1932

Abstract

The biogeochemical cycles of trace elements and their isotopes (TEIs) constitute an active area of oceanographic research due to their role as essential nutrients for marine organisms and their use as tracers of oceanographic processes. Selected TEIs also provide diagnostic information about the physical, geological, and chemical processes that supply or remove solutes in the ocean. Many of these same TEIs provide information about ocean conditions in the past, as their imprint on marine sediments can be interpreted to reflect changes in ocean circulation, biological productivity, the ocean carbon cycle, and more. Other TEIs have been introduced as the result of human activities and are considered contaminants. The development and implementation of contamination-free methods for collecting and analyzing samples for TEIs revolutionized marine chemistry, revealing trace element distributions with oceanographically consistent features and new insights about the processes regulating them. Despite these advances, the volume and geographic coverage of high-quality TEI data by the end of the twentieth century were insufficient to constrain their global biogeochemical cycles. To accelerate progress in this field of research, marine geochemists developed a coordinated international effort to systematically study the marine biogeochemical cycles of TEIs—the GEOTRACES program. Following a decade of planning and implementation, GEOTRACES launched its main field effort in 2010. This review, roughly midway through the field program, summarizes the steps involved in designing the program, its management structure, and selected findings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095123
2020-01-03
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010318-095123.html?itemId=/content/journals/10.1146/annurev-marine-010318-095123&mimeType=html&fmt=ahah

Literature Cited

  1. Abadie C, Lacan F, Radic A, Pradoux C, Poitrasson F 2017. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean. PNAS 114:858–63
    [Google Scholar]
  2. Abouchami W, Galer SJG, de Baar HJW, Alderkamp AC, Middag R et al. 2011. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity. Earth Planet. Sci. Lett. 305:83–91
    [Google Scholar]
  3. Aguilar-Islas AM, Wu J, Rember R, Johansen AM, Shank LM 2010. Dissolution of aerosol-derived iron in seawater: leach solution chemistry, aerosol type, and colloidal iron fraction. Mar. Chem. 120:25–33
    [Google Scholar]
  4. Anand SS, Rengarajan R, Shenoy D, Gauns M, Naqvi SWA 2018. POC export fluxes in the Arabian Sea and the Bay of Bengal: a simultaneous 234Th/238U and 210Po/210Pb study. Mar. Chem. 198:70–87
    [Google Scholar]
  5. Anderson RF, Bacon MP, Brewer PG 1983. Removal of 230Th and 231Pa at ocean margins. Earth Planet. Sci. Lett. 66:73–90
    [Google Scholar]
  6. Anderson RF, Cheng H, Edwards RL, Fleisher MQ, Hayes CT et al. 2016. How well can we quantify dust deposition to the ocean. ? Philos. Trans. R. Soc. A 374:20150285
    [Google Scholar]
  7. Baars O, Abouchami W, Galer SJG, Boye M, Croot PL 2014. Dissolved cadmium in the Southern Ocean: distribution, speciation, and relation to phosphate. Limnol. Oceanogr. 59:385–99
    [Google Scholar]
  8. Baars O, Croot PL. 2011. The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep-Sea Res. II 58:2720–32
    [Google Scholar]
  9. Bacon MP, Anderson RF. 1982. Distribution of thorium isotopes between dissolved and particulate forms in the deep-sea. J. Geophys. Res. Oceans 87:2045–56
    [Google Scholar]
  10. Bacon MP, Spencer DW, Brewer PG 1976. 210Pb-226Ra and 210Po-210Pb disequilibria in seawater and suspended particulate matter. Earth Planet. Sci. Lett. 32:277–96
    [Google Scholar]
  11. Baker AR, Landing WM, Bucciarelli E, Cheize M, Fietz S et al. 2016. Trace element and isotope deposition across the air–sea interface: progress and research needs. Philos. Trans. R. Soc. A 374:20160190
    [Google Scholar]
  12. Basak C, Pahnke K, Frank M, Lamy F, Gersonde R 2015. Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific. Earth Planet. Sci. Lett. 419:211–21
    [Google Scholar]
  13. Behrens MK, Pahnke K, Schnetger B, Brumsack H-J 2018. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific. Geochim. Cosmochim. Acta 222:508–34
    [Google Scholar]
  14. Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM et al. 2018. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci. Data 5:180154
    [Google Scholar]
  15. Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM et al. 2018. Marine microbial metagenomes sampled across space and time. Sci. Data 5:180176
    [Google Scholar]
  16. Birchill AJ, Hartner NT, Kunde K, Siemering B, Daniels C et al. 2019. The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean. Sci. Rep. 9:1435
    [Google Scholar]
  17. Black EE, Buesseler KO, Pike SM, Lam PJ 2018. 234Th as a tracer of particulate export and remineralization in the southeastern tropical Pacific. Mar. Chem. 201:35–50
    [Google Scholar]
  18. Black EE, Lam PJ, Lee JM, Buesseler KO 2019. Insights from the 238U-234Th method into the coupling of biological export and the cycling of cadmium, cobalt, and manganese in the southeast Pacific Ocean. Glob. Biogeochem. Cycles 33:15–36
    [Google Scholar]
  19. Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN et al. 2016a. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. PNAS 113:14237–42
    [Google Scholar]
  20. Boiteau RM, Till CP, Coale TH, Fitzsimmons JN, Bruland KW, Repeta DJ 2019. Patterns of iron and siderophore distributions across the California Current System. Limnol. Oceanogr. 64:376–89
    [Google Scholar]
  21. Boiteau RM, Till CP, Ruacho A, Bundy RM, Hawco NJ et al. 2016b. Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect. Front. Mar. Sci. 3:243
    [Google Scholar]
