1932

Abstract

Compared with terrestrial ecosystems, marine ecosystems have a higher proportion of heterotrophic biomass. Building from this observation, we define the North Atlantic biome as the region where the large, lipid-rich copepod is the dominant mesozooplankton species. This species is superbly adapted to take advantage of the intense pulse of productivity associated with the North Atlantic spring bloom. Most of the characteristic North Atlantic species, including cod, herring, and right whales, rely on either directly or indirectly. The notion of a biome rests inherently on an assumption of stability, yet conditions in the North Atlantic are anything but stable. Humans have reduced the abundance of many fish and whales (though some recovery is underway). Humans are also introducing physical and chemical trends associated with global climate change. Thus, the future of the North Atlantic depends on the biome's newest species, .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010752
2020-01-03
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010752.html?itemId=/content/journals/10.1146/annurev-marine-010419-010752&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander KE, Leavenworth WB, Cournane J, Cooper AB, Claesson S et al. 2009. Gulf of Maine cod in 1861: historical analysis of fishery logbooks, with ecosystem implications. Fish Fish 10:428–49
    [Google Scholar]
  2. Alkire MB, Lee C, D'Asaro E, Perry MJ, Briggs N et al. 2014. Net community production and export from Seaglider measurements in the North Atlantic after the spring bloom. J. Geophys. Res. Oceans 119:6121–39
    [Google Scholar]
  3. Andelman SJ, Fagan WF. 2000. Umbrellas and flagships: efficient conservation surrogates or expensive mistakes?. PNAS 97:5954–59
    [Google Scholar]
  4. Årthun M, Bogstad B, Daewel U, Keenlyside NS, Sandø AB et al. 2018. Climate based multi-year predictions of the Barents Sea cod stock. PLOS ONE 13:e0206319
    [Google Scholar]
  5. Auel H, Hagen W, Ekau W, Verheye HM 2005. Metabolic adaptations and reduced respiration of the copepod Calanoides carinatus during diapause at depth in the Angola-Benguela Front and northern Benguela upwelling regions. Afr. J. Mar. Sci. 27:653–57
    [Google Scholar]
  6. Bakun A. 2006. Wasp-waist populations and marine ecosystem dynamics: navigating the “predator pit” topographies. Prog. Oceanogr. 68:271–88
    [Google Scholar]
  7. Banse K. 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. Primary Productivity and Biogeochemical Cycles in the Sea PG Falkowski, AD Woodhead, K Vivirito 409–40 Boston: Springer
    [Google Scholar]
  8. Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC 2003. Plankton effect on cod recruitment in the North Sea. Nature 426:661–64
    [Google Scholar]
  9. Beaugrand G, Ibañez F, Lindley JA 2001. Geographical distribution and seasonal and diel changes of the diversity of calanoid copepods in the North Atlantic and North Sea. Mar. Ecol. Prog. Ser. 219:189–203
    [Google Scholar]
  10. Beaugrand G, Kirby RR. 2010. Climate, plankton and cod. Glob. Change Biol. 16:1268–80
    [Google Scholar]
  11. Behrenfeld MJ, Boss ES. 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6:167–94
    [Google Scholar]
  12. Behrenfeld MJ, Doney SC, Lima I, Boss ES, Siegel DA 2013. Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Glob. Biogeochem. Cycles 27:526–40
    [Google Scholar]
  13. Best PB. 1987. Estimates of the landed catch of right (and other whalebone) whales in the American fishery, 1805–1909. Fish. Bull. 85:403–18
    [Google Scholar]
  14. Bettridge S, Baker CS, Barlow J, Clapham PJ, Ford M et al. 2015. Status review of the humpback whale (Megaptera novaeangliae) under the Endangered Species Act Tech. Memo. NOAA-TM-NMFS-SWFSC-540, Southwest Fish Sci. Cent., Natl. Mar. Fish. Serv., Natl. Ocean. Atmos. Adm. La Jolla, CA:
    [Google Scholar]
  15. Bienfang PK. 1980. Herbivore diet affects fecal pellet settling. Can. J. Fish. Aquat. Sci. 37:1352–57
