1932

Abstract

Tides are changing worldwide at rates not explained by astronomical forcing. Rather, the observed evolution of tides and other long waves, such as storm surges, is influenced by shelf processes and changes to the roughness, depth, width, and length of embayments, estuaries, and tidal rivers. In this review, we focus on processes in estuaries and tidal rivers, because that is where the largest changes to tidal properties are occurring. Recent literature shows that changes in tidal amplitude have been ubiquitous worldwide over the past century, often in response to wetland reclamation, channel dredging, and other environmental changes. While tidal amplitude changes are sometimes slight (<1%) or even negative, we identify two types of systems that are particularly prone to tidal amplification: () shallow, strongly damped systems, in which a small increase in depth produces a large decrease in effective friction, and () systems in which wave reflection and resonance are strongly influenced by changes to depth, friction, and convergence. The largest changes in amplitude occur inland, some distance from the coast, and can sometimes be measured in meters. Tide changes are a leading indicator that the dynamics of storm surges and river flood waves have also changed and are often associated with shifts in sediment transport, salinity intrusion, and ecosystem properties. Therefore, the dynamics of tidal evolution have major implications for coastal management, particularly for systems that are sensitive to changes in geometry induced by sea-level rise and anthropogenic development.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Changing Tides: The Role of Natural and Anthropogenic Factors
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010727
2020-01-03
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010727.html?itemId=/content/journals/10.1146/annurev-marine-010419-010727&mimeType=html&fmt=ahah

Literature Cited

  1. Aiken CM. 2008. Barotropic tides of the Chilean Inland Sea and their sensitivity to basin geometry. J. Geophys. Res. 113:C08024
    [Google Scholar]
  2. Aldersey-Williams H. 2016. The Tide: The Science and Stories Behind the Greatest Force on Earth New York: Norton
    [Google Scholar]
  3. Amin M. 1983. On perturbations of harmonic constants in the Thames Estuary. Geophys. J. Int. 73:587–603
    [Crossref] [Google Scholar]
  4. Araújo IB, Dias JM, Pugh DT 2008. Model simulations of tidal changes in a coastal lagoon, the Ria de Aveiro (Portugal). Cont. Shelf Res. 28:1010–25
    [Crossref] [Google Scholar]
  5. Arbic BK, Garrett C. 2010. A coupled oscillator model of shelf and ocean tides. Cont. Shelf Res. 30:564–74
    [Crossref] [Google Scholar]
  6. Arbic BK, Karsten RH, Garrett C 2009. On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides. Atmos.-Ocean 47:239–66
    [Crossref] [Google Scholar]
  7. Aretxabaleta AL, Ganju NK, Butman B, Signell RP 2017. Observations and a linear model of water level in an interconnected inlet-bay system. J. Geophys. Res. Oceans 122:2760–80
    [Crossref] [Google Scholar]
  8. Arns A, Dangendorf S, Jensen J, Talke S, Bender J, Pattiaratchi C 2017. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7:40171
    [Crossref] [Google Scholar]
  9. Barnard PL, Erikson LH, Kvitek RG 2011. Small-scale sediment transport patterns and bedform morphodynamics: new insights from high-resolution multibeam bathymetry. Geo-Mar. Lett. 31:227–36
    [Crossref] [Google Scholar]
  10. Best J. 2005. The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. 110: F04S02
    [Google Scholar]
  11. Bilskie MV, Hagen SC, Medeiros SC, Passeri DL 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophys. Res. Lett. 41:927–34
    [Crossref] [Google Scholar]
  12. Blanchard J. 1941. The history of electrical resonance. Bell Syst. Tech. J. 20:415–33
    [Crossref] [Google Scholar]
  13. Burgos AG, Hamlington BD, Thompson PR, Ray RD 2018. Future nuisance flooding in Norfolk, VA, from astronomical tides and annual to decadal internal climate variability. Geophys. Res. Lett. 45:12432–39
    [Crossref] [Google Scholar]
  14. Buschman FA, Hoitink AJF, van der Vegt M, Hoekstra H 2009. Subtidal water level variation controlled by river flow and tides. Water Resour. Res. 45:W10420
    [Crossref] [Google Scholar]