  22. Bourne HL, Bishop JKB, Lam PJ, Ohnemus DC 2018. Global spatial and temporal variation of Cd:P in euphotic zone particulates. Glob. Biogeochem. Cycles 32:1123–41
    [Google Scholar]
  23. Bowie AR, van der Merwe P, Quéroué F, Trull T, Fourquez M et al. 2015. Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2. Biogeosciences 12:4421–45
    [Google Scholar]
  24. Bowman KL, Hammerschmidt CR, Lamborg CH, Swarr GJ 2015. Mercury in the North Atlantic Ocean: the U.S. GEOTRACES zonal and meridional sections. Deep-Sea Res. II 116:251–61
    [Google Scholar]
  25. Bowman KL, Hammerschmidt CR, Lamborg CH, Swarr GJ, Agather AM 2016. Distribution of mercury species across a zonal section of the eastern tropical South Pacific Ocean (U.S. GEOTRACES GP16). Mar. Chem. 186:156–66
    [Google Scholar]
  26. Boyd PW, Ellwood MJ. 2010. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3:675–82
    [Google Scholar]
  27. Boyd PW, Ellwood MJ, Tagliabue A, Twining BS 2017. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10:167–73
    [Google Scholar]
  28. Boyd PW, Ibisanmi E, Sander SG, Hunter KA, Jackson GA 2010. Remineralization of upper ocean particles: implications for iron biogeochemistry. Limnol. Oceanogr. 55:1271–88
    [Google Scholar]
  29. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA et al. 2007. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–17
    [Google Scholar]
  30. Boyd PW, Strzepek RF, Ellwood MJ, Hutchins DA, Nodder SD et al. 2015. Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems. ? Glob. Biogeochem. Cycles 29:1028–43
    [Google Scholar]
  31. Boyd PW, Tagliabue A. 2015. Using the L* concept to explore controls on the relationship between paired ligand and dissolved iron concentrations in the ocean. Mar. Chem. 173:52–66
    [Google Scholar]
  32. Boye M, Nishioka J, Croot P, Laan P, Timmermans KR et al. 2010. Significant portion of dissolved organic Fe complexes in fact is Fe colloids. Mar. Chem. 122:20–27
    [Google Scholar]
  33. Boyle EA, Edmond JM. 1975. Copper in surface waters south of New Zealand. Nature 253:107–9
    [Google Scholar]
  34. Boyle EA, Edmond JM, Sholkovitz ER 1977. The mechanism of iron removal in estuaries. Geochim. Cosmochim. Acta 41:1313–24
    [Google Scholar]
  35. Boyle EA, Lee J-M, Echegoyen Y, Noble A, Moos S et al. 2014. Anthropogenic lead emissions in the ocean: the evolving global experiment. Oceanography 27:169–75
    [Google Scholar]
  36. Boyle EA, Sclater F, Edmond JM 1976. On the marine geochemistry of cadmium. Nature 263:42–44
    [Google Scholar]
  37. Bratkič A, Vahčič M, Kotnik J, Vazner KO, Begu E et al. 2016. Mercury presence and speciation in the South Atlantic Ocean along the 40°S transect. Glob. Biogeochem. Cycles 30:105–19
    [Google Scholar]
  38. Bridgestock L, van de Flierdt T, Rehkämper M, Paul M, Middag R et al. 2016. Return of naturally sourced Pb to Atlantic surface waters. Nat. Commun. 7:12921
    [Google Scholar]
  39. Broecker WS, Peng TH. 1982. Tracers in the Sea Palisades, NY: Eldigio
    [Google Scholar]
  40. Browning TJ, Achterberg EP, Rapp I, Engel A, Bertrand EM et al. 2017. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551:242–46
    [Google Scholar]
  41. Bruland KW. 1980. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet. Sci. Lett. 47:176–98
    [Google Scholar]
  42. Bruland KW. 1983. Trace elements in sea water. Chemical Oceanography JP Riley, R Chester 157–220 London: Academic
    [Google Scholar]
  43. Bruland KW, Franks RP, Knauer GA, Martin JH 1979. Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea-water. Anal. Chim. Acta 105:233–45
    [Google Scholar]
  44. Bruland KW, Knauer GA, Martin JH 1978a. Cadmium in northeast Pacific waters. Limnol. Oceanogr. 23:618–25
    [Google Scholar]
  45. Bruland KW, Knauer GA, Martin JH 1978b. Zinc in northeast Pacific water. Nature 271:741–43
    [Google Scholar]
  46. Bruland KW, Middag R, Lohan MC 2014. Controls of trace metals in seawater. Treatise on Geochemistry KK Turekian, HD Holland 19–51 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  47. Brzezinski MA, Jones JL. 2015. Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean. Deep-Sea Res. II 116:79–88
    [Google Scholar]
  48. Buck CS, Aguilar-Islas A, Marsay C, Kadko D, Landing WM 2019. Trace element concentrations, elemental ratios, and enrichment factors observed in aerosol samples collected during the US GEOTRACES Eastern Pacific Ocean Transect (GP16). Chem. Geol. 511:212–24
    [Google Scholar]
  49. Buck KN, Gerringa LJA, Rijkenberg MJA 2016. An intercomparison of dissolved iron speciation at the Bermuda Atlantic Time-series Study (BATS) site: results from GEOTRACES crossover station A. Front. Mar. Sci. 3:262
    [Google Scholar]
  50. Buck KN, Lohan MC, Sander SG, Hassler C, Pižeta I 2017. Editorial: organic ligands—a key control on trace metal biogeochemistry in the ocean. Front. Mar. Sci. 4:313
    [Google Scholar]
  51. Buck KN, Moffett J, Barbeau KA, Bundy RM, Kondo Y, Wu JF 2012. The organic complexation of iron and copper: an intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) techniques. Limnol. Oceanogr. Methods 10:496–515
    [Google Scholar]
  52. Buck KN, Sedwick PN, Sohst B, Carlson CA 2018. Organic complexation of iron in the eastern tropical South Pacific: results from US GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16). Mar. Chem. 201:229–41
    [Google Scholar]
  53. Buck KN, Sohst B, Sedwick PN 2015. The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic section. Deep-Sea Res. II 116:152–65
    [Google Scholar]
  54. Bundy RM, Jiang M, Carter M, Barbeau KA 2016. Iron-binding ligands in the Southern California Current System: mechanistic studies. Front. Mar. Sci. 3:27
    [Google Scholar]
  55. Charette MA, Lam PJ, Lohan MC, Kwon EY, Hatje V et al. 2016. Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES. Philos. Trans. R. Soc. A 374:20160076
    [Google Scholar]
  56. Charette MA, Morris PJ, Henderson PB, Moore WS 2015. Radium isotope distributions during the US GEOTRACES North Atlantic cruises. Mar. Chem. 177:184–95
    [Google Scholar]
  57. Chase Z, Ellwood MJ, van de Flierdt T 2018. Discovering the ocean's past through geochemistry. Elements 14:397–402
    [Google Scholar]
  58. Chever F, Bucciarelli E, Sarthou G, Speich S, Arhan M et al. 2010. Physical speciation of iron in the Atlantic sector of the Southern Ocean along a transect from the subtropical domain to the Weddell Sea Gyre. J. Geophys. Res. Oceans 115:C10059
    [Google Scholar]
  59. Coale KH, Bruland KW. 1990. Spatial and temporal variability in copper complexation in the North Pacific. Deep-Sea Res. A 37:317–36
    [Google Scholar]
  60. Conway TM, John SG. 2014a. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Glob. Biogeochem. Cycles 28:1111–28
    [Google Scholar]
  61. Conway TM, John SG. 2014b. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511:212–15
    [Google Scholar]
  62. Conway TM, John SG. 2015. The cycling of iron, zinc and cadmium in the North East Pacific Ocean – insights from stable isotopes. Geochim. Cosmochim. Acta 164:262–83
    [Google Scholar]
  63. Cossa D, Heimbürger LE, Pérez FF, García-Ibáñez MI, Sonke JE et al. 2018a. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences 15:2309–23
    [Google Scholar]
  64. Cossa D, Heimbürger LE, Sonke JE, Planquette H, Lherminier P et al. 2018b. Sources, cycling and transfer of mercury in the Labrador Sea (Geotraces-Geovide cruise). Mar. Chem. 198:64–69
    [Google Scholar]
  65. Craig H, Turekian KK. 1980. The GEOSECS program: 1976–1979. Earth Planet. Sci. Lett. 49:263–65
    [Google Scholar]
  66. Deng F, Henderson GM, Castrillejo M, Perez FF, Steinfeldt R 2018. Evolution of 231Pa and 230Th in overflow waters of the North Atlantic. Biogeosciences 15:7299–313
    [Google Scholar]
  67. Deng F, Thomas AL, Rijkenberg MJA, Henderson GM 2014. Controls on seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep waters in the Southwest Atlantic. Earth Planet. Sci. Lett. 390:93–102
    [Google Scholar]
  68. Dulaquais G, Boye M, Middag R, Owens S, Puigcorbe V et al. 2014a. Contrasting biogeochemical cycles of cobalt in the surface western Atlantic Ocean. Glob. Biogeochem. Cycles 28:2014GB004903
    [Google Scholar]
  69. Dulaquais G, Boye M, Rijkenberg MJA, Carton X 2014b. Physical and remineralization processes govern the cobalt distribution in the deep western Atlantic Ocean. Biogeosciences 11:1561–80
    [Google Scholar]
  70. Dutay JC, Tagliabue A, Kriest I, van Hulten MMP 2015. Modelling the role of marine particle on large scale 231Pa, 230Th, iron and aluminium distributions. Prog. Oceanogr. 133:66–72
    [Google Scholar]
  71. Ellwood MJ, Bowie AR, Baker A, Gault‐Ringold M, Hassler C et al. 2018. Insights into the biogeochemical cycling of iron, nitrate, and phosphate across a 5,300 km South Pacific zonal section (153°E–150°W). Glob. Biogeochem. Cycles 32:187–207
    [Google Scholar]
  72. Ellwood MJ, Hunter KA. 2000. The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana. Limnol. . Oceanogr 45:1517–24
    [Google Scholar]
  73. Ellwood MJ, Hutchins DA, Lohan MC, Milne A, Nasemann P et al. 2015. Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. PNAS 112:E15–20
    [Google Scholar]
  74. Fishwick MP, Sedwick PN, Lohan MC, Worsfold PJ, Buck KN et al. 2014. The impact of changing surface ocean conditions on the dissolution of aerosol iron. Glob. Biogeochem. Cycles 28:1235–50
    [Google Scholar]
  75. Fishwick MP, Ussher SJ, Sedwick PN, Lohan MC, Worsfold PJ et al. 2018. Impact of surface ocean conditions and aerosol provenance on the dissolution of aerosol manganese, cobalt, nickel and lead in seawater. Mar. Chem. 198:28–43
    [Google Scholar]
  76. Fitzsimmons JN, Boyle EA. 2014. Both soluble and colloidal iron phases control dissolved iron variability in the tropical North Atlantic Ocean. Geochim. Cosmochim. Acta 125:539–50
    [Google Scholar]
  77. Fitzsimmons JN, Bundy RM, Al-Subiai SN, Barbeau KA, Boyle EA 2015a. The composition of dissolved iron in the dusty surface ocean: an exploration using size-fractionated iron-binding ligands. Mar. Chem. 173:125–35
    [Google Scholar]
  78. Fitzsimmons JN, Carrasco GG, Wu J, Roshan S, Hatta M et al. 2015b. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep-Sea Res. II 116:130–51
    [Google Scholar]
  79. Fitzsimmons JN, Hayes CT, Al-Subiai SN, Zhang R, Morton PL et al. 2015c. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 171:303–24
    [Google Scholar]
  80. Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas SL et al. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat. Geosci. 10:195–201
    [Google Scholar]
  81. Frants M, Holzer M, DeVries T, Matear R 2016. Constraints on the global marine iron cycle from a simple inverse model. J. Geophys. Res. Biogeosci. 121:28–51
    [Google Scholar]
  82. Garcia-Solsona E, Jeandel C, Labatut M, Lacan F, Vance D et al. 2014. Rare earth elements and Nd isotopes tracing water mass mixing and particle-seawater interactions in the SE Atlantic. Geochim. Cosmochim. Acta 125:351–72
    [Google Scholar]
  83. Gardner WD, Richardson MJ, Mishonov AV 2018a. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics. Earth Planet. Sci. Lett. 482:126–34
    [Google Scholar]
  84. Gardner WD, Richardson MJ, Mishonov AV, Biscaye PE 2018b. Global comparison of benthic nepheloid layers based on 52 years of nephelometer and transmissometer measurements. Prog. Oceanogr. 168:100–11
    [Google Scholar]
  85. Geibert W. 2018. Processes that regulate trace element distribution in the ocean. Elements 14:391–96
    [Google Scholar]