    [Google Scholar]
  16. Brander KM. 2018. Climate change not to blame for cod population decline. Nat. Sustain. 1:262–64
    [Google Scholar]
  17. Brun P, Stamieszkin K, Visser AW, Licandro P, Payne MR, Kiørboe T 2019. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 3:416–23
    [Google Scholar]
  18. Cabrol J, Trombetta T, Amaudrut S, Aulanier F, Sage R et al. 2019. Trophic niche partitioning of dominant North‐Atlantic krill species, Meganyctiphanes norvegica, Thysanoessa inermis, and T. . raschii. Limnol. Oceanogr 64:165–81
    [Google Scholar]
  19. Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556:191–96
    [Google Scholar]
  20. Campbell RG, Wagner M, Teegarden GJ, Boudreau CA, Durbin EG 2001. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Mar. Ecol. Prog. Ser. 221:161–83
    [Google Scholar]
  21. Caro TM, O'Doherty G. 1999. On the use of surrogate species in conservation biology. Conserv. Biol. 13:805–14
    [Google Scholar]
  22. Carpenter JR. 1939. The biome. Am. Midl. Nat. 21:75–91
    [Google Scholar]
  23. Catul V, Gauns M, Karuppasamy PK 2011. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21:339–54
    [Google Scholar]
  24. Christensen LB. 2006. Marine mammal populations: reconstructing historical abundances at the global scale Fish. Cent. Res. Rep 143 Univ. B.C. Vancouver, Can.:
    [Google Scholar]
  25. Clapham P. 2001. Why do baleen whales migrate? A response to Corkeron and Connor. Mar. Mamm. Sci. 17:432–36
    [Google Scholar]
  26. Clements FE. 1916. The development and structure of biotic communities. J. Ecol. 5:12–21
    [Google Scholar]
  27. Corkeron PJ, Connor RC. 1999. Why do baleen whales migrate?. Mar. Mamm. Sci. 15:1228–45
    [Google Scholar]
  28. Cushing DH. 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26:249–93
    [Google Scholar]
  29. Dahlke FT, Leo E, Mark FC, Pörtner HO, Bickmeyer U et al. 2017. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Change Biol. 23:1499–510
    [Google Scholar]
  30. Dalpadado P, Ellertsen B, Melle W, Dommasnes A 2000. Food and feeding conditions of Norwegian spring-spawning herring (Clupea harengus) through its feeding migrations. ICES J. Mar. Sci. 57:843–57
    [Google Scholar]
  31. Daniels CJ, Poulton AJ, Esposito M, Paulsen ML, Bellerby R et al. 2015. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences 12:2395–409
    [Google Scholar]
  32. Danielsen NST, Hedeholm RB, Grønkjær P 2016. Seasonal changes in diet and lipid content of northern sand lance Ammodytes dubius on Fyllas Bank, West Greenland. Mar. Ecol. Prog. Ser. 558:97–113
    [Google Scholar]
  33. Davies KTA, Brillant SW. 2019. Mass human-caused mortality spurs federal action to protect endangered North Atlantic right whales in Canada. Mar. Policy 104:157–62
    [Google Scholar]
  34. Dell'Apa A, Schiavinato L, Rulifson RA 2012. The Magnuson–Stevens act 1976 and its reauthorizations: failure or success for the implementation of fishery sustainability and management in the US?. Mar. Policy 36:673–80
    [Google Scholar]
  35. Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–35
    [Google Scholar]
  36. Doughty CE, Roman J, Faurby S, Wolf A, Haque A et al. 2016. Global nutrient transport in a world of giants. PNAS 113:868–73
    [Google Scholar]
  37. Ducklow HW, Steinberg DK, Buesseler KO 2001. Upper ocean carbon export and the biological pump. Oceanography 14:450–58
    [Google Scholar]
  38. Eriksen E, Skjoldal HR, Gjøsæter H, Primicerio R 2017. Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Prog. Oceanogr. 151:206–26
    [Google Scholar]
  39. Evans GT, Parslow JS. 1985. A model of annual plankton cycles. Biol. Oceanogr. 3:327–47
    [Google Scholar]
  40. Fagan B. 2008. Fish on Friday: Feasting, Fasting, and the Discovery of the New World New York: Basic Books
    [Google Scholar]
  41. Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC 2009. Global patterns in belowground communities. Ecol. Lett. 12:1238–49
    [Google Scholar]
  42. Fogarty M, Incze L, Hayhoe K, Mountain D, Manning J 2008. Potential climate change impacts on Atlantic cod (Gadus morhua) off the Northeastern United States. Mitig. Adapt. Strateg. Glob. Change 13:453–66
    [Google Scholar]
  43. Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV 2015. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5:673–77
    [Google Scholar]
  44. Franks PJS, Chen CS. 2001. A 3-D prognostic numerical model study of the Georges Bank ecosystem. Part II: biological-physical model. Deep-Sea Res. II 48:457–82
    [Google Scholar]
  45. Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ et al. 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2:42–46
    [Google Scholar]
  46. Frommel AY, Schubert A, Piatkowski U, Clemmesen C 2013. Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Mar. Biol. 160:1825–34
    [Google Scholar]
  47. Gislason A. 2018. Life cycles and seasonal vertical distributions of copepods in the Iceland Sea. Polar Biol 41:2575–89
    [Google Scholar]
  48. Greene CH, Pershing AJ. 2007. Climate drives sea change. Science 315:1084–85
    [Google Scholar]
  49. Hacquebord L. 1999. The hunting of the Greenland right whale in Svalbard, its interaction with climate and its impact on the marine ecosystem. Polar Res 18:375–82
    [Google Scholar]
  50. Heath MR, Astthorsson AS, Dunn J, Ellertsen B, Gaard E et al. 2000a. Comparative analysis of Calanus finmarchicus demography at locations around the Northeast Atlantic. ICES J. Mar. Sci. 57:1562–80
    [Google Scholar]
  51. Heath MR, Fraser JG, Gislason A, Hay SJ, Jónasdóttir SH, Richardson K 2000b. Winter distribution of Calanus finmarchicus in the Northeast Atlantic. ICES J. Mar. Sci. 57:1628–35
    [Google Scholar]
  52. Heino M, Pauli BD, Dieckmann U 2015. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46:461–80
    [Google Scholar]
  53. Helaouet P, Beaugrand G. 2007. Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas. Mar. Ecol. Prog. Ser. 345:147–65
    [Google Scholar]
  54. Hop H, Gjøsæter H. 2013. Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar. Biol. Res. 9:878–94
    [Google Scholar]
  55. Hudson JM, Steinberg DK, Sutton TT, Graves JE, Latour RJ 2014. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge. Deep-Sea Res. I 93:104–16
    [Google Scholar]
  56. Hutchinson GE. 1961. The paradox of the plankton. Am. Nat. 95:137–45
    [Google Scholar]
  57. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37
    [Google Scholar]
  58. Jennings S, Blanchard JL. 2004. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73:632–42
    [Google Scholar]
  59. Ji R. 2011. Calanus finmarchicus diapause initiation: new view from traditional life history-based model. Mar. Ecol. Prog. Ser. 440:105–14
    [Google Scholar]
  60. Ji R, Davis CS, Chen C, Townsend DW, Mountain DG, Beardsley RC 2007. Influence of ocean freshening on shelf phytoplankton dynamics. Geophys. Res. Lett. 34:L24607
    [Google Scholar]
  61. Johnson CL, Leising AW, Runge JA, Head EJH, Pepin P et al. 2007. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES J. Mar. Sci. 65:339–50
    [Google Scholar]
  62. Jónasdóttir SH. 1999. Lipid content of Calanus finmarchicus during overwintering in the Faroe–Shetland Channel. Fish. Oceanogr. 8:61–72
    [Google Scholar]
  63. Kaartvedt S. 2000. Life history of Calanus finmarchicus in the Norwegian Sea in relation to planktivorous fish. ICES J. Mar. Sci. 57:1819–24
    [Google Scholar]
  64. Kenney RD, Hyman MAM, Owen RE, Scott GP, Winn HE 1986. Estimation of prey densities required by western North Atlantic right whales. Mar. Mamm. Sci. 2:1–13
    [Google Scholar]
  65. Kiørboe T, Sabatini M. 1995. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120:285–98
    [Google Scholar]
  66. Knowlton AR, Hamilton PK, Marx MK, Pettis HM, Kraus SD 2012. Monitoring North Atlantic right whale Eubalaena glacialis entanglement rates: a 30 yr retrospective. Mar. Ecol. Prog. Ser. 466:293–302
    [Google Scholar]
  67. Komar PD, Morse AP, