1932

Abstract

We have known for more than 45 years that microplastics in the ocean are carriers of microbially dominated assemblages. However, only recently has the role of microbial interactions with microplastics in marine ecosystems been investigated in detail. Research in this field has focused on three main areas: () the establishment of plastic-specific biofilms (the so-called plastisphere); () enrichment of pathogenic bacteria, particularly members of the genus , coupled to a vector function of microplastics; and () the microbial degradation of microplastics in the marine environment. Nevertheless, the relationships between marine microorganisms and microplastics remain unclear. In this review, we deduce from the current literature, new comparative analyses, and considerations of microbial adaptation concerning plastic degradation that interactions between microorganisms and microplastic particles should have rather limited effects on the ocean ecosystems. The majority of microorganisms growing on microplastics seem to belong to opportunistic colonists that do not distinguish between natural and artificial surfaces. Thus, microplastics do not pose a higher risk than natural particles to higher life forms by potentially harboring pathogenic bacteria. On the other hand, microplastics in the ocean represent recalcitrant substances for microorganisms that are insufficient to support prokaryotic metabolism and will probably not be microbially degraded in any period of time relevant to human society. Because we cannot remove microplastics from the ocean, proactive action regarding research on plastic alternatives and strategies to prevent plastic entering the environment should be taken promptly.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010633
2020-01-03
2024-07-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010633.html?itemId=/content/journals/10.1146/annurev-marine-010419-010633&mimeType=html&fmt=ahah

Literature Cited

  1. Acosta-Coley I, Olivero-Verbel J. 2015. Microplastic resin pellets on an urban tropical beach in Colombia. Environ. Monit. Assess. 187:435
    [Google Scholar]
  2. Akiba M, Hashim AS. 1997. Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 22:475–521
    [Google Scholar]
  3. Alexander M. 1975. Environmental and microbiological problems arising from recalcitrant molecules. Microb. Ecol. 2:17–27
    [Google Scholar]
  4. Alshawafi A, Analla M, Alwashali E, Aksissou M 2017. Assessment of marine debris on the coastal wetland of Martil in the north-east of Morocco. Mar. Pollut. Bull. 117:302–310
    [Google Scholar]
  5. Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW et al. 2015. The biogeography of the Plastisphere: implications for policy. Front. Ecol. Environ. 13:541–46
    [Google Scholar]
  6. Andrady AL. 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62:1596–605
    [Google Scholar]
  7. Andrady AL. 2015. Persistence of plastic litter in the oceans. Marine Anthropogenic Litter M Bergmann, L Gutow, M Klages 57–72 Cham, Switz: Springer
    [Google Scholar]
  8. Andrady AL. 2017. The plastic in microplastics: a review. Mar. Pollut. Bull. 119:12–22
    [Google Scholar]
  9. Andrady AL, Neal MA. 2009. Applications and societal benefits of plastics. Philos. Trans. R. Soc. Lond. B 364:1977–84
    [Google Scholar]
  10. Arias-Andres M, Klumper U, Rojas-Jimenez K, Grossart HP 2018. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 237:253–61
    [Google Scholar]
  11. Arias-Villamizar CA, Vazquez-Morillas A. 2018. Degradation of conventional and oxodegradable high density polyethylene in tropical aqueous and outdoor environments. Rev. Int. Contam. Ambient. 34:137–47
    [Google Scholar]
  12. Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM 2015. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348:331–33
    [Google Scholar]
  13. Artham T, Sudhakar M, Venkatesan R, Nair CM, Murty K, Doble M 2009. Biofouling and stability of synthetic polymers in sea water. Int. Biodeterior. Biodegrad. 63:884–90
    [Google Scholar]
  14. Auta HS, Emenike CU, Fauziah SH 2017a. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ. Int. 102:165–76
    [Google Scholar]
  15. Auta HS, Emenike CU, Fauziah SH 2017b. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 231:1552–59
    [Google Scholar]
  16. Auta HS, Emenike CU, Jayanthi B, Fauziah SH 2018. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 127:15–21