  15. Cai H, Savenije HHG, Tofflon M 2012a. A new analytical framework for assessing the effect of sea-level rise and dredging on tidal damping in estuaries. J. Geophys. Res. 117:C09023
    [Google Scholar]
  16. Cai H, Savenije HHG, Toffolon M 2014. Linking the river to the estuary: influence of river discharge on tidal damping. Hydrol. Earth Syst. Sci. 18:287–304
    [Crossref] [Google Scholar]
  17. Cai H, Savenije HHG, Yang Q, Suying O, Yaping L 2012b. Influence of river discharge and dredging on tidal wave propagation: Modaomen Estuary case. J. Hydraul. Eng. 138:885–96
    [Crossref] [Google Scholar]
  18. Cartwright DE. 1972. Secular changes in the oceanic tides at Brest, 1711–1936. Geophys. J. Int. 30:433–49
    [Crossref] [Google Scholar]
  19. Cartwright DE, Tayler RJ. 1971. New computations of the tide-generating potential. Geophys. J. R. Astron. Soc. 23:45–74
    [Crossref] [Google Scholar]
  20. Case WB, Swanson MA. 1990. The pumping of a swing from the seated position. Am. J. Phys. 58:463–67
    [Crossref] [Google Scholar]
  21. Chant RJ, Sommerfeld CK, Talke SA 2018. Impact of channel deepening on tidal and gravitational circulation in a highly engineered estuarine basin. Estuaries Coasts 41:1587–600
    [Crossref] [Google Scholar]
  22. Chernetsky AS, Schuttelaars HM, Talke SA 2010. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn 60:1219–41
    [Crossref] [Google Scholar]
  23. Church JA, White NJ. 2011. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32:585–602
    [Crossref] [Google Scholar]
  24. Cushman-Roisin B, Naimie CE. 2002. A 3D finite-element model of the Adriatic tides. J. Mar. Syst. 37:279–97
    [Crossref] [Google Scholar]
  25. Daborn GR, Dadswell MJ. 1988. Natural and anthropogenic changes in the Bay of Fundy – Gulf of Maine – Georges Bank system. Natural and Man-Made Hazards MI El-Sabh, TS Murty 547–60 Dordrecht, Neth.: Springer
    [Google Scholar]
  26. Dahl TE, Stedman SM. 2013. Status and trends of wetlands in the coastal watersheds of the Conterminous United States: 2004 to 2009 Rep., US Fish Wildl. Serv., US Dep. Interior, Washington, DC, and Natl. Mar. Fish. Serv., Natl. Ocean. Atmos. Adm. Silver Spring, MD:
    [Google Scholar]
  27. Dangendorf S, Marcos M, Wöppelmann G, Conrad CP, Frederikse T, Riva R 2017. Reassessment of 20th century global mean sea level rise. PNAS 114:5946–51
    [Crossref] [Google Scholar]
  28. Danielson S, Curchitser E, Hedstrom K, Weingartner T, Stabeno P 2011. On ocean and sea ice modes of variability in the Bering Sea. J. Geophys. Res. 116:C12034
    [Crossref] [Google Scholar]
  29. de Jonge VN, Schuttelaars HM, van Beusekom JMM, Talke SA, de Swart HE 2014. The influence of channel deepening on estuarine turbidity dynamics, as exemplified by the Ems estuary. Estuar. Coast. Shelf Sci. 139:46–59
    [Crossref] [Google Scholar]
  30. Devlin AT, Jay DA, Talke SA, Zaron E 2014. Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution?. Ocean Dyn 64:1093–120
    [Crossref] [Google Scholar]
  31. Devlin AT, Jay DA, Zaron ED, Talke SA, Pan J, Lin H 2017. Tidal variability related to sea level variability in the Pacific Ocean. J. Geophys. Res. Oceans 122:8445–63
    [Crossref] [Google Scholar]
  32. Devlin AT, Zaron ED, Jay DA, Talke SA, Pan J 2018. Seasonality of tides in Southeast Asian waters. J. Phys. Oceanogr. 48:1169–90
    [Crossref] [Google Scholar]
  33. Díez-Minguito M, Baquerizo A, Ortega-Sanchez M, Navarro G, Losada M 2012. Tide transformation in the Guadalquivir estuary (SW Spain) and process-based zonation. J. Geophys. Res. 117:C03019
    [Google Scholar]
  34. Dijkstra YM, Brouwer RL, Schuttelaars HM, Schramkowski GP 2017. The iFlow Modelling Framework v2.4. A modular idealized process-based model for flow and transport in estuaries. Geosci. Model Develop. 10:2691–713
    [Crossref] [Google Scholar]
  35. Dijkstra YM, Schuttelaars HM, Schramkowski GP, Brouwer RL 2019. Modeling the transition to high sediment concentrations as a response to channel deepening in the Ems River Estuary. J. Geophys. Res. Oceans 124:1578–94
    [Crossref] [Google Scholar]
  36. DiLorenzo JL, Huang P, Thatcher ML, Najarian TO 1993. Dredging impacts on Delaware Estuary tides. Estuarine and Coastal Modeling III: Proceedings of the 3rd International Conference ML Spaulding, K Bedford, A Blumberg, R Cheng, C Swanson 86–104 Reston, VA: Am. Soc. Civil Eng.
