1932

Abstract

Salt marshes are recognized as valuable resources that are threatened by climate change and human activities. Better management and planning for these ecosystems will depend on understanding which marshes are most vulnerable, what is driving their change, and what their future trajectory is likely to be. Both observations and models have provided inconsistent answers to these questions, likely in part because of comparisons among sites and/or models that differ significantly in their characteristics and processes. Some of these differences almost certainly arise from processes that are not fully accounted for in marsh morphodynamic models. Here, we review distinguishing properties of marshes, important processes missing from many morphodynamic models, and key measurements missing from many observational studies. We then suggest some comparisons between models and observations that will provide critical tests and insights to improve our ability to forecast future change in these coastal landscapes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010610
2020-01-03
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010610.html?itemId=/content/journals/10.1146/annurev-marine-010419-010610&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DA. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44:445–56
    [Google Scholar]
  2. Alizad K, Hagen SC, Morris JT, Bacopoulos P, Bilskie MV et al. 2016. A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Ecol. Model. 327:29–43
    [Google Scholar]
  3. Altenau EH, Pavelsky TM, Moller D, Pitcher LH, Bates PD et al. 2019. Temporal variations in river water surface elevation and slope captured by AirSWOT. Remote Sens. Environ. 224:304–16
    [Google Scholar]
  4. Argow BA, Hughes ZJ, FitzGerald DM 2011. Ice raft formation, sediment load, and theoretical potential for ice-rafted sediment influx on northern coastal wetlands. Cont. Shelf Res. 31:1294–305
    [Google Scholar]
  5. Barrot G, Mangin A, Pinnock S 2007. GlobColour: an EO based service supporting global ocean carbon cycle research Prod. User Guide, ACRI-ST, Sophia Antipolis France:
    [Google Scholar]
  6. Baustian JJ, Mendelssohn IA, Hester MW 2012. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Change Biol. 18:3377–82
    [Google Scholar]
  7. Bendoni M, Mel R, Solari L, Lanzoni S, Francalanci S, Oumeraci H 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resour. Res. 52:1446–64
    [Google Scholar]
  8. Booij N, Ris RC, Holthuijsen LH 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans 104:7649–66
    [Google Scholar]
  9. Boyd BM, Sommerfield CK, Elsey-Quirk T 2017. Hydrogeomorphic influences on salt marsh sediment accumulation and accretion in two estuaries of the U.S. Mid-Atlantic coast. Mar. Geol. 383:132–45
    [Google Scholar]
  10. Breithaupt JL, Smoak JM, Byrne RH, Waters MN, Moyer RP, Sanders CJ 2018. Avoiding timescale bias in assessments of coastal wetland vertical change. Limnol. Oceanogr. 63:S477–95
    [Google Scholar]
  11. Brinson MM, Christian RR, Blum LK 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18:648–59
    [Google Scholar]
  12. Cahoon DR. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries Coasts 29:889–98
    [Google Scholar]
  13. Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91:1093–105
    [Google Scholar]
  14. Cahoon DR, Reed DJ, Day JW Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar. Geol. 128:1–9
    [Google Scholar]
  15. Callaghan DP, Bouma TJ, Klaassen P, van der Wal D, Stive MJF, Herman PMJ 2010. Hydrodynamic forcing on salt-marsh development: distinguishing the relative importance of waves and tidal flows. Estuar. Coast. Shelf Sci. 89:73–88
    [Google Scholar]