    [Google Scholar]
  17. Baekeland LH. 1909. The synthesis, constitution, and uses of bakelite. J. Ind. Eng. Chem. 1:149–61
    [Google Scholar]
  18. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS et al. 2010. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett. Appl. Microbiol. 51:205–11
    [Google Scholar]
  19. Barnes DKA, Fraser KPP. 2003. Rafting by five phyla on man-made flotsam in the Southern Ocean. Mar. Ecol. Prog. Ser. 262:289–91
    [Google Scholar]
  20. Barnes DKA, Galgani F, Thompson RC, Barlaz M 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B 364:1985–98
    [Google Scholar]
  21. Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI 2016. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14:251
    [Google Scholar]
  22. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A et al. 2011. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol. 45:9175–79
    [Google Scholar]
  23. Browne MA, Galloway TS, Thompson RC 2010. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44:3404–9
    [Google Scholar]
  24. Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA et al. 2016. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1:e00024–16
    [Google Scholar]
  25. Cai LQ, Wang JD, Peng JP, Wu ZQ, Tan XL 2018. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Sci. Total Environ. 628–29:740–47
    [Google Scholar]
  26. Chubarenko IP, Esiukova EE, Bagaev AV, Bagaeva MA, Grave AN 2018. Three-dimensional distribution of anthropogenic microparticles in the body of sandy beaches. Sci. Total Environ. 628–29:1340–51
    [Google Scholar]
  27. Claessens M, Meester SD, Landuyt LV, Clerck KD, Janssen CR 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62:2199–204
    [Google Scholar]
  28. Cooper DA, Corcoran PL. 2010. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 60:650–54
    [Google Scholar]
  29. Costa MF, Silva-Cavalcanti JS, Barbosa CC, Portugal JL, Barletta M 2011. Plastics buried in the inter-tidal plain of a tropical estuarine ecosystem. J. Coast. Res. Spec. Issue 64:339–43
    [Google Scholar]
  30. Cozar A, Echevarria F, Gonzalez-Gordillo JI, Irigoien X, Ubeda B et al. 2014. Plastic debris in the open ocean. PNAS 111:10239–44
    [Google Scholar]
  31. Cozar A, Marti E, Duarte CM, Garcia-de-Lomas J, van Sebille E et al. 2017. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. Sci. Adv. 3:e1600582
    [Google Scholar]
  32. Crespo BG, Pommier T, Fernández-Gómez B, Pedrós-Alió C 2013. Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiol. Open 2:541–52
    [Google Scholar]
  33. Curren E, Leong SCY. 2019. Profiles of bacterial assemblages from microplastics of tropical coastal environments. Sci. Total Environ. 655:313–20
    [Google Scholar]
  34. Da Costa JP, Nunes AR, Santos PSM, Girao AV, Duarte AC, Rocha-Santos T 2018. Degradation of polyethylene microplastics in seawater: insights into the environmental degradation of polymers. J. Environ. Sci. Health A 53:866–75
    [Google Scholar]
  35. Dang HY, Lovell CR. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80:91–138
    [Google Scholar]
  36. Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R et al. 2018. New insights into the function and gobal distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 84:e02773–17
    [Google Scholar]
  37. Darwin CR. 1868. The Variation of Animals and Plants Under Domestication London: John Murray
    [Google Scholar]
  38. Dawson AL, Kawaguchi S, King CK, Townsend KA, King R et al. 2018. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9:1001
    [Google Scholar]
  39. De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P 2015. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49:9629–38
    [Google Scholar]
  40. Debroas D, Mone A, Ter Halle A 2017. Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 599:1222–32
    [Google Scholar]
  41. Decho AW. 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20:1257–73
    [Google Scholar]
  42. Derraik JGB. 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44:842–52
    [Google Scholar]
  43. Devi RS, Kannan VR, Nivas D, Kannan K, Chandru S, Antony AR 2015. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar. Pollut. Bull. 96:32–40
    [Google Scholar]
  44. Dussud C, Meistertzheim AL, Conan P, Pujo-Pay M, George M et al. 2018. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 236:807–16
    [Google Scholar]
  45. Eckert EM, Di Cesare A, Kettner MT, Arias-Andres M, Fontaneto D et al. 2018. Microplastics increase impact of treated wastewater on freshwater microbial community. Environ. Pollut. 234:495–502
    [Google Scholar]
  46. Elifantz H, Horn G, Ayon M, Cohen Y, Minz D 2013. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85:348–57
    [Google Scholar]
  47. Engler RE. 2012. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46:12302–15
    [Google Scholar]
  48. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLOS ONE 9:e111913
    [Google Scholar]
  49. Fendall LS, Sewell MA. 2009. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar. Pollut. Bull. 58:1225–28
    [Google Scholar]
  50. Fok L, Cheung PK. 2015. Hong Kong at the Pearl River Estuary: a hotspot of microplastic pollution. Mar. Pollut. Bull. 99:112–18
    [Google Scholar]
  51. Fok L, Cheung PK, Tang GD, Li WC 2017. Size distribution of stranded small plastic debris on the coast of Guangdong, South China. Environ. Pollut. 220:407–12
    [Google Scholar]
  52. Fotopoulou KN, Karapanagioti HK. 2012. Surface properties of beached plastic pellets. Mar. Environ. Res. 81:70–77
    [Google Scholar]
  53. Frere L, Maignien L, Chalopin M, Huvet A, Rinnert E et al. 2018. Microplastic bacterial communities in the Bay of Brest: influence of polymer type and size. Environ. Pollut. 242:614–25
    [Google Scholar]
  54. Frias J, Gago J, Otero V, Sobral P 2016. Microplastics in coastal sediments from Southern Portuguese shelf waters. Mar. Environ. Res. 114:24–30
    [Google Scholar]
  55. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. PNAS 106:22427–32
    [Google Scholar]
  56. Galgani F, Hanke G, Werner S, De Vrees L 2013. Marine litter within the European Marine Strategy Framework Directive. ICES J. Mar. Sci. 70:1055–64
    [Google Scholar]
  57. Gewert B, Plassmann MM, Macleod M 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17:1513–21
    [Google Scholar]
  58. Ghosh SK, Pal S, Ray S 2013. Study of microbes having potentiality for biodegradation of plastics. Environ. Sci. Pollut. Res. Int. 20:4339–55
    [Google Scholar]
  59. Goldstein MC, Carson HS, Eriksen M 2014. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar. Biol. 161:1441–53
    [Google Scholar]
  60. Gregory MR. 2009. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. Lond. B 364:2013–25
    [Google Scholar]
  61. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R 2009. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography 22:4202–11
    [Google Scholar]
  62. Harrison JP, Boardman C, O'Callaghan K, Delort AM, Song J 2018. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R. Soc. Open Sci. 5:171792
    [Google Scholar]
  63. Harrison JP, Sapp M, Schratzberger M, Osborn AM 2011. Interactions between microorganisms and marine microplastics: a call for research. Mar. Technol. Soc. J. 45:12–20
    [Google Scholar]
  64. Harrison JP, Schratzberger M, Sapp M, Osborn AM 2014. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:232
    [Google Scholar]
  65. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46:3060–75
    [Google Scholar]
  66. Hinojosa IA, Thiel M. 2009. Floating marine debris in fjords, gulfs and channels of southern Chile. Mar. Pollut. Bull. 58:341–50
    [Google Scholar]
  67. Hodgson DJ, Brechon AL, Thompson RC 2018. Ingestion and fragmentation of plastic carrier bags by the amphipod Orchestia gammarellus: effects of plastic type and fouling load. Mar. Pollut. Bull. 127:154–59
    [Google Scholar]
  68. Hoellein TJ, McCormick AR, Hittie J, London MG, Scott JW, Kelly JJ 2017. Longitudinal patterns of microplastic concentration and bacterial assemblages in surface and benthic habitats of an urban river. Freshw. Sci. 36:491–507
    [Google Scholar]
  69. Ioakeimidis C, Fotopoulou KN, Karapanagioti HK, Geraga M, Zeri C et al. 2016. The degradation potential of PET bottles in the marine environment: an ATR-FTIR based approach. Sci. Rep. 6:23501
    [Google Scholar]
  70. Ivar do Sul JA, Spengler A, Costa MF 2009. Here, there and everywhere. Small plastic fragments and pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic). Mar. Pollut. Bull. 58:1236–38
    [Google Scholar]
  71. Ivar do Sul JA, Tagg AS, Labrenz M 2018. Exploring the common denominator between microplastics and microbiology: a scientometric approach. Scientometrics 117:2145–57
    [Google Scholar]
  72. Jahnke A, Arp HPH, Escher BI, Gewert B, Gorokhova E et al. 2017. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4:85–90