    [Google Scholar]
  37. Donatelli C, Ganju NK, Zhang X, Fagherazzi S, Leonardi N 2018. Salt marsh loss affects tides and the sediment budget in shallow bays. J. Geophys. Res. Earth Surface 123:2647–62
    [Crossref] [Google Scholar]
  38. Doodson AT. 1921. The harmonic development of the tide-generating potential. Proc. R. Soc. A 100:306–28
    [Google Scholar]
  39. Doodson AT. 1924. Perturbations of harmonic tidal constants. Proc. R. Soc. A 106:513–26
    [Google Scholar]
  40. Dronkers JJ. 1964. Tidal Computations in Rivers and Coastal Waters New York: Wiley
    [Google Scholar]
  41. Du J, Shen J, Zhang YJ, Ye F, Liu Z et al. 2018. Tidal response to sea-level rise in different types of estuaries: the importance of length, bathymetry, and geometry. Geophys. Res. Lett. 45:227–35
    [Crossref] [Google Scholar]
  42. Duff G. 1970. Tidal resonance and tidal barriers in the Bay of Fundy system. J. Fish. Res. Board Can. 27:1701–28
    [Crossref] [Google Scholar]
  43. Ensing H, de Swart HE, Henk HM, Schuttelaars M 2015. Sensitivity of tidal motion in well-mixed estuaries to cross-sectional shape, deepening, and sea level rise: an analytical study. Ocean Dyn 65:933–50
    [Crossref] [Google Scholar]
  44. Familkhalili R, Talke SA. 2016. The effect of channel deepening on storm surge: a case study of Wilmington, NC. Geophys. Res. Lett. 43:9138–47
    [Crossref] [Google Scholar]
  45. Feng X, Tsimplis MN, Woodworth PL 2015. Nodal variations and long-term changes in the main tides on the coasts of China. J. Geophys. Res. Oceans 120:1215–32
    [Crossref] [Google Scholar]
  46. Ferrarin C, Maicu F, Umgiesser G 2017. The effect of lagoons on Adriatic Sea tidal dynamics. Ocean Model 119:57–71
    [Crossref] [Google Scholar]
  47. Ferrarin C, Tomasin A, Bajo M, Petrizzo A, Umgiesser G 2015. Tidal changes in a heavily modified coastal wetland. Cont. Shelf Res. 101:22–33
    [Crossref] [Google Scholar]
  48. Flick RE, Murray JF, Ewing LC 2003. Trends in United States tidal datum statistics and tide range. J. Water-way Port Coast. Ocean Eng. 129:155–64
    [Crossref] [Google Scholar]
  49. Fong S, Heaps N. 1978. Note on the quarter-wave tidal resonance in the Bristol Channel Rep. 63, Inst. Oceanogr. Sci. Surrey, UK:
    [Google Scholar]
  50. Foreman MGG. 1977. Manual for tidal currents analysis and prediction Pac. Mar. Sci. Rep. 77-10, Inst. Ocean Sci. Sidney, BC, Can:.
    [Google Scholar]
  51. Foreman MGG, Henry RF. 1989. The harmonic analysis of tidal model time series. Adv. Water Resour. 12:109–20
    [Crossref] [Google Scholar]
  52. Foreman MGG, Henry RF, Walters RA, Ballantyne VA 1993. A finite element model for tides and resonance along the north coast of British Columbia. J. Geophys. Res. 98:2509–31
    [Crossref] [Google Scholar]
  53. Friedrichs CT. 2010. Barotropic tides in channelized estuaries. Contemporary Issues in Estuarine Physics A Valle-Levinson 27–61 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  54. Friedrichs CT, Aubrey DG. 1988. Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar. Coast. Shelf Sci. 27:521–45
    [Crossref] [Google Scholar]
  55. Friedrichs CT, Aubrey DG. 1994. Tidal propagation in strongly convergent channels. J. Geophys. Res. 99:3321–36
    [Crossref] [Google Scholar]
  56. Gallo MN, Vinzon SB. 2005. Generation of overtides and compound tides in Amazon estuary. Ocean Dyn 55:441–48
    [Crossref] [Google Scholar]
  57. Gao GD, Wang XH, Bao XW 2014. Land reclamation and its impact on tidal dynamics in Jiaozhou Bay, Qingdao, China. Estuar. Coast. Shelf Sci. 151:285–94
    [Crossref] [Google Scholar]
  58. Garel E, Cai H. 2018. Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary. Estuaries Coasts 41:1924–42
    [Crossref] [Google Scholar]
  59. Garrett CJR. 1972. Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature 238:441–43
    [Crossref] [Google Scholar]
  60. Garrett CJR, Keeley JR, Greenberg DA 1978. Tidal mixing versus thermal stratification in the Bay of Fundy and Gulf of Maine. Atmos.-Ocean 16:403–23
    [Crossref] [Google Scholar]
  61. Giese BS, Jay DA. 1989. Modelling tidal energetics of the Columbia River Estuary. Estuar. Coast. Shelf Sci. 29:549–71
    [Crossref] [Google Scholar]
  62. Gilbert GK. 1917. Hydraulic-mining débris in the Sierra Nevada Prof. Pap. 105, US Geol. Surv. Washington, DC:
    [Google Scholar]
  63. Godin G. 1986. The use of nodal corrections in the calculation of harmonic constants. Int. Hydrogr. Rev. 63:143–62
    [Google Scholar]
  64. Godin G. 1991. Compact approximations to the bottom friction term, for the study of tides propagating in channels. Cont. Shelf Res. 11:579–89
    [Crossref] [Google Scholar]
  65. Godin G. 1993. On tidal resonance. Cont. Shelf Res. 13:89–107
    [Crossref] [Google Scholar]
  66. Godin G. 1995. Rapid evolution of the tide in the Bay of Fundy. Cont. Shelf Res. 15:369–72
    [Crossref] [Google Scholar]
  67. Godin G. 1999. The propagation of tides up rivers with special considerations on the upper Saint Lawrence River. Estuar. Coast. Shelf Sci. 48:307–24
    [Crossref] [Google Scholar]
  68. Gräwe U, Burchard H, Müller M, Schuttelaars HM 2014. Seasonal variability in M2 and M4 tidal constituents and its implications for the coastal residual sediment transport. Geophys. Res. Lett. 41:5563–70
    [Crossref] [Google Scholar]
  69. Green G. 1837. On the motion of waves in a variable canal of small depth and width. Trans. Camb. Philos. Soc. 6:457–62
    [Google Scholar]
  70. Greenberg DA, Blanchard W, Smith B, Barrow E 2012. Climate change, mean sea level and high tides in the Bay of Fundy. Atmos.-Ocean 50:261–76
    [Crossref] [Google Scholar]
  71. Guo L, van der Wegen M, Jay DA, Matte P, Wang ZB et al. 2015. River-tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. J. Geophys. Res. Oceans 120:3499–521
    [Crossref] [Google Scholar]
  72. Guo W, Wang XH, Ding P, Ge J, Song D 2018. A system shift in tidal choking due to the construction of Yangshan Harbour, Shanghai, China. Estuar. Coast. Shelf Sci. 206:49–60
    [Crossref] [Google Scholar]
  73. Haigh ID, Eliot M, Pattiaratchi C 2011. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. J. Geophys. Res. Oceans 116:C06025
    [Crossref] [Google Scholar]
  74. Haigh ID, Pickering MD, Green JAM, Arbic BK, Arns A et al. 2019. The tides they are a changin’. Rev. Geophys. In press
    [Google Scholar]
  75. Hall GF, Hill DF, Horton BP, Engelhart SE, Peltier WR 2013. A high-resolution study of tides in the Delaware Bay: past conditions and future scenarios. Geophys. Res. Lett. 40:338–42
    [Crossref] [Google Scholar]
  76. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J 2013. Future flood losses in major coastal cities. Nat. Clim. Change 3:802–6
    [Crossref] [Google Scholar]
  77. Harker A, Green JAM, Schindelegger M, Wilmes S-B 2019. The impact of sea-level rise on tidal characteristics around Australia. Ocean Sci 15:147–59
    [Crossref] [Google Scholar]
  78. Hay CC, Morrow E, Kopp RE, Mitrovica JX 2015. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–84
    [Crossref] [Google Scholar]
  79. Helaire LT, Talke SA, Jay DA, Mahedy D 2019. Historical changes in lower Columbia River and Estuary floods: a numerical study. J. Geophys. Res. Oceans In press. https://doi.org/10.1029/2019JC015055
    [Crossref] [Google Scholar]
  80. Hill AE. 1994. Fortnightly tides in a lagoon with variable choking. Estuar. Coast. Shelf Sci. 38:423–34
    [Crossref] [Google Scholar]
  81. Hill DF. 2016. Spatial and temporal variability in tidal range: evidence, causes, and effects. Curr. Clim. Change Rep. 2:232–41
    [Crossref] [Google Scholar]
  82. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ et al. 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS 111:3292–97
    [Crossref] [Google Scholar]
  83. Hoitink AJF, Jay DA. 2016. Tidal river dynamics: implications for deltas. Rev. Geophys. 54:240–72
    [Crossref] [Google Scholar]
  84. Hollebrandse FAP. 2005. Temporal development of the tidal range in the southern North Sea MS Thesis, Delft Univ. Technol. Delft, Neth:.
    [Google Scholar]
  85. Holleman RC, Stacey MT. 2014. Coupling of sea level rise, tidal amplification, and inundation. J. Phys. Oceanogr. 44:1439–55
    [Crossref] [Google Scholar]
  86. Idier D, Paris F, Cozannet GL, Boulahya F, Dumas F 2017. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137:56–71
    [Crossref] [Google Scholar]
  87. IHO (Int. Hydrogr. Organ.) 1994. Hydrographic Dictionary: Part I, Volume I, English Spec. Publ. 32 Monaco: IHO. , 5th ed..
    [Google Scholar]
  88. Jalon-Rojas I, Sottolichio A, Hanquiez V, Fort A, Schmidt S 2018. To what extent multidecadal changes in morphology and fluvial discharge impact tide in a convergent (turbid) tidal river. J. Geophys. Res. Oceans 123:3241–58
    [Crossref] [Google Scholar]
  89. Jay DA. 1991. Green's law revisited: tidal long wave propagation in channels with strong topography. J. Geophys. Res. 96:20585–98
    [Crossref] [Google Scholar]
  90. Jay DA. 2009. Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys. Res. Lett. 36:L04603
    [Crossref] [Google Scholar]
  91. Jay DA, Giese BS, Sherwood CR 1990. Energetics and sedimentary processes in the Columbia River Estuary. Prog. Oceanogr. 25:157–74
    [Crossref] [Google Scholar]
  92. Jay DA, Leffler K, Degens S 2011. Long-term evolution of Columbia River tides. J. Waterway Port Coast. Ocean Eng. 137:182–91
    [Crossref] [Google Scholar]
  93. Jay DA, Leffler K, Diefenderfer HL, Borde AB 2015. Tidal-fluvial and estuarine processes in the lower Columbia River: I. Along-channel water level variations, Pacific Ocean to Bonneville Dam. Estuaries Coasts 38:415–33
    [Crossref] [Google Scholar]
  94. Jay DA, Leffler K, Diefenderfer HL, Borde AB 2016. Tidal-fluvial and estuarine processes in the lower Columbia River: II. Water level models, floodplain wetland inundation, and system zones. Estuaries Coasts 39:1299–324
    [Crossref] [Google Scholar]
  95. Jensen J, Mudersbach C. 2007. Zeitliche Änderungen in den Wasserstandszeitreihen an den Deutschen Küsten. Ber. Dtsch. Landeskd. 81:99–112
    [Google Scholar]
  96. Katavouta A, Thompson KR, Lu Y, Loder JW 2016. Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian Shelf region. J. Phys. Oceanogr. 46:3279–98
    [Crossref] [Google Scholar]
  97. Kemp AC, Hill TD, Bernhardt C, Vane CH, Cahill N et al. 2017. Relative sea-level trends in New York City during the past ∼1500 years. Holocene 27:1169–86
    [Crossref] [Google Scholar]
  98. Kemp AC, Horton BP. 2013. Contribution of relative sea-level rise to historical hurricane flooding in New York City. J. Quat. Sci. 28:537–41
    [Crossref] [Google Scholar]
  99. Kenchington EL, Kenchington TJ, Henry LA, Fuller S, Gonzalez P 2007. Multi-decadal changes in the megabenthos of the Bay of Fundy: the effects of fishing. J. Sea Res. 58:220–40
    [Crossref] [Google Scholar]
  100. Kukulka T, Jay DA. 2003a. Impacts of Columbia River discharge on salmonid habitat: 1. A non-stationary fluvial tide model. J. Geophys. Res. 108:3293
    [Google Scholar]
  101. Kukulka T, Jay DA. 2003b. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat. J. Geophys. Res. 108:3294
    [Google Scholar]
  102. Kvale EP. 2006. The origin of neap-spring tidal cycles. Mar. Geol. 235:5–18
    [Crossref] [Google Scholar]
  103. Lanzoni S, Seminara G. 1998. On tide propagation in convergent estuaries. J. Geophys. Res. 103:30793–812
    [Crossref] [Google Scholar]
  104. LeBlond PH. 1978. On tidal propagation in shallow rivers. J. Geophys. Res. Atmos. 83:4717–21
    [Crossref] [Google Scholar]
  105. Lee SB, Li M, Zhang F 2017. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. J. Geophys. Res. Oceans 122:3917–38
    [Crossref] [Google Scholar]
  106. Li C, Schuttelaars HM, Roos PC, Damveld JH, Gong W, Hulscher SJMH 2016. Influence of retention basins on tidal dynamics in estuaries: application to the Ems estuary. Ocean Coast. Manag. 134:216–25
    [Crossref] [Google Scholar]
  107. Li C, Valle-Levinson A. 1999. A two-dimensional analytic tidal model for a narrow estuary of arbitrary lateral depth variation: the intratidal motion. J. Geophys. Res. Oceans 104:23525–43
    [Crossref] [Google Scholar]
  108. Li L, Guan W, Hu J, Cheng P, Wang XH 2018. Responses of water environment to tidal flat reduction in Xiangshan Bay: part I hydrodynamics. Estuar. Coast. Shelf Sci. 206:14–26
    [Crossref] [Google Scholar]
  109. Li YF, Zhang H, Tang C, Zou T, Jiang DJ 2016. Influence of rising sea level on tidal dynamics in the Bohai Sea. J. Coast. Res. Spec. Issue 74:22–31
    [Crossref] [Google Scholar]
  110. Liang D, Xia J, Falconer RA, Zhang J 2014. Study on tidal resonance in Severn Estuary and Bristol Channel. Coast. Eng. J 56:1450002–118
    [Google Scholar]
  111. Losada MA, Díez-Minguito M, Reyes-Merlo M 2017. Tidal-fluvial interaction in the Guadalquivir River Estuary: spatial and frequency-dependent response of currents and water levels. J. Geophys. Res. Oceans 122:847–65
    [Crossref] [Google Scholar]
  112. MacMahan J, van de Kreeke J, Reniers A, Elgar S, Raubenheimer B et al. 2014. Fortnightly tides and subtidal motions in a choked inlet. Estuar. Coast. Shelf Sci. 150:325–31
    [Crossref] [Google Scholar]
  113. Marmer HA. 1922. Tides in the Bay of Fundy. Geogr. Rev. 12:195–205
    [Crossref] [Google Scholar]
  114. Marmer HA. 1935. Tides and Currents in New York Harbor Washington, DC: Gov. Print. Off.
    [Google Scholar]
  115. Matte P, Jay DA, Zaron ED 2013. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides. J. Atmos. Ocean. Technol. 30:569–89
    [Crossref] [Google Scholar]
  116. Matte P, Secretan Y, Morin J 2014. Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary: an application of nonstationary tidal harmonic analysis. J. Geophys. Res. Oceans 119:5724–44
    [Crossref] [Google Scholar]
  117. Mawdsley RJ, Haigh ID, Wells NC 2015. Global secular changes in different tidal high water, low water and range levels. Earth's Future 3:66–81
    [Crossref] [Google Scholar]
  118. Menendez M, Woodworth PL. 2010. Changes in extreme high water levels based on a quasi-global tide-gauge dataset. J. Geophys. Res. 115:C10011
    [Google Scholar]
  119. Merrifield MA, Genz AS, Kontoes CP, Marra JJ 2013. Annual maximum water levels from tide gauges: contributing factors and geographic patterns. J. Geophys. Res. 118:2535–46
    [Crossref] [Google Scholar]
  120. Miles JW. 1971. Resonant response of harbors: an equivalent-circuit analysis. J. Fluid Mech. 46:241–65
    [Crossref] [Google Scholar]
  121. Moftakhari HR, AghaKouchak A, Sanders BF, Feldman DL, Sweet W et al. 2015. Increased nuisance flooding along the coasts of the United States due to sea level rise: past and future. Geophys. Res. Lett. 42:9846–52
    [Crossref] [Google Scholar]
  122. Moftakhari HR, AghaKouchak A, Sanders BF, Matthew RA 2017. Cumulative hazard: the case of nuisance flooding. Earth's Future 5:214–23
    [Crossref] [Google Scholar]
  123. Moftakhari HR, Jay DA, Talke SA 2016. Estimating river discharge using multiple-tide gauges distributed along a channel. J. Geophys. Res. Oceans 121:2078–97
    [Crossref] [Google Scholar]
  124. Moftakhari HR, Jay DA, Talke SA, Kukulka T, Bromirski PD 2013. A novel approach to flow estimation in tidal rivers. Water Resour. Res. 49:4817–32
    [Crossref] [Google Scholar]
  125. Montgomery DR. 2007. Dirt: The Erosion of Civilizations Berkeley: Univ. Calif. Press
    [Google Scholar]
  126. Müller M. 2011. Rapid change in semi-diurnal tides in the North Atlantic since 1980. Geophys. Res. Lett. 38:L11602
    [Crossref] [Google Scholar]
  127. Müller M. 2012. The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides. Cont. Shelf Res. 47:107–18
    [Crossref] [Google Scholar]
  128. Müller M, Arbic BK, Mitrovica JX 2011. Secular trends in ocean tides: observations and model results. J. Geophys. Res. 116:C05013
    [Google Scholar]
  129. Müller M, Cherniawsky J, Foreman M, von Storch J-S 2014. Seasonal variation of the M2 tide. Ocean Dyn 64:159–77
    [Crossref] [Google Scholar]
  130. Murray NJ, Clemens RS, Phinn SR, Possingham HP, Fuller RA 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12:267–72
    [Crossref] [Google Scholar]
  131. Naik P, Jay DA. 2011. Distinguishing human and climate impacts on Columbia River: changes in mean flow and sediment transport. J. Hydrol. 404:259–77
    [Crossref] [Google Scholar]
  132. Nepf H. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35:479–89
    [Crossref] [Google Scholar]
  133. Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding – a global assessment. PLOS ONE 10:e0118571
    [Crossref] [Google Scholar]
  134. Nicholls RJ, Cazenave A. 2010. Sea-level rise and its impact on coastal zones. Science 328:1517–20
    [Crossref] [Google Scholar]
  135. Nicholls RJ, Hoozemans FMJ, Marchand M 1999. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob. Environ. Change 9:S69–87
    [Crossref] [Google Scholar]
  136. Oey L-Y, Ezer T, Hu C, Muller-Karger FE 2007. Baroclinic tidal flows and inundation processes in Cook Inlet, Alaska: numerical modeling and satellite observations. Ocean Dyn 57:205–21
    [Crossref] [Google Scholar]
  137. Orton PM, Hall TM, Talke SA, Georgas N, Blumberg AF, Vinogradov S 2016. A validated tropical-extratropical flood hazard assessment for New York Harbor. J. Geophys. Res. 121:8904–29
    [Google Scholar]
  138. Orton PM, Talke SA, Jay DA, Yin L, Blumberg AF et al. 2015. Channel shallowing as mitigation of coastal flooding. J. Mar. Sci. Eng. 3:654–73
    [Crossref] [Google Scholar]
  139. Parker BB. 1991. The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions. Tidal Hydrodynamics BB Parker 237–68 New York: Wiley
    [Google Scholar]
  140. Passeri DL, Hagen SC, Plant NG, Bilskie MV, Medeiros SC, Alizad K 2016. Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico. Earth's Future 4:159–76
    [Crossref] [Google Scholar]
  141. Pawlowicz R, Beardsley B, Lentz S 2002. Classical tidal harmonics analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci. 28:929–37
    [Crossref] [Google Scholar]
  142. Pelling HE, Green JAM. 2013. Sea level rise and tidal power plants in the Gulf of Maine. J. Geophys. Res. Ocean 118:2863–73
    [Crossref] [Google Scholar]
  143. Pelling HE, Green JAM, Ward SL 2013a. Modelling tides and sea-level rise: to flood or not to flood. Ocean Model 63:21–29
    [Crossref] [Google Scholar]
  144. Pelling HE, Uehara K, Green JAM 2013b. The impact of rapid coastline changes and sea level rise on the tides in the Bohai Sea, China. J. Geophys. Res. Oceans 118:3462–72
