1932

Abstract

One major objective of aquatic microbial ecology is to understand the distribution of microbial populations over space and time and in response to environmental factors. Perhaps more importantly, it is crucial to quantify how those microbial cells affect biogeochemical processes of interest, such as primary production, nitrogen cycling, or the breakdown of pollutants. One valuable approach to link microbial identity to activity is to carry out incubations with stable-isotope-labeled substrates and then quantify the isotope incorporation by individual microbial cells using nanoscale secondary ion mass spectrometry (NanoSIMS). This review summarizes recent efforts in this field, highlights novel methods, describes studies investigating rare metabolisms as well as widespread microbial activity, and hopes to provide a framework to increase the use and capabilities of NanoSIMS for microbial biogeochemical studies in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010714
2020-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010714.html?itemId=/content/journals/10.1146/annurev-marine-010419-010714&mimeType=html&fmt=ahah

Literature Cited

  1. Achlatis M, Pernice M, Green K, Guagliardo P, Kilburn MR et al. 2018. Single-cell measurement of ammonium and bicarbonate uptake within a photosymbiotic bioeroding sponge. ISME J 12:1308–18
    [Google Scholar]
  2. Adam B, Klawonn I, Svedén JB, Bergkvist J, Nahar N et al. 2016. N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community. ISME J 10:450–59
    [Google Scholar]
  3. Arandia-Gorostidi N, Weber PK, Alonso-Sáez L, Morán XA, Mayali X 2017. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J 11:641–50
    [Google Scholar]
  4. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257–63
    [Google Scholar]
  5. Behrens S, Losekann T, Pett-Ridge J, Weber PK, Ng W et al. 2008. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74:3143–50
    [Google Scholar]
  6. Benavides M, Berthelot H, Duhamel S, Raimbault P, Bonnet S 2017. Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific. Sci. Rep. 7:41315
    [Google Scholar]
  7. Berg JS, Pjevac P, Sommer T, Buckner CRT, Philippi M et al. 2019. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environ. Microbiol. 21:1611–26
    [Google Scholar]
  8. Berthelot H, Duhamel S, L'Helguen S, Maguer J-F, Wang S et al. 2019. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J 13:651–62
    [Google Scholar]
  9. Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW 2014. Bacterial vesicles in marine ecosystems. Science 343:183–86
    [Google Scholar]
  10. Bonnet S, Berthelot H, Turk-Kubo K, Cornet-Barthaux V, Fawcett S et al. 2016. Diazotroph derived nitrogen supports diatom growth in the South West Pacific: a quantitative study using nanoSIMS. Limnol. Oceanogr. 61:1549–62
    [Google Scholar]
  11. Bonnet S, Caffin M, Berthelot H, Grosso O, Benavides M et al. 2018. In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N2 fixation (OUTPACE cruise). Biogeosciences 15:4215–32
    [Google Scholar]
  12. Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J et al. 2017. Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J 11:2781–92
    [Google Scholar]
  13. Capone DG. 2001. Marine nitrogen fixation: What's the fuss. ? Curr. Opin. Microbiol. 4:341–48
    [Google Scholar]
  14. Carpenter KJ, Bose M, Polerecky L, Lie AAY, Heidelberg KB, Caron DA 2018. Single-cell view of carbon and nitrogen acquisition in the mixotrophic alga Prymnesium parvum (Haptophyta) inferred from stable isotope tracers and NanoSIMS. Front. Mar. Sci. 5:157
    [Google Scholar]
  15. Chalk PM, He J-Z, Peoples MB, Chen D 2017. 15N2 as a tracer of biological N2 fixation: a 75-year retrospective. Soil Biol. Biochem. 106:36–50
    [Google Scholar]
  16. de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM et al. 2016. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (fluorescent in situ hybridization). Algal Res 15:179–86
    [Google Scholar]
  17. Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ 2016. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J 10:678–92
    [Google Scholar]
  18. Dekas AE, Poretsky RS, Orphan VJ 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–26
    [Google Scholar]
  19. Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D 2015. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. 91:fiv106
    [Google Scholar]
  20. Eiler A. 2006. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl. Environ. Microbiol. 72:7431–37
    [Google Scholar]
  21. Eybe T, Bohn T, Audinot J-N, Udelhoven T, Cauchie H-M et al. 2009. Uptake visualization of deltamethrin by NanoSIMS and acute toxicity to the water flea Daphnia magna. . Chemosphere 76:134–40
    [Google Scholar]
  22. Finzi-Hart JA, Pett-Ridge J, Weber PK, Popa R, Fallon SJ et al. 2009. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. PNAS 106:6345–50
    [Google Scholar]
  23. Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP 2011. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J 5:1484–93
    [Google Scholar]
