice zone. These must be addressed before appropriate forcing conditions can be supplied to ice sheet and ocean/climate models.

[Erratum, Closure]

An erratum has been published for this article:
The Dynamics of Greenland's Glacial Fjords and Their Role in Climate

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amundson JM, Fahnestock M, Truffer M, Brown J, Lüthi MP, Motyka RJ. 2010. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res. 115:F01005 [Google Scholar]
  2. Andresen CS, Straneo F, Ribergaard MH, Bjørk AA, Andersen TJ. et al. 2012. Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nat. Geosci. 5:37–41 [Google Scholar]
  3. Arneborg L. 2004. Turnover times for the water above sill level in Gullmar Fjord. Cont. Shelf Res. 24:443–60 [Google Scholar]
  4. Aure J, Molvær J, Stigebrandt A. 1996. Observations of inshore water exchange forced by a fluctuating offshore density field. Mar. Pollut. Bull. 33:112–19 [Google Scholar]
  5. Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E. 2012. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39:L19501 [Google Scholar]
  6. Born EW, Böcher J. 2001. The Ecology of Greenland Nuuk, Greenl.: Ilinniusiorfik
  7. Cenedese C, Linden PF. 2014. Entrainment in two coalescing axisymmetric turbulent plumes. J. Fluid Mech. 752: R2. doi: 10.1017/jfm.2014.389 [Google Scholar]
  8. Christoffersen P, Mugford RI, Heywood KJ, Joughin I, Dowdeswell JA. et al. 2011. Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere 5:701–14 [Google Scholar]
  9. Chu VW. 2014. Greenland Ice Sheet hydrology: a review. Prog. Phys. Geogr. 38:19–54 [Google Scholar]
  10. Chu VW, Smith LC, Rennermalm AK, Forster RR, Box JE, Reehy N. 2009. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol. 55:1072–82 [Google Scholar]
  11. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG. et al. 2011. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38:L18601 [Google Scholar]
  12. Cooper P, Hunt GR. 2010. The ventilated filling box containing a vertically distributed source of buoyancy. J. Fluid Mech. 646:39–58 [Google Scholar]
  13. Cottier FR, Nilsen F, Skogseth R, Tverberg V, Svendsen H, Skardhamar J. 2010. Arctic fjords: a review of the oceanographic environment and dominant physical processes. Fjord Systems and Archives JA Howe, WEN Austin, M Forwick, M Paetzel 35–50 London: Geol. Soc. Lond. [Google Scholar]
  14. Dansereau V, Heimbach P, Losch M. 2014. Simulation of subice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction. J. Geophys. Res. 119:1765–90 [Google Scholar]
  15. Das SB, Joughin I, Behn MD, Howat IM, King MA. et al. 2008. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320:984–86 [Google Scholar]
  16. Enderlin EM, Hamilton GS. 2014. Estimates of iceberg submarine melting from high-resolution digital elevation models: application to Sermilik Fjord, East Greenland. J. Glaciol. In press
  17. Enderlin EM, Howat IM. 2013. Submarine melt rates for floating termini of Greenland outlet glaciers (2000–2010). J. Glaciol. 59:67–75 [Google Scholar]
  18. Enderlin EM, Howat IM, Jeong S, Noh M-J, van Angelen JH, van den Broeke MR. 2014. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41866–72
  19. Farmer D, Freeland H. 1983. The physical oceanography of fjords. Prog. Oceanogr. 12:147–220 [Google Scholar]
  20. Gade HG. 1979. Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr. 9:189–98 [Google Scholar]
  21. Gladish CV, Holland DM, Rosing-Asvid A, Behrens JW, Boje J. 2014. Oceanic boundary conditions for Jakobshavn Glacier: part I. Variability and renewal of Ilulissat Icefjord Waters, 2001–2014. J. Phys. Oceanogr. In press. doi: 10.1175/JPO-D-14-0044.1
  22. Harden B, Straneo F, Sutherland D. 2014. Moored observations of synoptic and seasonal variability of the East Greenland Coastal Current. J. Geophys. Res. In press
  23. Heimbach P, Losch M. 2012. Adjoint sensitivities of sub-ice shelf melt rates to ocean circulation under Pine Island Ice Shelf, West Antarctica. Ann. Glaciol. 53:59–69 [Google Scholar]
  24. Hellmer HH, Olbers DJ. 1989. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci. 1:325–36 [Google Scholar]
  25. Holland DM, Jenkins A. 1999. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29:1787–800 [Google Scholar]
  26. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B. 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1:659–64 [Google Scholar]