  86. GEOTRACES Plan. Group 2006. GEOTRACES Science Plan Baltimore, MD: Sci. Comm. Ocean. Res.
    [Google Scholar]
  87. German CR, Casciotti KA, Dutay JC, Heimbürger LE, Jenkins WJ et al. 2016. Hydrothermal impacts on trace element and isotope ocean biogeochemistry. Philos. Trans. R. Soc. A 374:20160035
    [Google Scholar]
  88. German CR, Fleer AP, Bacon MP, Edmond JM 1991. Hydrothermal scavenging at the Mid-Atlantic Ridge: radionuclide distributions. Earth Planet. Sci. Lett. 105:170–81
    [Google Scholar]
  89. Gerringa LJA, Rijkenberg MJA, Schoemann V, Laan P, de Baar HJW 2015. Organic complexation of iron in the West Atlantic Ocean. Mar. Chem. 177:434–46
    [Google Scholar]
  90. Gerringa LJA, Slagter HA, Bown J, van Haren H, Laan P et al. 2017. Dissolved Fe and Fe-binding organic ligands in the Mediterranean Sea – GEOTRACES G04. Mar. Chem. 194:100–13
    [Google Scholar]
  91. Gledhill M, Buck K. 2012. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3:69
    [Google Scholar]
  92. Grasse P, Bosse L, Hathorne EC, Böning P, Pahnke K, Frank M 2017. Short-term variability of dissolved rare earth elements and neodymium isotopes in the entire water column of the Panama Basin. Earth Planet. Sci. Lett. 475:242–53
    [Google Scholar]
  93. Hatje V, Bruland KW, Flegal AR 2016. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environ. Sci. Technol. 50:4159–68
    [Google Scholar]
  94. Hatta M, Measures CI, Wu J, Roshan S, Fitzsimmons JN et al. 2015. An overview of dissolved Fe and Mn distributions during the 2010–2011 U.S. GEOTRACES North Atlantic cruises: GEOTRACES GA03. Deep-Sea Res. II 116:117–29
    [Google Scholar]
  95. Hawco NJ, Lam PJ, Lee J-M, Ohnemus DC, Noble AE et al. 2018. Cobalt scavenging in the mesopelagic ocean and its influence on global mass balance: synthesizing water column and sedimentary fluxes. Mar. Chem. 201:151–66
    [Google Scholar]
  96. Hawco NJ, Ohnemus DC, Resing JA, Twining BS, Saito MA 2016. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific. Biogeosciences 13:5697–717
    [Google Scholar]
  97. Hayes CT, Anderson RF, Cheng H, Conway TM, Edwards RL et al. 2018a. Replacement times of a spectrum of elements in the North Atlantic based on thorium supply. Glob. Biogeochem. Cycles 32:1294–311
    [Google Scholar]
  98. Hayes CT, Anderson RF, Fleisher MQ, Huang K-F, Robinson LF et al. 2015a. 230Th and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic Transect, and implications for modern and paleoceanographic chemical fluxes. Deep-Sea Res. II 116:29–41
    [Google Scholar]
  99. Hayes CT, Anderson RF, Fleisher MQ, Serno S, Winckler G, Gersonde R 2013. Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes. Earth Planet. Sci. Lett. 383:16–25
    [Google Scholar]
  100. Hayes CT, Black EE, Anderson RF, Baskaran M, Buesseler KO et al. 2018b. Flux of particulate elements in the North Atlantic Ocean constrained by multiple radionuclides. Glob. Biogeochem. Cycles 32:1738–58
    [Google Scholar]
  101. Hayes CT, Fitzsimmons JN, Boyle EA, McGee D, Anderson RF et al. 2015b. Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 169:1–16
    [Google Scholar]
  102. Heimbürger L-E, Sonke JE, Cossa D, Point D, Lagane C et al. 2015. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Sci. Rep. 5:10318
    [Google Scholar]
  103. Heller MI, Croot PL. 2015. Copper speciation and distribution in the Atlantic sector of the Southern Ocean. Mar. Chem. 173:253–68
    [Google Scholar]
  104. Heller MI, Lam PJ, Moffett JW, Till CP, Lee J-M et al. 2017. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation. Geochim. Cosmochim. Acta 211:174–93
    [Google Scholar]
  105. Henderson GM. 2002. New oceanic proxies for paleoclimate. Earth Planet. Sci. Lett. 203:1–13
    [Google Scholar]
  106. Henderson GM, Anderson RF. 2003. The U-series toolbox for paleoceanography. Rev. Mineral. Geochem. 52:493–529
    [Google Scholar]
  107. Holzer M, Brzezinski MA. 2015. Controls on the silicon isotope distribution in the ocean: new diagnostics from a data-constrained model. Glob. Biogeochem. Cycles 29:267–87
    [Google Scholar]
  108. Horner TJ, Kinsley CW, Nielsen SG 2015. Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation. Earth Planet. Sci. Lett. 430:511–22
    [Google Scholar]
  109. Hsieh Y-T, Henderson GM. 2017. Barium stable isotopes in the global ocean: tracer of Ba inputs and utilization. Earth Planet. Sci. Lett. 473:269–78
    [Google Scholar]
  110. Hsieh Y-T, Henderson GM, Thomas AL 2011. Combining seawater 232Th and 230Th concentrations to determine dust fluxes to the surface ocean. Earth Planet. Sci. Lett. 312:280–90
    [Google Scholar]
  111. Hutchins DA, Boyd PW. 2016. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change 6:1072–79
    [Google Scholar]
  112. Jacquot JE, Moffett JW. 2015. Copper distribution and speciation across the international GEOTRACES section GA03. Deep-Sea Res. II 116:187–207
    [Google Scholar]
  113. Janssen DJ, Abouchami W, Galer SJG, Purdon KB, Cullen JT 2019. Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink. Earth Planet. Sci. Lett. 515:67–78
    [Google Scholar]
  114. Janssen DJ, Conway TM, John SG, Christian JR, Kramer DI et al. 2014. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. PNAS 111:6888–93
    [Google Scholar]
  115. Jeandel C. 2016. Overview of the mechanisms that could explain the ‘boundary exchange’ at the land-ocean contact. Philos. Trans. R. Soc. A 374:20150287
    [Google Scholar]
  116. Jeandel C, Vance D. 2018. New tools, new discoveries in marine geochemistry. Elements 14:379–84
    [Google Scholar]
  117. Jenkins WJ, Lott DE, German CR, Cahill KL, Goudreau J, Longworth B 2018. The deep distributions of helium isotopes, radiocarbon, and noble gases along the U.S. GEOTRACES East Pacific Zonal Transect (GP16). Mar. Chem. 201:167–82
    [Google Scholar]
  118. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71