  24. Füssel J, Lücker S, Yilmaz P, Nowka B, van Kessel MAHJ et al. 2017. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci. . Adv 3:e1700807
    [Google Scholar]
  25. Gates SD, Condit R, Moussatche N, Stewart BJ, Malkin AJ, Weber PK 2018. High initial sputter rate found for Vaccinia virions using isotopic labeling and high lateral resolution secondary ion mass spectrometry. Anal. Chem. 90:1613–20
    [Google Scholar]
  26. Giardina M, Cheong S, Marjo CE, Clode PL, Guagliardo P et al. 2018. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9:2847
    [Google Scholar]
  27. Gibbin E, Gavish A, Domart-Coulon I, Kramarsky-Winter E, Shapiro O et al. 2018. Using NanoSIMS coupled with microfluidics to visualize the early stages of coral infection by Vibrio coralliilyticus. . BMC Microbiol 18:39
    [Google Scholar]
  28. Harding K, Turk-Kubo KA, Sipler RE, Mills MM, Bronk DA, Zehr JP 2018. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. PNAS 115:13371–75
    [Google Scholar]
  29. Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW 2007. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ. Pollut. 148:360–71
    [Google Scholar]
  30. Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC et al. 2014. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat. Chem. . Biol 10:1034–42
    [Google Scholar]
  31. Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P et al. 2015. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81:7570–81
    [Google Scholar]
  32. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F 2013. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–95
    [Google Scholar]
  33. Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW et al. 2019. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat. Microbiol. 4:234–43
    [Google Scholar]
  34. Krueger T, Bodin J, Horwitz N, Loussert-Fonta C, Sakr A et al. 2018. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis – a NanoSIMS study. Sci. Rep. 8:12710
    [Google Scholar]
  35. Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11:2016–40
    [Google Scholar]
  36. Li T, Wu T-D, Mazéas L, Toffin L, Guerquin-Kern J-L et al. 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10:580–88
    [Google Scholar]
  37. Marlow JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ 2014. Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat. Commun. 5:5094
    [Google Scholar]
  38. Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S et al. 2016. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 1:16163
    [Google Scholar]
  39. Martínez-Pérez C, Mohr W, Schwedt A, Dürschlag J, Callbeck CM et al. 2018. Metabolic versatility of a novel N2‐fixing alphaproteobacterium isolated from a marine oxygen minimum zone. Environ. Microbiol. 20:755–68
    [Google Scholar]
  40. Matantseva O, Skarlato S, Vogts A, Pozdnyakov I, Liskow I et al. 2016. Superposition of individual activities: urea-mediated suppression of nitrate uptake in the dinoflagellate Prorocentrum minimum revealed at the population and single-cell levels. Front. Microbiol. 7:1310
    [Google Scholar]
  41. Mayali X, Weber PK. 2018. Quantitative substrate-specific incorporation reveals niche differentiation in a coastal microbial community. FEMS Microbiol. Ecol. 94:fiy047
    [Google Scholar]
  42. Mayali X, Weber PK, Brodie EL, Mabery S, Hoeprich P, Pett-Ridge J 2012. High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J 6:1210–21
    [Google Scholar]
  43. Mayali X, Weber PK, Mabery S, Pett-Ridge J 2014. Phylogenetic patterns in the microbial response to resource availability: amino acid incorporation in San Francisco Bay. PLOS ONE 9:e95842
    [Google Scholar]
  44. Mayali X, Weber PK, Pett-Ridge J 2013. Taxon-specific C:N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol. Ecol. 83:402–12
    [Google Scholar]
  45. McNichol J, Stryhanyuk H, Sylva SP, Thomas F, Musat N et al. 2018. Primary productivity below the seafloor at deep-sea hot springs. PNAS 115:6756–61
    [Google Scholar]
  46. Morono Y, Terada T, Nishizawa M, Ito M, Hillion F et al. 2011. Carbon and nitrogen assimilation in deep subseafloor microbial cells. PNAS 108:18295–300
    [Google Scholar]
  47. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S et al. 2008. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. PNAS 105:17861–66
    [Google Scholar]
  48. Musat N, Stryhanyuk H, Bombach P, Adrian L, Audinot J-N, Richnow HH 2014. The effect of FISH and CARD-FISH on the isotopic composition of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst. Appl. Microbiol. 37:267–76
    [Google Scholar]
  49. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–87
    [Google Scholar]
  50. Oswald K, Graf JS, Littmann S, Tienken D, Brand A et al. 2017. Crenothrix are major methane consumers in stratified lakes. ISME J 11:2124–40
    [Google Scholar]
  51. Oswald K, Milucka J, Brand A, Littmann S, Wehrli B et al. 2015. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLOS ONE 10:e0132574
    [Google Scholar]
  52. Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B et al. 2018. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20:671–92
    [Google Scholar]
  53. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. PNAS 105:7052–57