  27. Hunt GR, Kaye NB. 2001. Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435:377–96 [Google Scholar]
  28. Inall ME, Gillibrand PA. 2010. The physics of mid-latitude fjords: a review. Fjord Systems and Archives JA Howe, WEN Austin, M Forwick, M Paetzel 17–33 London: Geol. Soc. Lond. [Google Scholar]
  29. Inall ME, Murray T, Cottier FR, Scharrer K, Boyd TJ. et al. 2014. Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland ice sheet. J. Geophys. Res. 119:631–45 [Google Scholar]
  30. Jackson RH, Straneo F, Sutherland DA. 2014. Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7:503–8 [Google Scholar]
  31. Jenkins A. 1991. A one dimensional model of ice-shelf ocean interaction. J. Geophys. Res. 96:20 671–77 [Google Scholar]
  32. Jenkins A. 1999. The impact of melting ice on ocean waters. J. Phys. Oceanogr. 29:2370–81 [Google Scholar]
  33. Jenkins A. 2011. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41:2279–94 [Google Scholar]
  34. Jenkins A, Nicholls KW, Corr HFJ. 2010. Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr. 40:2298–312 [Google Scholar]
  35. Johnson HL, Münchow A, Falkner KK, Melling H. 2011. Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res. 116:C01003 [Google Scholar]
  36. Joughin I, Smith BE, Shean DE, Floricioiu D. 2014. Brief communication: further summer speedup of Jakobshavn Isbræ. Cryosphere 8:209–14 [Google Scholar]
  37. Kader BA, Yaglom AM. 1972. Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transfer 15:2329–51 [Google Scholar]
  38. Kimura S, Holland PR, Jenkins A, Piggott M. 2014. The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr. In press. doi: 10.1175/JPO-D-13-0219.1
  39. Klinck JM, O'Brien JJ, Svendsen H. 1981. A simple model of fjord and coastal circulation interaction. J. Phys. Oceanogr. 11:1612–26 [Google Scholar]
  40. Lazier JRN. 1980. Oceanographic conditions at Ocean Weather Ship Bravo, 1964–1974. Atmos.-Ocean 18:227–38 [Google Scholar]
  41. Linden PF. 2000. Convection in the environment. Perspectives in Fluid Dynamics GK Batchelor, HK Moffat, MG Worster 289–345 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  42. Linden PF, Lane-Serff GF, Smeed DA. 1990. Emptying filling spaces: the fluid mechanics of natural ventilation. J. Fluid Mech. 212:300–35 [Google Scholar]
  43. Losch M. 2008. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. 113:C08043 [Google Scholar]
  44. MacCready P, Geyer WR. 2010. Advances in estuarine physics. Annu. Rev. Mar. Sci. 2:35–58 [Google Scholar]
  45. Mayer C, Reeh N, Jung-Rothenhäusler F, Huybrechts P, Oerter H. 2000. The subglacial cavity and implied dynamics under Nioghalvfjerdsfjorden Glacier, NE-Greenland. Geophys. Res. Lett. 27:2289–92 [Google Scholar]
  46. McPhee MG, Kottmeier C, Morison JH. 1999. Ocean heat flux in the central Weddell Sea during winter. J. Phys. Oceanogr. 29:1166–79 [Google Scholar]
  47. McPhee MG, Maykut GA, Morison JH. 1987. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res. 92:7017–31 [Google Scholar]
  48. Mellor GL, McPhee MG, Steele M. 1986. Ice–seawater turbulent boundary layer interaction with melting and freezing. J. Phys. Oceanogr. 6:1829–46 [Google Scholar]
  49. Mortensen J, Bendtsen J, Motyka RJ, Lennert K, Truffer M. et al. 2013. On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. 118:1382–95 [Google Scholar]
  50. Mortensen J, Lennert K, Bendtsen J, Rysgaard S. 2011. Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res. 116:C01013 [Google Scholar]
  51. Morton BR, Taylor GI, Turner JS. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. A 234:1–23 [Google Scholar]
  52. Motyka RJ, Hunter L, Echelmeyer KA, Connor C. 2003. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol. 36:57–65 [Google Scholar]
  53. Motyka RJ, Truffer M, Fahnestock M, Mortensen J, Rysgaard S, Howat I. 2011. Submarine melting of the 1985 Jakosbhavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res. 116:F01007 [Google Scholar]
  54. Münchow A, Padman L, Fricker HA. 2014. Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. J. Glaciol. 60:489–99 [Google Scholar]
  55. Myers PG, Kulan N, Ribergaard MH. 2007. Irminger Water variability in the West Greenland Current. Geophys. Res. Lett. 34:L17601 [Google Scholar]
  56. Oltmanns M, Straneo F, Moore GWK, Mernild SH. 2014. Strong downslope wind events in Ammassalik, SE Greenland. J. Clim. 27:977–93 [Google Scholar]
  57. Rignot E, Koppes MC, Velicogna I. 2010. Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci. 3:187–91 [Google Scholar]
  58. Schodlok MP, Menemenlis D, Rignot E, Studinger M. 2012. Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica. Ann. Glaciol. 53:156–62 [Google Scholar]
  59. Sciascia R, Cenedese C, Nicolì D, Heimbach P, Straneo F. 2014. Changes in submarine melting of a Greenland glacier induced by an intermediary circulation. J. Geophys. Res. In press
  60. Sciascia R, Straneo F, Cenedese C, Heimbach P. 2013. Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. 118:2492–506 [Google Scholar]
  61. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ. et al. 2012. A reconciled estimate of ice-sheet mass balance. Science 338:1183–89 [Google Scholar]
  62. Steele M, Mellor GL, McPhee MG. 1989. Role of the molecular sublayer in the melting or freezing of sea ice. J. Phys. Oceanogr. 19:139–47 [Google Scholar]
  63. Stigebrandt A. 1981. A mechanism governing the estuarine circulation in deep, strongly stratified fjords. Estuar Coast. Shelf Sci. 13:197–211 [Google Scholar]
  64. Stigebrandt A. 1990. On the response of the horizontal mean vertical density distribution in a fjord to low-frequency density fluctuations in the coastal water. Tellus 42:605–14 [Google Scholar]
  65. Stigebrandt A. 2012. Hydrodynamic and circulations of fjords. Encyclopedia of Lakes and Reservoirs L Bengtsson, RW Herschy, RW Fairbridge 327–44 Dordrecht, Neth: Springer [Google Scholar]
  66. Stigebrandt A, Aure J. 1990. The importance of external driving forces for the water exchange in the fjords from Skagerrak to Finnmark Rep. FO9003, Inst. Mar. Res., Bergen, Nor. (in Norwegian)
  67. Stommel H, Farmer HG. 1953. Control of salinity in an estuary by a transition. J. Mar. Res. 12:13–20 [Google Scholar]
  68. Straneo F, Curry RG, Sutherland DA, Hamilton GS, Cenedese C. et al. 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4:322–27 [Google Scholar]
  69. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F. et al. 2010. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci. 3:182–86 [Google Scholar]
  70. Straneo F, Heimbach P. 2013. North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature 504:36–43 [Google Scholar]
  71. Straneo F, Heimbach P, Sergienko O, Hamilton G, Catania G. et al. 2013. Challenges to understand the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Am. Meteorol. Soc. 94:1131–44 [Google Scholar]
  72. Straneo F, Sutherland DA, Holland D, Gladish C, Hamilton GS. et al. 2012. Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol. 53:202–10 [Google Scholar]
  73. Sutherland DA, Pickart RS. 2008. The East Greenland Coastal Current: structure, variability, and forcing. Prog. Oceanogr. 78:58–77 [Google Scholar]
  74. Sutherland DA, Straneo F. 2012. Estimating ocean heat transports and submarine melt rates in Sermilik Fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles. Ann. Glaciol. 53:50–58 [Google Scholar]
  75. Sutherland DA, Straneo F, Pickart RS. 2014. Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res. 119:3767–91 [Google Scholar]
  76. Svendsen H. 1980. Exchange processes above sill level between fjords and coastal water. Fjord Oceanography HJ Freeland, DM Farmer, CD Levings 355–62 New York: Plenum [Google Scholar]
  77. Syvitski JPM. 1989. On the deposition of sediment within glacier-influenced fjords: oceanographic controls. Mar. Geol. 85:301–29 [Google Scholar]
  78. Taylor GI. 1958. Flow induced by jets. J. Aerosp. Sci. 25:464–65 [Google Scholar]
  79. Turner JS. 1979. Buoyancy Effects in Fluids New York: Cambridge Univ. Press, 2nd ed..
  80. van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E. et al. 2009. Partitioning recent Greenland mass loss. Science 326:984–86 [Google Scholar]
  81. Vieli A, Nick FM. 2011. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys. 32:437–58 [Google Scholar]
  82. Xu Y, Rignot E, Fenty I, Menemenlis D, Flexas MM. 2013. Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett. 40:4648–53 [Google Scholar]
  83. Xu Y, Rignot E, Menemenlis D, Koppes M. 2012. Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53:229–34 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error