  16. Castagno KA, Jiménez-Robles AM, Donnelly JP, Wiberg PL, Fenster MS, Fagherazzi S 2018. Intense storms increase the stability of tidal bays. Geophys. Res. Lett. 45:5491–500
    [Google Scholar]
  17. Christiansen T. 1998. Sediment deposition on a tidal salt marsh surface PhD Thesis, Univ. Va. Charlottesville:
    [Google Scholar]
  18. Christiansen T, Wiberg PL, Milligan TG 2000. Flow and sediment transport on a tidal salt marsh surface. Estuar. Coast. Shelf Sci. 50:315–31
    [Google Scholar]
  19. Coleman DC, Kirwan ML. 2019. The effect of a small vegetation dieback event on salt marsh sediment transport. Earth Surf. Process. Landf. 44:944–52
    [Google Scholar]
  20. Costanza R, Farber SC, Maxwell J 1989. Valuation and management of wetland ecosystems. Ecol. Econ. 1:335–61
    [Google Scholar]
  21. Crosby SC, Sax DF, Palmer ME, Booth HS, Deegan LA et al. 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 181:93–99
    [Google Scholar]
  22. D'Alpaos A, Lanzoni S, Marani M, Bonometto A, Cecconi G, Rinaldo A 2007a. Spontaneous tidal network formation within a constructed salt marsh: observations and morphodynamic modelling. Geomorphology 91:186–97
    [Google Scholar]
  23. D'Alpaos A, Lanzoni S, Marani M, Fagherazzi S, Rinaldo A 2005. Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. 110:F02001
    [Google Scholar]
  24. D'Alpaos A, Lanzoni S, Marani M, Rinaldo A 2007b. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res. 112:F01008
    [Google Scholar]
  25. D'Alpaos A, Lanzoni S, Marani M, Rinaldo A 2010. On the tidal prism–channel area relations. J. Geophys. Res. 115:F01003
    [Google Scholar]
  26. D'Alpaos A, Lanzoni S, Mudd SM, Fagherazzi S 2006. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar. Coast. Shelf Sci. 69:311–24
    [Google Scholar]
  27. Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB et al. 2007. Restoration of the Mississippi Delta: lessons from Hurricanes Katrina and Rita. Science 315:1679–84
    [Google Scholar]
  28. Donatelli C, Ganju NK, Zhang X, Fagherazzi S, Leonardi N 2018. Salt marsh loss affects tides and the sediment budget in shallow bays. J. Geophys. Res. Earth Surf. 123:2647–62
    [Google Scholar]
  29. Duvall MS, Wiberg PL, Kirwan ML 2019. Controls on sediment suspension, flux, and marsh deposition across a bay-marsh boundary. Estuaries Coasts 42:403–24
    [Google Scholar]
  30. Ensign SH, Noe GB, Hupp CR 2014. Linking channel hydrology with riparian wetland accretion in tidal rivers. J. Geophys. Res. Earth Surf. 119:28–44
    [Google Scholar]
  31. Escapa M, Minkoff DR, Perillo GME, Iribarne O 2007. Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia‐dominated marshes. Limnol. Oceanogr. 52:2340–49
    [Google Scholar]
  32. Fagherazzi S. 2013. The ephemeral life of a salt marsh. Geology 41:943–44
    [Google Scholar]
  33. Fagherazzi S, Anisfeld SC, Blum LK, Long EV, Feagin RA et al. 2019. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 7:25
    [Google Scholar]
  34. Fagherazzi S, Furbish DJ. 2001. On the shape and widening of salt marsh creeks. J. Geophys. Res. Oceans 106:991–1003
    [Google Scholar]
  35. Fagherazzi S, Hannion M, D'Odorico P 2008. Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resour. Res. 44:W02419
    [Google Scholar]
  36. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S et al. 2012. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50:RG1002
    [Google Scholar]
  37. Fagherazzi S, Marani M, Blum LK, eds. 2004. The Ecogeomorphology of Tidal Marshes Washington, DC: Am. Geophys. Union
    [Google Scholar]
  38. Fagherazzi S, Mariotti G, Porter JH, McGlathery KJ, Wiberg PL 2010. Wave energy asymmetry in shallow bays. Geophys. Res. Lett. 37:L24601
    [Google Scholar]
  39. Fagherazzi S, Mariotti G, Wiberg PL, McGlathery KJ 2013. Marsh collapse does not require sea level rise. Oceanography 26:370–77
    [Google Scholar]
  40. Fagherazzi S, Priestas AM. 2010. Sediments and water fluxes in a muddy coastline: interplay between waves and tidal channel hydrodynamics. Earth Surf. Process. Landf. 35:284–93
    [Google Scholar]
  41. Feagin RA, Lozada-Bernard SM, Ravens TM, Möller I, Yeager KM, Baird AH 2009. Does vegetation prevent wave erosion of salt marsh edges. ? PNAS 106:10109–13
    [Google Scholar]
  42. FitzGerald DM, Hughes Z. 2019. Marsh processes and their response to climate change and sea-level rise. Annu. Rev. Earth Planet. Sci. 47:481–517
    [Google Scholar]
  43. Friedrichs CT, Perry JE. 2001. Tidal salt marsh morphodynamics: a synthesis. J. Coast. Res.Spec. Issue 27:7–37
    [Google Scholar]
  44. Ganju NK. 2019. Marshes are the new beaches: integrating sediment transport into restoration planning. Estuaries Coasts 42:917–26
    [Google Scholar]
  45. Ganju NK, Defne Z, Kirwan ML, Fagherazzi S, D'Alpaos A, Carniello L 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8:14156
    [Google Scholar]
  46. Garzon JL, Ferreira CM. 2016. Storm surge modeling in large estuaries: sensitivity analyses to parameters and physical processes in the Chesapeake Bay. J. Mar. Sci. Eng. 4:45
    [Google Scholar]
  47. Gedan KB, Silliman BR, Bertness MD 2009. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1:117–41
    [Google Scholar]
  48. Georgas N. 2012. Large seasonal modulation of tides due to ice cover friction in a midlatitude estuary. J. Phys. Ocean. 42:352–69
    [Google Scholar]
  49. Gesch DB. 2009. Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J. Coast. Res.Spec. Issue 53:49–58
    [Google Scholar]
  50. Gesch DB. 2018. Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure. Front. Earth Sci. 6:230
    [Google Scholar]
  51. Goodbred SL Jr., Hine AC. 1995. Coastal storm deposition: salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology 23:679–82
    [Google Scholar]
  52. Goodwin GC, Mudd SM, Clubb FJ 2018. Unsupervised detection of salt marsh platforms: a topographic method. Earth Surf. Dyn. 6:239–55
    [Google Scholar]
  53. Gray PC, Ridge JT, Poulin SK, Seymour AC, Schwantes AM et al. 2018. Remote sensing assessments of estuarine environments. Remote Sens 10:1257
    [Google Scholar]
  54. Haigh I. 2017. Tides and water levels. Encyclopedia of Maritime and Offshore Engineering J Carlton, P Jukes, YS Choo New York: Wiley https://doi.org/10.1002/9781118476406.emoe122
    [Crossref] [Google Scholar]
  55. Hamlington B, Thompson P, Natl. Cent. Atmos. Res. Staff, eds. 2016. Tide gauge sea level data. Climate Data Guide Natl. Cent. Atmos. Res. Boulder, CO: https://climatedataguide.ucar.edu/climate-data/tide-gauge-sea-level-data
    [Google Scholar]
  56. Hladik C, Alber M. 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 121:224–35
    [Google Scholar]
  57. Hladik C, Shalles J, Alber M 2013. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sens. Environ. 39:318–30
    [Google Scholar]
  58. Hopkinson CS, Morris JT, Fagherazzi S, Wollheim WM, Raymond PA 2018. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123:2444–65
    [Google Scholar]
  59. Howes NC, FitzGerald DM, Hughes ZJ, Georgiou IY, Kulp MA et al. 2010. Hurricane-induced failure of low salinity wetlands. PNAS 107:14014–19
    [Google Scholar]
  60. Hu K, Chen Q, Wang H, Hartig EK, Orton PM 2018. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy. Coast. Eng. 132:63–81
    [Google Scholar]
  61. Hughes ZJ, FitzGerald DM, Wilson CA, Pennings SC, Więski K, Mahadevan A 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophys. Res. Lett. 36:L03602
    [Google Scholar]
  62. IPBES (Intergov. Sci. Policy Platf. Biodivers. Ecosyst. Serv.) 2018. The assessment report on land degradation and restoration Rep., IPBES Bonn, Ger:.