    [Crossref] [Google Scholar]
  145. Pickering MD, Horsburgh KJ, Blundell JR, Hirschi JJ-M, Nicholls RJ et al. 2017. The impact of future sea‐level rise on the global tides. Cont. Shelf Res. 142:50–68
    [Crossref] [Google Scholar]
  146. Pickering MD, Wells NC, Horsburgh KJ, Green JAM 2012. The impact on the European Shelf tides by future sea‐level rise. Cont. Shelf Res. 35:1–15
    [Crossref] [Google Scholar]
  147. Prandle D. 1991. Tides in estuaries and embayments (review). Tidal Hydrodynamics BB Parker 125–52 New York: Wiley & Sons
    [Google Scholar]
  148. Prandle D. 2003. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries. J. Phys. Oceanogr. 33:2738–50
    [Crossref] [Google Scholar]
  149. Prandle D, Rahman M. 1980. Tidal response in estuaries. J. Phys. Oceanogr. 10:1552–73
    [Crossref] [Google Scholar]
  150. Pugh DT. 1987. Tides, Surges and Mean Sea Level New York: Wiley & Sons
    [Google Scholar]
  151. Ralston DK, Talke SA, Geyer WR, Al'Zubadaei H, Sommerfield CK 2019. Bigger tides, less flooding: effects of dredging on water level in the Hudson River estuary. J. Geophys. Res. 124:196–211
    [Crossref] [Google Scholar]
  152. Ray RD. 2006. Secular changes of the M tide in the Gulf of Maine. Cont. Shelf Res. 26:422–27
    [Crossref] [Google Scholar]
  153. Ray RD. 2009. Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophys. Res. Lett. 36:L02610
    [Crossref] [Google Scholar]
  154. Ray RD, Foster G. 2016. Future nuisance flooding at Boston caused by astronomical tides alone. Earth's Future 4:578–87
    [Crossref] [Google Scholar]
  155. Ray RD, Talke SA. 2019. Nineteenth-century tides in the Gulf of Maine and implications for secular trends. J. Geophys. Res. Oceans In press. https://doi.org/10.1029/2019JC015277
    [Crossref] [Google Scholar]
  156. Reidy MS. 2008. Tides of History: Ocean Science and Her Majesty's Navy Chicago: Univ. Chicago Press
    [Google Scholar]
  157. Rodríguez-Padilla I, Ortiz M. 2017. On the secular changes in the tidal constituents in San Francisco Bay. J. Geophys. Res. Oceans 122:7395–406
    [Crossref] [Google Scholar]
  158. Ross AC, Najjar RG, Li M, Lee SB, Zhang F, Liu W 2017. Fingerprints of sea level rise on changing tides in the Chesapeake and Delaware Bays. J. Geophys. Res. Oceans 122:8102–25
    [Crossref] [Google Scholar]
  159. Rueda A, Vitousek S, Camus P, Tomás A, Espejo A et al. 2017. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing. Sci. Rep. 7:5038
    [Crossref] [Google Scholar]
  160. Rusdiansyah A, Tang Y, He1 Z, Li L et al. 2018. The impacts of the large-scale hydraulic structures on tidal dynamics in open-type bay: numerical study in Jakarta Bay. Ocean Dyn 68:1141–54
    [Crossref] [Google Scholar]
  161. Savenije HHG, Toffolon M, Haas J, Veling EJM 2008. Analytical description of tidal dynamics in convergent estuaries. J. Geophys. Res. 113:C10025
    [Google Scholar]
  162. Savenije HHG, Veling EJM. 2005. The relation between tidal damping and wave celerity in estuaries. J. Geophys. Res. 110:C04007
    [Google Scholar]
  163. Schindelegger M, Green JAM, Wilmes SB, Haigh ID 2018. Can we model the effect of observed sea level rise on tides?. J. Geophys. Res. 123:4593–609
    [Crossref] [Google Scholar]
  164. Schoellhamer DH. 2011. Sudden clearing of estuarine waters upon crossing the threshold from transport to supply regulation of sediment transport as an erodible sediment pool is depleted: San Francisco Bay, 1999. Estuaries Coasts 34:885–99
    [Crossref] [Google Scholar]
  165. Schureman P. 1934. Tides and Currents in Hudson River Washington, DC: Gov. Print. Off.
    [Google Scholar]
  166. Seasholes NS. 2003. Gaining Ground: A History of Landmaking in Boston Cambridge, MA: MIT Press
    [Google Scholar]
  167. Simpson JH, Hunter J. 1974. Fronts in the Irish Sea. Nature 250:404–6
    [Crossref] [Google Scholar]
  168. Skiba AW, Zeng L, Arbic BK, Müller M, Goodwin WJ 2013. On the resonance and shelf/open-ocean coupling of the global diurnal tides. J. Phys. Oceanogr. 43:1301–24
    [Crossref] [Google Scholar]
  169. Song D, Wang XH, Zhu X, Bao X 2013. Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas. Estuar. Coast. Shelf Sci. 133:147e160
    [Crossref] [Google Scholar]
  170. Speer PE, Aubrey D. 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems, part II: theory. Estuar. Coast. Shelf Sci. 21:206–40
    [Crossref] [Google Scholar]
  171. Stigebrandt A. 1980. Some aspects of tidal interaction with fjord constrictions. Estuar. Coast. Mar. Sci. 11:151–66
    [Crossref] [Google Scholar]
  172. Sweet WV, Kopp RE, Weaver CP, Obeysekera J, Horton RM et al. 2017. Global and regional sea level rise scenarios for the United States Tech. Rep. 83, Natl. Ocean Serv., Natl Ocean. Atmos. Adm. Silver Spring, MD:
    [Google Scholar]
  173. Sweet WV, Park J. 2014. From the extreme to the mean: acceleration and tipping points of coastal inundation from sea level rise. Earth's Future 2:579–600
    [Crossref] [Google Scholar]
  174. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR 2009. Sinking deltas due to human activities. Nat. Geosci. 2:681–86
    [Crossref] [Google Scholar]
  175. Talke SA, de Swart HE, de Jonge VN 2009a. An idealized model and systematic process study of oxygen depletion in highly turbid estuaries. Estuaries Coasts 32:602–20
    [Crossref] [Google Scholar]
  176. Talke SA, de Swart HE, Schuttelaars HM 2009b. Feedback between residual circulation and sediment distribution in highly turbid estuaries: an analytical model. Cont. Shelf Res. 29:119–35
    [Crossref] [Google Scholar]
  177. Talke SA, Horner-Devine AR, Chickadel CC 2010. Mixing layer dynamics in separated flow over an estuarine sill with variable stratification. J. Geophys. Res. 115:C09004
    [Google Scholar]
  178. Talke SA, Horner-Devine AR, Chickadel CC, Jessup AT 2013. Turbulent kinetic energy and coherent structures in a tidal river. J. Geophys. Res. 118:6965–81
    [Crossref] [Google Scholar]
  179. Talke SA, Jay DA. 2013. Nineteenth century North American and Pacific tidal data: lost or just forgotten?. J. Coast. Res. 291:118–27
    [Crossref] [Google Scholar]
  180. Talke SA, Jay DA. 2017. Archival water-level measurements: recovering historical data to help design for the future Civil Works Tech. Ser. Rep. 2017-02, US Army Corps Eng. Portland Dist. Portland, OR:
    [Google Scholar]
  181. Talke SA, Kemp A, Woodruff J 2018. Relative sea level, tides, and extreme water levels in Boston (MA) from 1825 to 2018. J. Geophys. Res. 123:3895914
    [Crossref] [Google Scholar]
  182. Talke SA, Orton P, Jay DA 2014. Increasing storm tides in New York Harbor, 1844–2013. Geophys. Res. Lett. 41:3149–55
    [Crossref] [Google Scholar]
  183. Talke SA, Stacey MT. 2003. The influence of oceanic swell on flows over an estuarine intertidal mudflat in San Francisco Bay. Estuar. Coast. Shelf Sci. 58:541–54
    [Crossref] [Google Scholar]
  184. Templeton WJ, Jay DA. 2013. Lower Columbia river sand supply and removal: estimates of two sand budget components. J. Waterway Port Coast. Ocean Eng. 139:383–92
    [Crossref] [Google Scholar]
  185. Tennekes H, Lumley JL. 1990. A First Course in Turbulence Cambridge, MA: MIT Press
    [Google Scholar]
  186. Terra GM. 2005. Non-linear tidal resonance PhD Thesis, Univ Amsterdam, Amsterdam:
    [Google Scholar]
  187. Toffolon M, Savenije HG. 2011. Revisiting linearized one‐dimensional tidal propagation. J. Geophys. Res. 116:C07007
    [Google Scholar]
  188. van de Ven CP. 1993. Man-Made Lowlands: History of Water Management and Land Reclamation in the Netherlands Utrecht, Neth.: Uitgeverij Matrijs
    [Google Scholar]
  189. van Maren DS, Winterwerp JC, Vroom J 2015. Fine sediment transport into the hyper-turbid lower Ems River: the role of channel deepening and sediment-induced drag reduction. Ocean Dyn 65:589–605
    [Crossref] [Google Scholar]
  190. van Rijn LC. 2011. Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent tidal channels. Ocean Dyn 61:1719–41
    [Crossref] [Google Scholar]
  191. van Rijn LC, Grasmeijer B, Perk L 2018. Effect of channel deepening on tidal flow and sediment transport: part I—sandy channels. Ocean Dyn 68:1457
    [Crossref] [Google Scholar]
  192. Vellinga NE, Hoitink AJF, van der Vegt M, Zhang W, Hoekstra P 2014. Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine-Meuse delta. Coast. Eng. 90:40–50
    [Crossref] [Google Scholar]
  193. Wang ZB, Winterwerp JC, He Q 2014. Interaction between suspended sediment and tidal amplification in the Guadalquivir Estuary. Ocean Dyn 64:1487–98
    [Crossref] [Google Scholar]
  194. Webb DJ. 2012. On the shelf resonances of the Gulf of Carpentaria and the Arafura Sea. Ocean Sci 8:733–50
    [Crossref] [Google Scholar]
  195. White J. 2017. Tides: The Science and Spirit of the Ocean San Antonio, TX: Trinity Univ. Press
    [Google Scholar]
  196. Winterwerp JC, Wang ZB. 2013. Man-induced regime shifts in small estuaries—I: theory. Ocean Dyn 63:1279–92
    [Crossref] [Google Scholar]
  197. Winterwerp JC, Wang ZB, van Braeckel A, van Holland G, Kösters F 2013. Man-induced regime shifts in small estuaries—II: a comparison of rivers. Ocean Dyn 63:1293–306
    [Crossref] [Google Scholar]
  198. Wong KC. 1990. Sea level variability in Long Island Sound. Estuaries 13:362–72
    [Crossref] [Google Scholar]
  199. Woodworth PL. 2010. A survey of recent changes in the main components of the ocean tide. Cont. Shelf Res. 30:1680–91
    [Crossref] [Google Scholar]
  200. Woodworth PL, Blackman DL. 2004. Evidence for systematic changes in extreme high waters since the mid‐1970s. J. Clim. 17:1190–97
    [Crossref] [Google Scholar]
  201. Zaron ED, Jay DA. 2014. An analysis of secular change in tides at open-ocean sites in the Pacific. J. Phys. Oceanogr. 44:1704–26
    [Crossref] [Google Scholar]
  202. Zhang W, Ruan X, Zheng J, Zhu Y, Wu H 2010. Long-term change in tidal dynamics and its cause in the Pearl River Delta, China. Geomorphology 120:209–23
    [Crossref] [Google Scholar]
  203. Zhang X, Church JA. 2012. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 39:L21701
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010727
Loading
/content/journals/10.1146/annurev-marine-010419-010727
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error