    [Google Scholar]
  119. Jickells TD, Baker AR, Chance R 2016. Atmospheric transport of trace elements and nutrients to the oceans. Philos. Trans. R. Soc. A 374:20150286
    [Google Scholar]
  120. Jickells TD, Moore CM. 2015. The importance of atmospheric deposition for ocean productivity. Annu. Rev. Ecol. Evol. Syst. 46:481–501
    [Google Scholar]
  121. John SG, Conway TM. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet. Sci. Lett. 394:159–67
    [Google Scholar]
  122. John SG, Helgoe J, Townsend E, Weber T, DeVries T et al. 2018. Biogeochemical cycling of Fe and Fe stable isotopes in the eastern tropical South Pacific. Mar. Chem. 201:66–76
    [Google Scholar]
  123. Kadko D, Aguilar-Islas A, Bolt C, Buck CS, Fitzsimmons JN et al. 2019. The residence times of trace elements determined in the surface Arctic Ocean during the 2015 US Arctic GEOTRACES expedition. Mar. Chem. 208:56–69
    [Google Scholar]
  124. Kadko D, Landing WM, Shelley RU 2015. A novel tracer technique to quantify the atmospheric flux of trace elements to remote ocean regions. J. Geophys. Res. Oceans 120:848–58
    [Google Scholar]
  125. Kim T, Obata H, Kondo Y, Ogawa H, Gamo T 2015. Distribution and speciation of dissolved zinc in the western North Pacific and its adjacent seas. Mar. Chem. 173:330–41
    [Google Scholar]
  126. Kim T, Obata H, Nishioka J, Gamo T 2017. Distribution of dissolved zinc in the western and central subarctic North Pacific. Glob. Biogeochem. Cycles 31:1454–68
    [Google Scholar]
  127. Kipp LE, Sanial V, Henderson PB, van Beek P, Reyss J-L et al. 2018. Radium isotopes as tracers of hydrothermal inputs and neutrally buoyant plume dynamics in the deep ocean. Mar. Chem. 201:51–65
    [Google Scholar]
  128. Klunder MB, Laan P, Middag R, de Baar HJW, Ooijen JV 2011. Dissolved iron in the Southern Ocean (Atlantic sector). Deep-Sea Res. II 58:2678–94
    [Google Scholar]
  129. Labatut M, Lacan F, Pradoux C, Chmeleff J, Radic A et al. 2014. Iron sources and dissolved-particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives. Glob. Biogeochem. Cycles 28:1044–65
    [Google Scholar]
  130. Lam PJ, Ohnemus DC, Auro ME 2015. Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect. Deep-Sea Res. II 116:303–20
    [Google Scholar]
  131. Lambelet M, van de Flierdt T, Butler ECV, Bowie AR, Rintoul SR et al. 2018. The neodymium isotope fingerprint of Adélie Coast Bottom Water. Geophys. Res. Lett. 45:11247–56
    [Google Scholar]
  132. Lambelet M, van de Flierdt T, Crocket K, Rehkämper M, Kreissig K et al. 2016. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section. Geochim. Cosmochim. Acta 177:1–29
    [Google Scholar]
  133. Lamborg C, Bowman K, Hammerschmidt C, Gilmour C, Munson K et al. 2014. Mercury in the Anthropocene ocean. Oceanography 27:176–87
    [Google Scholar]
  134. Lee J-M, Heller MI, Lam PJ 2018. Size distribution of particulate trace elements in the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar. Chem. 201:108–23
    [Google Scholar]
  135. Lemaitre N, Planchon F, Planquette H, Dehairs F, Fonseca-Batista D et al. 2018. High variability of particulate organic carbon export along the North Atlantic GEOTRACES section GA01 as deduced from 234Th fluxes. Biogeosciences 15:6417–37
    [Google Scholar]
  136. Lerner P, Marchal O, Lam PJ, Buesseler K, Charette M 2017. Kinetics of thorium and particle cycling along the U.S. GEOTRACES North Atlantic Transect. Deep-Sea Res. I 125:106–28
    [Google Scholar]
  137. Lerner P, Marchal O, Lam PJ, Solow A 2018. Effects of particle composition on thorium scavenging in the North Atlantic. Geochim. Cosmochim. Acta 233:115–34
    [Google Scholar]
  138. Lis H, Shaked Y, Kranzler C, Keren N, Morel FMM 2015. Iron bioavailability to phytoplankton: an empirical approach. ISME J 9:1003–13
    [Google Scholar]
  139. Lohan MC, Buck KN, Sander SG 2015. Organic ligands—a key control on trace metal biogeochemistry in the oceans. Mar. Chem. 173:1–2
    [Google Scholar]
  140. Lohan MC, Tagliabue A. 2018. Oceanic micronutrients: trace metals that are essential for marine life. Elements 14:385–90
    [Google Scholar]
  141. Lusty PAJ, Murton BJ. 2018. Deep-ocean mineral deposits: metal resources and windows into earth processes. Elements 14:301–6
    [Google Scholar]
  142. Mackey KRM, Post AF, McIlvin MR, Cutter GA, John SG, Saito MA 2015. Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation. PNAS 112:9944–49
    [Google Scholar]
  143. Marconi D, Sigman DM, Casciotti KL, Campbell EC, Weigand MA et al. 2017. Tropical dominance of N2 fixation in the North Atlantic Ocean. Glob. Biogeochem. Cycles 31:1608–23
    [Google Scholar]
  144. Marconi D, Weigand MA, Rafter PA, McIlvin MR, Forbes M et al. 2015. Nitrate isotope distributions on the US GEOTRACES North Atlantic cross-basin section: signals of polar nitrate sources and low latitude nitrogen cycling. Mar. Chem. 177:143–56
    [Google Scholar]
  145. Marconi D, Weigand MA, Sigman DM 2019. Nitrate isotopic gradients in the North Atlantic Ocean and the nitrogen isotopic composition of sinking organic matter. Deep-Sea Res. I 145:109–24
    [Google Scholar]
  146. Marsay CM, Lam PJ, Heller MI, Lee J-M, John SG 2018. Distribution and isotopic signature of ligand-leachable particulate iron along the GEOTRACES GP16 East Pacific Zonal Transect. Mar. Chem. 201:198–211
    [Google Scholar]
  147. Martin TS, Primeau F, Casciotti KL 2019. Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D inverse N cycle model. Biogeosciences 16:347–67
    [Google Scholar]
  148. Mason RP, Hammerschmidt CR, Lamborg CH, Bowman KL, Swarr GJ, Shelley RU 2017. The air-sea exchange of mercury in the low latitude Pacific and Atlantic Oceans. Deep-Sea Res. I 122:17–28
    [Google Scholar]
  149. Mawji E, Gledhill M, Milton JA, Tarran GA, Ussher S et al. 2008. Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ. Sci. Technol. 42:8675–80
    [Google Scholar]