    [Google Scholar]
  63. James MR, Robson S, Smith MW 2017. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 42:1769–88
    [Google Scholar]
  64. Jankowski KL, Törnqvist TE, Fernandes AM 2017. Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8:14792
    [Google Scholar]
  65. Kearney MS, Turner RE. 2016. Microtidal marshes: Can these widespread and fragile marshes survive increasing climate–sea level variability and human action. ? J. Coast. Res. 32:686–99
    [Google Scholar]
  66. Khan NS, Horton BP, McKee KL, Jerolmack D, Falcini F et al. 2013. Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA. Geology 41:391–94
    [Google Scholar]
  67. Kirwan ML, Guntenspergen GR. 2010. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. 115:F02009
    [Google Scholar]
  68. Kirwan ML, Guntenspergen GR, D'Alpaos A, Morris JT, Mudd SM, Temmerman S 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37:L23401
    [Google Scholar]
  69. Kirwan ML, Megonigal JP. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60
    [Google Scholar]
  70. Kirwan ML, Mudd SM. 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489:550–53
    [Google Scholar]
  71. Kirwan ML, Murray AB. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. PNAS 104:6118–22
    [Google Scholar]
  72. Kirwan ML, Murray AB. 2008. Ecological and morphological response of brackish tidal marshland to the next century of sea level rise: Westham Island, British Columbia. Glob. Planet. Change 60:471–86
    [Google Scholar]
  73. Kirwan ML, Murray AB, Boyd WS 2008. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys. Res. Lett. 35:L05403
    [Google Scholar]
  74. Kirwan ML, Temmerman S, Guntenspergen GR, Fagherazzi S 2017. Reply to ‘Marsh vulnerability to sea-level rise.’. Nat. Clim. Change 7:756–57
    [Google Scholar]
  75. Kirwan ML, Temmerman S, Skeehan E, Guntenspergen GR, Fagherazzi S 2016a. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6:253–60
    [Google Scholar]
  76. Kirwan ML, Walters DC, Reay WG, Carr JA 2016b. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43:4366–73
    [Google Scholar]
  77. Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. PNAS 106:6182–86
    [Google Scholar]
  78. Lawson SE, Wiberg PL, McGlathery KJ, Fugate DC 2007. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries Coasts 30:102–12
    [Google Scholar]
  79. Leonard LA, Hine AC, Luther ME, Stumpf RP, Wright EE 1995. Sediment transport processes in a west-central Florida open marine marsh tidal creek; the role of tides and extra-tropical storms. Estuar. Coast. Shelf Sci. 41:225–48
    [Google Scholar]
  80. Leonard LA, Luther ME. 1995. Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr. 40:1474–84
    [Google Scholar]
  81. Leonardi N, Defne Z, Ganju NK, Fagherazzi S 2016a. Salt marsh erosion rates and boundary features in a shallow bay. J. Geophys. Res. Earth Surf. 121:1861–75
    [Google Scholar]
  82. Leonardi N, Fagherazzi S. 2014. How waves shape salt marshes. Geology 42:887–90
    [Google Scholar]
  83. Leonardi N, Ganju NK, Fagherazzi S 2016b. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. PNAS 113:64–68
    [Google Scholar]
  84. Lorenzo-Trueba J, Mariotti G. 2017. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system. Geomorphology 290:153–63
    [Google Scholar]
  85. Marani M, D'Alpaos A, Lanzoni S, Santalucia M 2011. Understanding and predicting wave erosion of marsh edges. Geophys. Res. Lett. 38:L21401
    [Google Scholar]
  86. Mariotti G. 2016. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss. ? J. Geophys. Res. Earth Surf. 121:1391–407
    [Google Scholar]
  87. Mariotti G, Canestrelli A. 2018. Long-term morphodynamics of muddy backbarrier basins: fill in or empty out. ? Water Resour. Res. 53:7029–54
    [Google Scholar]
  88. Mariotti G, Carr J. 2014. Dual role of salt marsh retreat: long-term loss and short-term resilience. Water Resour. Res. 50:2963–74