    [Google Scholar]
  73. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M et al. 2015. Plastic waste inputs from land into the ocean. Science 347:768–71
    [Google Scholar]
  74. Jang M, Shim WJ, Han GM, Song YK, Hong SH 2018. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. Mar. Pollut. Bull. 131:365–69
    [Google Scholar]
  75. Jiang PL, Zhao SY, Zhu LX, Li DJ 2018. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci. Total Environ. 624:48–54
    [Google Scholar]
  76. Jungnickel H, Pund R, Tentschert J, Reichardt P, Laux P et al. 2016. Time-of-flight secondary ion mass spectrometry (ToF-SIMS)-based analysis and imaging of polyethylene microplastics formation during sea surf simulation. Sci. Total Environ. 563:261–66
    [Google Scholar]
  77. Kaiser D, Kowalski N, Waniek JJ 2017. Effects of biofouling on the sinking behavior of microplastics. Environ. Res. Lett. 12:124003
    [Google Scholar]
  78. Karlsson TM, Hassellov M, Jakubowicz I 2018. Influence of thermooxidative degradation on the in situ fate of polyethylene in temperate coastal waters. Mar. Pollut. Bull. 135:187–94
    [Google Scholar]
  79. Kertesz MA, Kawasaki A, Stolz A 2017. Aerobic hydrocarbon-degrading alphaproteobacteria: Sphingomonadales. Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes TJ McGenity 1–21 Cham, Switz: Springer
    [Google Scholar]
  80. Keswani A, Oliver DM, Gutierrez T, Quilliam RS 2016. Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar. Environ. Res. 118:10–19
    [Google Scholar]
  81. Kesy K, Oberbeckmann S, Kreikemeyer B, Labrenz M 2019. Spatial environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic Sea mesocosms. Front. Microbiol 10:1665
    [Google Scholar]
  82. Kettner MT, Rojas-Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP 2017. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19:4447–59
    [Google Scholar]
  83. Khaled A, Rivaton A, Richard C, Jaber F, Sleiman M 2018. Phototransformation of plastic containing brominated flame retardants: enhanced fragmentation and release of photoproducts to water and air. Environ. Sci. Technol. 52:11123–31
    [Google Scholar]
  84. Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R et al. 2016. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120:1–8
    [Google Scholar]
  85. Klaeger F, Tagg A, Otto S, Bienmüller M, Sartorius I, Labrenz M 2019. Residual monomer content affects the interpretation of plastic degradation. Sci. Rep. 9:2120
    [Google Scholar]
  86. Koelmans AA, Kooi M, Law KL, van Sebille E 2017. All is not lost: deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 12:114028
    [Google Scholar]
  87. Kozowyk PRB, Soressi M, Pomstra D, Langejans GHJ 2017. Experimental methods for the Palaeolithic dry distillation of birch bark: implications for the origin and development of Neandertal adhesive technology. Sci. Rep. 7:8033
    [Google Scholar]
  88. Krueger MC, Harms H, Schlosser D 2015. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 99:8857–74
    [Google Scholar]
  89. Lambert S, Wagner M. 2017. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 46:6855–71
    [Google Scholar]
  90. Law KL. 2017. Plastics in the marine environment. Annu. Rev. Mar. Sci. 9:205–29
    [Google Scholar]
  91. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG 2015. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100:82–91
    [Google Scholar]
  92. Lobelle D, Cunliffe M. 2011. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 62:197–200
    [Google Scholar]
  93. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E 2008. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–42
    [Google Scholar]
  94. Maso M, Fortuno JM, de Juan S, Demestre M 2016. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. Sci. Mar. 80:117–27
    [Google Scholar]
  95. Maso M, Garces E, Pages F, Camp J 2003. Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 67:107–11
    [Google Scholar]
  96. Mata MT, Luza MF, Riquelme CE 2017. Production of diatom-bacteria biofilm isolated from Seriola lalandi cultures for aquaculture application. Aquac. Res. 48:4308–20
    [Google Scholar]
  97. Matallana-Surget S, Villette C, Intertaglia L, Joux F, Bourrain M, Lebaron P 2012. Response to UVB radiation and oxidative stress of marine bacteria isolated from South Pacific Ocean and Mediterranean Sea. J. Photochem. Photobiol. B 117:254–61
    [Google Scholar]