  150. Measures C, Hatta M, Fitzsimmons J, Morton P 2015. Dissolved Al in the zonal N Atlantic section of the US GEOTRACES 2010/2011 cruises and the importance of hydrothermal inputs. Deep-Sea Res. II 116:176–86
    [Google Scholar]
  151. Measures CI, Landing WM, Brown MT, Buck CS 2008. High-resolution Al and Fe data from the Atlantic Ocean CLIVAR-CO2 repeat hydrography A16N transect: extensive linkages between atmospheric dust and upper ocean geochemistry. Glob. Biogeochem. Cycles 22:GB1005
    [Google Scholar]
  152. Middag R, de Baar HJW, Bruland KW 2019. The relationships between dissolved zinc and major nutrients phosphate and silicate along the GEOTRACES GA02 transect in the West Atlantic Ocean. Glob. Biogeochem. Cycles 33:63–84
    [Google Scholar]
  153. Middag R, van Heuven SMAC, Bruland KW, de Baar HJW 2018. The relationship between cadmium and phosphate in the Atlantic Ocean unravelled. Earth Planet. Sci. Lett. 492:79–88
    [Google Scholar]
  154. Middag R, van Hulten MMP, Van Aken HM, Rijkenberg MJA, Gerringa LJA et al. 2015. Dissolved aluminium in the ocean conveyor of the West Atlantic Ocean: effects of the biological cycle, scavenging, sediment resuspension and hydrography. Mar. Chem. 177:69–86
    [Google Scholar]
  155. Middag R, van Slooten C, de Baar HJW, Laan P 2011. Dissolved aluminium in the Southern Ocean. Deep-Sea Res. II 58:2647–60
    [Google Scholar]
  156. Milne A, Schlosser C, Wake BD, Achterberg EP, Chance R et al. 2017. Particulate phases are key in controlling dissolved iron concentrations in the (sub)tropical North Atlantic. Geophys. Res. Lett. 44:2377–87
    [Google Scholar]
  157. Moore CM. 2016. Diagnosing oceanic nutrient deficiency. Philos. Trans. R. Soc. A 374:20150290
    [Google Scholar]
  158. Moore CM, Mills MM, Achterberg EP, Geider RJ, LaRoche J et al. 2009. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosci. 2:867–71
    [Google Scholar]
  159. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10
    [Google Scholar]
  160. Moos SB, Boyle EA. 2019. Determination of accurate and precise chromium isotope ratios in seawater samples by MC-ICP-MS illustrated by analysis of SAFe Station in the North Pacific Ocean. Chem. Geol. 511:481–93
    [Google Scholar]
  161. Morel FMM, Price NM. 2003. The biogeochemical cycles of trace metals in the oceans. Science 300:944–47
    [Google Scholar]
  162. Niedermiller J, Baskaran M. 2019. Comparison of the scavenging intensity, remineralization and residence time of 210Po and 210Pb at key zones (biotic, sediment-water and hydrothermal) along the East Pacific GEOTRACES transect. J. Environ. Radioact. 198:165–88
    [Google Scholar]
  163. Nishioka J, Obata H. 2017. Dissolved iron distribution in the western and central subarctic Pacific: HNLC water formation and biogeochemical processes. Limnol. Oceanogr. 62:2004–22
    [Google Scholar]
  164. Noble AE, Echegoyen-Sanz Y, Boyle EA, Ohnemus DC, Lam PJ et al. 2015. Dynamic variability of dissolved Pb and Pb isotope composition from the U.S. North Atlantic GEOTRACES transect. Deep-Sea Res. II 116:208–25
    [Google Scholar]
  165. Noble AE, Lamborg CH, Ohnemus DC, Lam PJ, Goepfert TJ et al. 2012. Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic Ocean. Limnol. Oceanogr. 57:989–1010
    [Google Scholar]
  166. Noble AE, Ohnemus DC, Hawco NJ, Lam PJ, Saito MA 2017. Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03. Biogeosciences 14:2715–39
    [Google Scholar]
  167. Ohnemus DC, Rauschenberg S, Cutter GA, Fitzsimmons JN, Sherrell RM, Twining BS 2017. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones. Limnol. Oceanogr. 62:3–25
    [Google Scholar]
  168. Owens SA, Pike S, Buesseler KO 2015. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep-Sea Res. II 116:42–59
    [Google Scholar]
  169. Pavia FJ, Anderson RF, Black EE, Kipp LE, Vivancos SM et al. 2019. Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th. Earth Planet. Sci. Lett. 506:146–56
    [Google Scholar]
  170. Pavia FJ, Anderson RF, Lam PJ, Cael BB, Vivancos SM et al. 2019. Shallow particulate organic carbon regeneration in the South Pacific Ocean. PNAS 116:9753–58
    [Google Scholar]
  171. Pavia FJ, Anderson RF, Vivancos S, Fleisher MQ, Lam PJ et al. 2018. Intense hydrothermal scavenging of 230Th and 231Pa in the deep Southeast Pacific. Mar. Chem. 201:212–28
    [Google Scholar]
  172. Pedreira RMA, Pahnke K, Böning P, Hatje V 2018. Tracking hospital effluent-derived gadolinium in Atlantic coastal waters off Brazil. Water Res 145:62–72
    [Google Scholar]
  173. Peters BD, Lam PJ, Casciotti KL 2018. Nitrogen and oxygen isotope measurements of nitrate along the US GEOTRACES Eastern Pacific Zonal Transect (GP16) yield insights into nitrate supply, remineralization, and water mass transport. Mar. Chem. 201:137–50
    [Google Scholar]
  174. Pham ALD, Ito T. 2018. Formation and maintenance of the GEOTRACES subsurface-dissolved iron maxima in an ocean biogeochemistry model. Glob. Biogeochem. Cycles 32:932–53
    [Google Scholar]
  175. Planchon F, Ballas D, Cavagna AJ, Bowie AR, Davies D et al. 2015. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences 12:3831–48
    [Google Scholar]
  176. Puigcorbé V, Roca-Martí M, Masqué P, Benitez-Nelson CR, Rutgers van der Loeff M et al. 2017. Particulate organic carbon export across the Antarctic Circumpolar Current at 10°E: differences between north and south of the Antarctic Polar Front. Deep-Sea Res. II 138:86–101
    [Google Scholar]
  177. Quay P, Cullen J, Landing W, Morton P 2015. Processes controlling the distributions of Cd and PO4 in the ocean. Glob. Biogeochem. Cycles 29:830–41
    [Google Scholar]
  178. Quay P, Wu J. 2015. Impact of end-member mixing on depth distributions of δ13C, cadmium and nutrients in the N. Atlantic Ocean. Deep-Sea Res. II 116:107–16
    [Google Scholar]