    [Google Scholar]
  89. Mariotti G, Fagherazzi S. 2010. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. 115:F01004
    [Google Scholar]
  90. Mariotti G, Fagherazzi S. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. PNAS 110:5353–56
    [Google Scholar]
  91. Mariotti G, Fagherazzi S, Wiberg PL, McGlathery KJ, Carniello L, Defina A 2010. Influence of storm surges and sea level on shallow tidal basin erosive processes. J. Geophys. Res. 115:C11012
    [Google Scholar]
  92. Mariotti G, Huang H, Xue Z, Li B, Justic D, Zang Z 2018. Biased wind measurements in estuarine waters. J. Geophys. Res. Oceans 123:3577–87
    [Google Scholar]
  93. Mars JC, Houseknecht DW. 2007. Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. Geology 35:538–86
    [Google Scholar]
  94. McLoughlin SM, McGlathery K, Wiberg P 2013. Quantifying changes along mainland marshes in the Virginia Coast Reserve, 1957–2011: GIS data Data Set, Long Term Ecol. Res. Netw. Santa Barbara, CA: https://doi.org/10.6073/pasta/e2115c3f1fce44522b4c3ded4ae19a79
    [Crossref] [Google Scholar]
  95. McLoughlin SM, Wiberg PL, Safak I, McGlathery KJ 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries Coasts 38:620–38
    [Google Scholar]
  96. Moffett K, Nardin W, Silvestri S, Wang C, Temmerman S 2015. Multiple stable states and catastrophic shifts in coastal wetlands: progress, challenges, and opportunities in validating theory using remote sensing and other methods. Remote Sens 7:10184–226
    [Google Scholar]
  97. Mogensen LA, Rogers K. 2018. Validation and comparison of a model of the effect of sea-level rise on coastal wetlands. Sci. Rep. 8:1369
    [Google Scholar]
  98. Möller I, Kudella M, Rupprecht F, Spencer F, Paul M et al. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7:727–31
    [Google Scholar]
  99. Möller I, Spencer T, French JR 1996. Wind wave attenuation over saltmarsh surfaces: preliminary results from Norfolk, England. J. Coast. Res. 12:1009–16
    [Google Scholar]
  100. Morris JT, Barber DC, Callaway JC, Chambers R, Hagen SC et al. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth's Future 4:110–21
    [Google Scholar]
  101. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR 2002. Responses of coastal wetlands to rising sea level. Ecology 83:2869–77
    [Google Scholar]
  102. Moskalski SM, Sommerfield CK. 2012. Suspended sediment deposition and trapping efficiency in a Delaware salt marsh. Geomorphology 139–40:195–204
    [Google Scholar]
  103. Mudd SM, D'Alpaos A, Morris JT 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. 115:F03029
    [Google Scholar]
  104. Mudd SM, Fagherazzi S, Morris JT, Furbish DJ 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. See Fagherazzi et al. 2004 165–87
  105. Mudd SM, Howell SM, Morris JT 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82:377–89
    [Google Scholar]
  106. Mwamba MJ, Torres R. 2002. Rainfall effects on marsh sediment redistribution, North Inlet, South Carolina, USA. Mar. Geol. 189:267–87
    [Google Scholar]
  107. Nardin W, Larsen L, Fagherazzi S, Wiberg P 2018. Tradeoffs among hydrodynamics, sediment fluxes and vegetation community in the Virginia Coast Reserve, USA. Estuar. Coast. Shelf Sci. 210:98–108
    [Google Scholar]
  108. Newcomer ME, Kuss AJM, Ketron T, Remar A, Choksi V, Skiles JW 2014. Estuarine sediment deposition during wetland restoration: a GIS and remote sensing modeling approach. Geocarto Int 29:451–67
    [Google Scholar]
  109. O'Donnell J, Schalles J. 2016. Examination of abiotic drivers and their influence on Spartina alterniflora biomass over a twenty-eight year period using Landsat 5 TM satellite imagery of the Central Georgia Coast. Remote Sens 8:477
    [Google Scholar]