  98. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T 2001. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 35:318–24
    [Google Scholar]
  99. McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ 2014. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48:11863–71
    [Google Scholar]
  100. Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A 2018. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc. R. Soc. B 285:20181203
    [Google Scholar]
  101. Miller JA, Gillman R, Carlton JT, Murray CC, Nelson JC et al. 2018. Trait-based characterization of species transported on Japanese tsunami marine debris: effect of prior invasion history on trait distribution. Mar. Pollut. Bull. 132:90–101
    [Google Scholar]
  102. Mohanrasu K, Premnath N, Prakash GS, Sudhakar M, Boobalan T, Arun A 2018. Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. J. Photochem. Photobiol. B 185:55–65
    [Google Scholar]
  103. Moret-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM 2010. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60:1873–78
    [Google Scholar]
  104. Moura V, Ribeiro I, Moriggi P, Capao A, Salles C et al. 2018. The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch. Microbiol. 200:1447–56
    [Google Scholar]
  105. Muthukumar T, Aravinthan A, Lakshmi K, Venkatesan R, Vedaprakash L, Doble M 2011. Fouling and stability of polymers and composites in marine environment. Int. Biodeterior. Biodegrad. 65:276–84
    [Google Scholar]
  106. Naidu SA, Rao VR, Ramu K 2018. Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea. Environ. Geochem. Health 40:1377–83
    [Google Scholar]
  107. Nauendorf A, Krause S, Bigalke NK, Gorb EV, Gorb SN et al. 2016. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments. Mar. Pollut. Bull. 103:168–78
    [Google Scholar]
  108. Nesse LL, Simm R. 2018. Biofilm: a hotspot for emerging bacterial genotypes. Adv. Appl. Microbiol. 2013:223–46
    [Google Scholar]
  109. Oberbeckmann S, Kreikemeyer B, Labrenz M 2018. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front. Microbiol. 8:2709
    [Google Scholar]
  110. Oberbeckmann S, Löder MGJ, Gerdts G, Osborn AM 2014. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol. 90:478–92
    [Google Scholar]
  111. Oberbeckmann S, Löder MGJ, Labrenz M 2015. Marine microplastic-associated biofilms – a review. Environ. Chem. 12:551–62
    [Google Scholar]
  112. Oberbeckmann S, Osborn AM, Duhaime MB 2016. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLOS ONE 11:e0159289
    [Google Scholar]
  113. Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S et al. 2009. International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar. Pollut. Bull. 58:1437–46
    [Google Scholar]
  114. Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z et al. 2018. Evidence for selective bacterial community structuring on microplastics. Environ. Microbiol. 20:2796–808
    [Google Scholar]
  115. Paco A, Duarte K, Da Costa JP, Santos PSM, Pereira R et al. 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ 586:10–15
    [Google Scholar]
  116. Palombini FL, Demori R, Cidade MK, Kindlein W, de Jacques JJ 2018. Occurrence and recovery of small-sized plastic debris from a Brazilian beach: characterization, recycling, and mechanical analysis. Environ. Sci. Pollut. Res. Int. 25:26218–27
    [Google Scholar]
  117. Peeken I, Primpke S, Beyer B, Gütermann J, Katlein C et al. 2018. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9:1505
    [Google Scholar]
  118. PlasticsEurope 2018. Plastics - the facts 2018. PlasticsEurope https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018
    [Google Scholar]
  119. Pruter AT. 1987. Sources, quantities and distribution of persistent plastics in the marine environment. Mar. Pollut. Bull. 18:305–10
    [Google Scholar]
  120. Quero GM, Luna GM. 2017. Surfing and dining on the ‘plastisphere’: microbial life on plastic marine debris. Adv. Oceanogr. Limnol. 8:199–207
    [Google Scholar]
  121. Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DKA et al. 2014. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLOS ONE 9:e100289
    [Google Scholar]
  122. Rieck A, Herlemann DP, Jürgens K, Grossart HP 2015. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6:1297
    [Google Scholar]
  123. Romera-Castillo C, Pinto M, Langer TM, Alvarez-Salgado XA, Herndl GJ 2018. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9:1430