  179. Ratten J-M, LaRoche J, Desai DK, Shelley RU, Landing WM et al. 2015. Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic. Deep-Sea Res. II 116:332–41
    [Google Scholar]
  180. Rempfer J, Stocker TF, Joos F, Lippold J, Jaccard SL 2017. New insights into cycling of 231Pa and 230Th in the Atlantic Ocean. Earth Planet. Sci. Lett. 468:27–37
    [Google Scholar]
  181. Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW et al. 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523:200–3
    [Google Scholar]
  182. Revels BN, Ohnemus DC, Lam PJ, Conway TM, John SG 2015. The isotopic signature and distribution of particulate iron in the North Atlantic Ocean. Deep-Sea Res. II 116:321–31
    [Google Scholar]
  183. Rigaud S, Stewart G, Baskaran M, Marsan D, Church T 2015. 210Po and 210Pb distribution, dissolved-particulate exchange rates, and particulate export along the North Atlantic US GEOTRACES GA03 section. Deep-Sea Res. II 116:60–78
    [Google Scholar]
  184. Rijkenberg MJA, Middag R, Laan P, Gerringa LJA, van Aken HM et al. 2014. The distribution of dissolved iron in the West Atlantic Ocean. PLOS ONE 9:e101323
    [Google Scholar]
  185. Roshan S, DeVries T, Wu J, Chen G 2018. The internal cycling of zinc in the ocean. Glob. Biogeochem. Cycles 32:1833–49
    [Google Scholar]
  186. Roshan S, Wu J. 2015a. Cadmium regeneration within the North Atlantic. Glob. Biogeochem. Cycles 29:2082–94
    [Google Scholar]
  187. Roshan S, Wu J. 2015b. The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect. Mar. Chem. 176:189–98
    [Google Scholar]
  188. Roshan S, Wu J. 2015c. Water mass mixing: the dominant control on the zinc distribution in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29:1060–74
    [Google Scholar]
  189. Roshan S, Wu J, DeVries T 2017. Controls on the cadmium-phosphate relationship in the tropical South Pacific. Glob. Biogeochem. Cycles 31:1516–27
    [Google Scholar]
  190. Roshan S, Wu J, Jenkins WJ 2016. Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific. Mar. Chem. 183:25–32
    [Google Scholar]
  191. Rousseau TCC, Sonke JE, Chmeleff J, van Beek P, Souhaut M et al. 2015. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary. Nat. Commun. 6:7592
    [Google Scholar]
  192. Saito MA, McIlvin MR, Moran DM, Goepfert TJ, DiTullio GR et al. 2014. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345:1173–77
    [Google Scholar]
  193. Saito MA, Noble AE, Hawco N, Twining BS, Ohnemus DC et al. 2017. The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean. Biogeosciences 14:4637–62
    [Google Scholar]
  194. Saito MA, Rocap G, Moffett JW 2005. Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol. Oceanogr. 50:279–90
    [Google Scholar]
  195. Samanta M, Ellwood MJ, Sinoir M, Hassler CS 2017. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Mar. Chem. 192:1–12
    [Google Scholar]
  196. Samanta S, Dalai TK. 2016. Dissolved and particulate barium in the Ganga (Hooghly) River estuary, India: solute-particle interactions and the enhanced dissolved flux to the oceans. Geochim. Cosmochim. Acta 195:1–28
    [Google Scholar]
  197. Samanta S, Dalai TK. 2018. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: global importance of solute-particle interaction and enhanced metal fluxes to the oceans. Geochim. Cosmochim. Acta 228:243–58
    [Google Scholar]
  198. Sanial V, Kipp LE, Henderson PB, van Beek P, Reyss JL et al. 2018. Radium-228 as a tracer of dissolved trace element inputs from the Peruvian continental margin. Mar. Chem. 201:20–34
    [Google Scholar]
  199. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60
    [Google Scholar]
  200. Scheiderich K, Amini M, Holmden C, Francois R 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth Planet. Sci. Lett. 423:87–97
    [Google Scholar]
  201. Schlitzer R, Anderson RF, Masferrer-Dodas E, Lohan M, Geibert W et al. 2018. The GEOTRACES Intermediate Data Product 2017. Chem. Geol. 493:210–23
    [Google Scholar]
  202. Shelley RU, Landing WM, Ussher SJ, Planquette H, Sarthou G 2018. Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach. Biogeosciences 15:2271–88
    [Google Scholar]
  203. Shelley RU, Morton PL, Landing WM 2015. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep-Sea Res. II 116:262–72
    [Google Scholar]
  204. Shelley RU, Roca-Martí M, Castrillejo M, Masqué P, Landing WM et al. 2017. Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean (>40°N; GEOVIDE, GEOTRACES GA01) during spring 2014. Deep-Sea Res. I 119:34–49
    [Google Scholar]
  205. Sholkovitz ER, Sedwick PN, Church TM, Baker AR, Powell CF 2012. Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Acta 89:173–89
    [Google Scholar]
  206. Sigman DM, Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–69
    [Google Scholar]
  207. Singh SP, Singh SK, Bhushan R 2013. Internal cycling of dissolved barium in water column of the Bay of Bengal. Mar. Chem. 154:12–23
    [Google Scholar]
  208. Singh SP, Singh SK, Goswami V, Bhushan R, Rai VK 2012. Spatial distribution of dissolved neodymium and εNd in the Bay of Bengal: role of particulate matter and mixing of water masses. Geochim. Cosmochim. Acta 94:38–56
    [Google Scholar]
  209. Sinoir M, Ellwood MJ, Butler ECV, Bowie AR, Mongin M, Hassler CS 2016. Zinc cycling in the Tasman Sea: distribution, speciation and relation to phytoplankton community. Mar. Chem. 182:25–37
    [Google Scholar]
  210. Stichel T, Hartman AE, Duggan B, Goldstein SL, Scher H, Pahnke K 2015. Separating biogeochemical cycling of neodymium from water mass mixing in the Eastern North Atlantic. Earth Planet. Sci. Lett. 412:245–60
    [Google Scholar]
  211. Stichel T, Pahnke K, Duggan B, Goldstein SL, Hartman AE et al. 2018. TAG plume: revisiting the hydrothermal neodymium contribution to seawater. Front. Mar. Sci. 5:96
    [Google Scholar]
  212. Sunda WG. 1997. Control of dissolved iron concentrations in the world ocean: a comment. Mar. Chem. 57:169–72
    [Google Scholar]