  110. Ortiz AC, Roy S, Edmonds DA 2017. Land loss by pond expansion on the Mississippi River Delta Plain. Geophys. Res. Lett. 44:3635–42
    [Google Scholar]
  111. Raabe EA, Stumpf RP. 2016. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries Coasts 39:145–57
    [Google Scholar]
  112. Reed DJ. 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries 12:222–27
    [Google Scholar]
  113. Richard GA. 1978. Seasonal and environmental variations in sediment accretion in a Long Island salt marsh. Estuaries Coasts 1:29–35
    [Google Scholar]
  114. Roner M, D'Alpaos A, Ghinassi M, Marani M, Silvestri S et al. 2016. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: inferences from the Venice lagoon, Italy. Adv. Water Resour. 93:276–87
    [Google Scholar]
  115. Sadler PM. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89:569–84
    [Google Scholar]
  116. Schepers L, Kirwan M, Guntenspergen G, Temmerman S 2017. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnol. Oceanogr. 62:137–50
    [Google Scholar]
  117. Schieder NW, Walters DC, Kirwan ML 2018. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41:940–51
    [Google Scholar]
  118. Schile LM, Callaway JC, Morris JT, Stralberg D, Parker VT, Kelly M 2014. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLOS ONE 9:e88760
    [Google Scholar]
  119. Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C et al. 2018. Future response of global coastal wetlands to sea level rise. Nature 561:231–34
    [Google Scholar]
  120. Schuerch M, Vafeidis A, Slawig T, Temmerman S 2013. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. Earth Surf. 118:84–96
    [Google Scholar]
  121. Schwarz C, Gourgue O, Van Belzen J, Zhu Z, Bouma TJ et al. 2018. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 11:672–77
    [Google Scholar]
  122. Shaw JB, Ayoub F, Jones CE, Lamb MP, Holt B et al. 2016. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA. Geophys. Res. Lett. 43:5035–42
    [Google Scholar]
  123. Silliman BR, Schrack E, He Q, Cope R, Santoni A et al. 2015. Facilitation shifts paradigms and can amplify coastal restoration efforts. PNAS 112:14295–300
    [Google Scholar]
  124. Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN et al. 2012. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. PNAS 109:11234–39
    [Google Scholar]
  125. Silvestri S, D'Alpaos A, Nordio G, Carniello L 2018. Anthropogenic modifications can significantly influence the local mean sea level and affect the survival of salt marshes in shallow tidal systems. J. Geophys. Res. 123:996–1012
    [Google Scholar]
  126. Smith JE, Bentley SJ, Snedden GA, White C 2015. What role do hurricanes play in sediment delivery to subsiding river deltas. ? Sci. Rep. 5:17582
    [Google Scholar]
  127. Smith SM, Green CW. 2015. Sediment suspension and elevation loss triggered by Atlantic mud fiddler crab (Uca pugnax) bioturbation in salt marsh dieback areas of southern New England. J. Coast. Res. 31:88–94
    [Google Scholar]
  128. Sommerfield CK. 2006. On sediment accumulation rates and stratigraphic completeness: lessons from Holocene ocean margins. Cont. Shelf. Res. 26:2225–40
    [Google Scholar]
  129. Sullivan JC, Torres R, Garrett A 2019. Intertidal creeks and overmarsh circulation in a small salt marsh basin. J. Geophys. Res. Earth Surf. 124:447–63
    [Google Scholar]
  130. Sun C, Fagherazzi S, Liu Y 2018. Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery. Estuar. Coast. Shelf Sci. 213:61–80
    [Google Scholar]
  131. Taylor RJ. 1981. Shoreline vegetation of the Arctic Alaska coast. Arctic 34:37–42
    [Google Scholar]
  132. Temmerman S, Bouma TJ, van de Koppel J, van der Wal D, de Vries MB, Herman PMJ 2007. Vegetation causes channel erosion in a tidal landscape. Geology 35:631–34
    [Google Scholar]
  133. Temmerman S, Govers G, Wartel S, Meire P 2003. Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surf. Process. Landf. 28:739–55