    [Google Scholar]
  54. Pett-Ridge J, Weber PK. 2012. NanoSIP: NanoSIMS applications for microbial biology. Microbial Systems Biology: Methods and Protocols A Navid 375–408 Totowa, NJ: Humana
    [Google Scholar]
  55. Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ et al. 2007. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1:354–60
    [Google Scholar]
  56. Radajewski S, Ineson P, Parekh NR, Murrell JC 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403:646–49
    [Google Scholar]
  57. Raina J-B, Clode PL, Cheong S, Bougoure J, Kilburn MR et al. 2017. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6:e23008
    [Google Scholar]
  58. Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD et al. 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat. Geosci. 9:884–87
    [Google Scholar]
  59. Rogge A, Flintrop CM, Iversen MH, Salter I, Fong AA et al. 2018. Hard and soft plastic resin embedding for single-cell element uptake investigations of marine-snow-associated microorganisms using nano-scale secondary ion mass spectrometry. Limnol. Oceanogr. Methods 16:484–503
    [Google Scholar]
  60. Samo TJ, Kimbrel JA, Nilson DJ, Pett-Ridge J, Weber PK, Mayali X 2018. Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions. Environ. Microbiol. 20:4385–400
    [Google Scholar]
  61. Schoffelen NJ, Mohr W, Ferdelman TG, Littmann S, Duerschlag J et al. 2018. Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth. Sci. Rep. 8:17182
    [Google Scholar]
  62. Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A et al. 2016. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat. Microbiol. 1:16055
    [Google Scholar]
  63. Schurig C, Mueller CW, Höschen C, Prager A, Kothe E et al. 2015. Methods for visualising active microbial benzene degraders in in situ microcosms. Appl. Microbiol. Biotechnol. 99:957–68
    [Google Scholar]
  64. Sekine R, Moore KL, Matzke M, Vallotton P, Jiang H et al. 2017. Complementary imaging of silver nanoparticle interactions with green algae: dark-field microscopy, electron microscopy, and nanoscale secondary ion mass spectrometry. ACS Nano 11:10894–902
    [Google Scholar]
  65. Selosse M-A, Charpin M, Not F 2017. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol. Lett. 20:246–63
    [Google Scholar]
  66. Sheik AR, Brussaard CP, Lavik G, Foster RA, Musat N et al. 2013. Viral infection of Phaeocystis globosa impedes release of chitinous star-like structures: quantification using single cell approaches. Environ. Microbiol. 15:1441–51
    [Google Scholar]
  67. Sheik AR, Brussaard CP, Lavik G, Lam P, Musat N et al. 2014. Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa. . ISME J 8:212–25
    [Google Scholar]
  68. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F et al. 1999. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17:974–78
    [Google Scholar]
  69. Smriga S, Fernandez VI, Mitchell JG, Stocker R 2016. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. PNAS 113:1576–81
    [Google Scholar]
  70. Staley JT, Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321–46
    [Google Scholar]
  71. Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M et al. 2015. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J 10:1240–51
    [Google Scholar]
  72. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. 2015. Structure and function of the global ocean microbiome. Science 348:1261359
    [Google Scholar]
  73. Tarquinio F, Bourgoure J, Koenders A, Laverock B, Säwström C, Hyndes GA 2018. Microorganisms facilitate uptake of dissolved organic nitrogen by seagrass leaves. ISME J 12:2796–800
    [Google Scholar]
  74. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N et al. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–50
    [Google Scholar]
  75. Trembath-Reichert E, Morono Y, Ijiri A, Hoshino T, Dawson KS et al. 2017. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. PNAS 114:E9206–15
    [Google Scholar]
  76. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA et al. 2010. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94
    [Google Scholar]
  77. Volland JM, Schintlmeister A, Zambalos H, Reipert S, Mozetič P et al. 2018. NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. ISME J 12:714–27
    [Google Scholar]
  78. Warner DL, Villarreal S, McWilliams K, Inamdar S, Vargas R 2017. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20:1205–16
    [Google Scholar]
  79. Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A et al. 2015. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front. Microbiol. 6:243
    [Google Scholar]
  80. Zimmermann M, Escrig S, Lavik G, Kuypers MMM, Meibom A et al. 2018. Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium. Environ. Microbiol. Rep. 10:179–83
    [Google Scholar]
  81. Zumstein MT, Schintlmeister A, Nelson TF, Baumgartner R, Woebken D et al. 2018. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4:eaas9024
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010714
Loading
/content/journals/10.1146/annurev-marine-010419-010714
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error