  213. Sunda WG. 2012. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol. 3:204
    [Google Scholar]
  214. Tachikawa K, Arsouze T, Bayon G, Bory A, Colin C et al. 2017. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene ocean revealed from seawater and archive data. Chem. Geol. 457:131–48
    [Google Scholar]
  215. Tagliabue A, Aumont O, Bopp L 2014a. The impact of different external sources of iron on the global carbon cycle. Geophys. Res. Lett. 41:920–26
    [Google Scholar]
  216. Tagliabue A, Aumont O, DeAth R, Dunne JP, Dutkiewicz S et al. 2016. How well do global ocean biogeochemistry models simulate dissolved iron distributions. ? Glob. Biogeochem. Cycles 30:149–74
    [Google Scholar]
  217. Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA 2017. The integral role of iron in ocean biogeochemistry. Nature 543:51–59
    [Google Scholar]
  218. Tagliabue A, Hawco NJ, Bundy RM, Landing WM, Milne A et al. 2018. The role of external inputs and internal cycling in shaping the global ocean cobalt distribution: insights from the first cobalt biogeochemical model. Glob. Biogeochem. Cycles 32:594–616
    [Google Scholar]
  219. Tagliabue A, Resing J. 2016. Impact of hydrothermalism on the ocean iron cycle. Philos. Trans. R. Soc. A 374:20150291
    [Google Scholar]
  220. Tagliabue A, Williams RG, Rogan N, Achterberg EP, Boyd PW 2014b. A ventilation-based framework to explain the regeneration-scavenging balance of iron in the ocean. Geophys. Res. Lett. 41:7227–36
    [Google Scholar]
  221. Thompson CM, Ellwood MJ, Sander SG 2014. Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean. Mar. Chem. 164:84–94
    [Google Scholar]
  222. Tuerena RE, Ganeshram RS, Geibert W, Fallick AE, Dougans J et al. 2015. Nutrient cycling in the Atlantic basin: the evolution of nitrate isotope signatures in water masses. Glob. Biogeochem. Cycles 29:1830–44
    [Google Scholar]
  223. Twining BS, Baines SB. 2013. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5:191–215
    [Google Scholar]
  224. Twining BS, Nodder SD, King AL, Hutchins DA, LeCleir GR et al. 2014. Differential remineralization of major and trace elements in sinking diatoms. Limnol. Oceanogr. 59:689–704
    [Google Scholar]
  225. Twining BS, Rauschenberg S, Morton PL, Vogt S 2015. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean. Prog. Oceanogr. 137:261–83
    [Google Scholar]
  226. van Hulten MMP, Dutay JC, Roy-Barman M 2018. A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO-ProThorP 0.1). Geosci. Model. Dev. 11:3537–56
    [Google Scholar]
  227. van Hulten MMP, Sterl A, Middag R, de Baar HJW, Gehlen M et al. 2014. On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences 11:3757–79
    [Google Scholar]
  228. van Hulten MMP, Sterl A, Tagliabue A, Dutay JC, Gehlen M et al. 2013. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises. J. Mar. Syst. 126:3–23
    [Google Scholar]
  229. Vance D, Little SH, de Souza GF, Khatiwala S, Lohan MC, Middag R 2017. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nat. Geosci. 10:202–6
    [Google Scholar]
  230. Velasquez IB, Ibisanmi E, Maas EW, Boyd PW, Nodder S, Sander SG 2016. Ferrioxamine siderophores detected amongst iron binding ligands produced during the remineralization of marine particles. Front. Mar. Sci. 3:172
    [Google Scholar]
  231. Völker C, Tagliabue A. 2015. Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model. Mar. Chem. 173:67–77
    [Google Scholar]
  232. von der Heyden BP, Roychoudhury AN 2015. A review of colloidal iron partitioning and distribution in the open ocean. Mar. Chem. 177:9–19
    [Google Scholar]
  233. von der Heyden BP, Roychoudhury AN, Mtshali TN, Tyliszczak T, Myneni SCB 2012. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean. Science 338:1199–201
    [Google Scholar]
  234. Weber T, John S, Tagliabue A, DeVries T 2018. Biological uptake and reversible scavenging of zinc in the global ocean. Science 361:72–76
    [Google Scholar]
  235. Whitby H, Posacka AM, Maldonado MT, van den Berg CMG 2018. Copper-binding ligands in the NE Pacific. Mar. Chem. 204:36–48
    [Google Scholar]
  236. Wozniak AS, Shelley RU, McElhenie SD, Landing WM, Hatcher PG 2015. Aerosol water soluble organic matter characteristics over the North Atlantic Ocean: implications for iron-binding ligands and iron solubility. Mar. Chem. 173:162–72
    [Google Scholar]
  237. Wozniak AS, Shelley RU, Sleighter RL, Abdulla HAN, Morton PL et al. 2013. Relationships among aerosol water soluble organic matter, iron and aluminum in European, North African, and marine air masses from the 2010 US GEOTRACES cruise. Mar. Chem. 154:24–33
    [Google Scholar]
  238. Wozniak AS, Willoughby AS, Gurganus SC, Hatcher PG 2014. Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise. Atmos. Chem. Phys. 14:8419–34
    [Google Scholar]
  239. Wyatt NJ, Milne A, Woodward EMS, Rees AP, Browning TJ et al. 2014. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S. Glob. Biogeochem. Cycles 28:44–56
    [Google Scholar]
  240. Xie RC, Galer SJG, Abouchami W, Rijkenberg MJA, De Jong J et al. 2015. The cadmium–phosphate relationship in the western South Atlantic—the importance of mode and intermediate waters on the global systematics. Mar. Chem. 177:110–23
    [Google Scholar]
  241. Zheng X-Y, Plancherel Y, Saito MA, Scott PM, Henderson GM 2016. Rare earth elements (REEs) in the tropical South Atlantic and quantitative deconvolution of their non-conservative behavior. Geochim. Cosmochim. Acta 177:217–37
    [Google Scholar]
  242. Zurbrick CM, Boyle EA, Kayser RJ, Reuer MK, Wu J et al. 2018. Dissolved Pb and Pb isotopes in the North Atlantic from the GEOVIDE transect (GEOTRACES GA-01) and their decadal evolution. Biogeosciences 15:4995–5014
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095123
Loading
/content/journals/10.1146/annurev-marine-010318-095123
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error