    [Google Scholar]
  134. Thorne K, MacDonald G, Guntenspergen G, Ambrose R, Buffington K et al. 2018. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4:eaao3270
    [Google Scholar]
  135. Tonelli M, Fagherazzi S, Petti M 2010. Modeling wave impact on salt marsh boundaries. J. Geophys. Res. 115:C09028
    [Google Scholar]
  136. Törnqvist TE, Wallace DJ, Storms JEA, Wallinga J, van Dam RL et al. 2008. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1:173–76
    [Google Scholar]
  137. Turner RE, Baustian JJ, Swenson EM, Spicer JS 2006. Wetland sedimentation from Hurricanes Katrina and Rita. Science 314:449–52
    [Google Scholar]
  138. Tweel AW, Turner RE. 2014. Contribution of tropical cyclones to the sediment budget for coastal wetlands in Louisiana, USA. Landsc. Ecol. 29:1083–94
    [Google Scholar]
  139. US Coast Surv 1871. E. shore of Virginia Broad Water Sheet No. 3 US Coast Surv. Washington, DC:
    [Google Scholar]
  140. Van de Broek M, Vandendriessche C, Poppelmonde D, Merckx R, Temmerman S, Govers G 2018. Long‐term organic carbon sequestration in tidal marsh sediments is dominated by old‐aged allochthonous inputs in a macrotidal estuary. Glob. Change Biol. 24:2498–512
    [Google Scholar]
  141. van Proosdij D, Davidson-Arnott RGD, Ollerhead J 2006. Controls on the spatial patterns of sediment deposition across a macro tidal salt marsh over single tidal cycles. Estuar. Coast. Shelf Sci. 69:64–86
    [Google Scholar]
  142. Volpe V, Silvestri S, Marani M 2011. Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 115:44–54
    [Google Scholar]
  143. Vu HD, Więski K, Pennings SC 2017. Ecosystem engineers drive creek formation in salt marshes. Ecology 98:162–74
    [Google Scholar]
  144. Wagner W, Lague D, Mohrig D, Passalacqua P, Shaw J, Moffett K 2017. Elevation change and stability on a prograding delta. Geophys. Res. Lett. 44:1786–94
    [Google Scholar]
  145. Weston NB. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries Coasts 37:1–23
    [Google Scholar]
  146. Wiberg PL, Carr JA, Safak I, Anutaliya A 2015. Quantifying the distribution and influence of non-uniform bed properties in shallow coastal bays. Limnol. Oceanogr. Methods 13:746–62
    [Google Scholar]
  147. Wiberg PL, Law BA, Wheatcroft RA, Milligan TG, Hill PS 2013. Seasonal variations in erodibility and sediment transport potential in a mesotidal channel-flat complex, Willapa Bay, WA. Cont. Shelf Res. 60S:S185–97
    [Google Scholar]
  148. Wilson CA, Hughes ZJ, FitzGerald DM 2012. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: geotechnical and geochemical changes. Estuar. Coast. Shelf Sci. 106:33–44
    [Google Scholar]
  149. Wilson CA, Hughes ZJ, FitzGerald DM, Hopkinson CS, Valentine V, Kolker AS 2014. Saltmarsh pool and tidal creek morphodynamics: dynamic equilibrium of northern latitude saltmarshes. ? Geomorphology 213:99–115
    [Google Scholar]
  150. Wu W, Yeager KM, Peterson MS, Fulford RS 2015. Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM). Ecol. Model. 303:55–69
    [Google Scholar]
  151. Young LR, Verhagen LA. 1996. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast. Eng. 29:47–78
    [Google Scholar]
  152. Zhang X, Leonardi N, Donatelli C, Fagherazzi S 2019. Fate of cohesive sediments in a marsh-dominated estuary. Adv. Water Res. 125:32–40
    [Google Scholar]
  153. Zhao K, Song J, Feng G, Zhao M, Liu J 2011. Species, types, distribution, and economic potential of halophytes in China. Plant Soil 342:495–509
    [Google Scholar]
  154. Zhao Y, Yu Q, Wang D, Wang YP, Wang Y, Gao S 2017. Rapid formation of marsh-edge cliffs, Jiangsu coast, China. Mar. Geol. 385:260–73
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010610
Loading
/content/journals/10.1146/annurev-marine-010419-010610
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error