    [Google Scholar]
  124. Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F, eds. 2014. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin: Springer
    [Google Scholar]
  125. Sabater S, Guasch H, Romani A, Munoz I 2002. The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469:149–56
    [Google Scholar]
  126. Sagawa N, Kawaai K, Hinata H 2018. Abundance and size of microplastics in a coastal sea: comparison among bottom sediment, beach sediment, and surface water. Mar. Pollut. Bull. 133:532–42
    [Google Scholar]
  127. Schmidt VT, Reveillaud J, Zettler E, Mincer TJ, Murphy L, Amaral-Zettler LA 2014. Oligotyping reveals community level habitat selection within the genus Vibrio. Front. Microbiol 5:563
    [Google Scholar]
  128. Sheavly SB, Register KM. 2007. Marine debris & plastics: environmental concerns, sources, impacts and solutions. J. Polym. Environ. 15:301–5
    [Google Scholar]
  129. Song YK, Hong SH, Jang M, Han GM, Jung SW, Shim WJ 2017. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 51:4368–76
    [Google Scholar]
  130. Sudhakar M, Doble M, Murthy PS, Venkatesan R 2008. Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int. Biodeterior. Biodegrad. 61:203–13
    [Google Scholar]
  131. Syranidou E, Karkanorachaki K, Amorotti F, Franchini M, Repouskou E et al. 2017a. Biodegradation of weathered polystyrene films in seawater microcosms. Sci. Rep. 7:17991
    [Google Scholar]
  132. Syranidou E, Karkanorachaki K, Amorotti F, Repouskou E, Kroll K et al. 2017b. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLOS ONE 12:e0183984
    [Google Scholar]
  133. Tagg AS, Labrenz M. 2018. Closing microplastic pathways before they open: a model approach. Environ. Sci. Technol. 52:3340–41
    [Google Scholar]
  134. Tarkanian MJ, Hosler D. 2011. America's first polymer scientists: rubber processing, use and transport in Mesoamerica. Latin Am. Antiq. 22:469–86
    [Google Scholar]
  135. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ et al. 2004. Lost at sea: Where is all the plastic. ? Science 304:838
    [Google Scholar]
  136. Thompson RC, Swan SH, Moore CJ, Vom Saal FS 2009. Our plastic age. Philos. Trans. R. Soc. Lond. B 364:1973–76
    [Google Scholar]
  137. Thornton L, Jackson NL. 1998. Spatial and temporal variations in debris accumulation and composition on an estuarine shoreline, Cliffwood Beach, New Jersey, USA. Mar. Pollut. Bull. 36:705–11
    [Google Scholar]
  138. Tian L, Kolvenbach B, Corvini N, Wang S, Tavanaie N et al. 2017. Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnol 38:101–5
    [Google Scholar]
  139. Tsiota P, Karkanorachaki K, Syranidou E, Franchini M, Kalogerakis N 2018. Microbial degradation of HDPE secondary microplastics: preliminary results. Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea M Cocca, E Di Pace, ME Errico, G Gentile, A Montarsolo, R Mossotti 181–88 Cham, Switz: Springer
    [Google Scholar]
  140. Tutman P, Kapiris K, Kirincic M, Pallaoro A 2017. Floating marine litter as a raft for drifting voyages for Planes minutus (Crustacea: Decapoda: Grapsidae) and Liocarcinus navigator (Crustacea: Decapoda: Polybiidae). Mar. Pollut. Bull. 120:217–21
    [Google Scholar]
  141. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Mees J, Janssen CR 2013. Assessment of marine debris on the Belgian Continental Shelf. Mar. Pollut. Bull. 73:161–69
    [Google Scholar]
  142. Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD et al. 2015. A global inventory of small floating plastic debris. Environ. Res. Lett. 10:124006
    [Google Scholar]
  143. Weinstein JE, Crocker BK, Gray AD 2016. From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35:1632–40
    [Google Scholar]
  144. Welden NA, Cowie PR. 2017. Degradation of common polymer ropes in a sublittoral marine environment. Mar. Pollut. Bull. 118:248–53
    [Google Scholar]
  145. Witt V, Wild C, Uthicke S 2011. Effect of substrate type on bacterial community composition in biofilms from the Great Barrier Reef. FEMS Microbiol. Lett. 323:188–95
    [Google Scholar]
  146. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–99
    [Google Scholar]
  147. Zettler ER, Mincer TJ, Amaral-Zettler LA 2013. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47:7137–46
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010633
Loading
/content/journals/10.1146/annurev-marine-010419-010633
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error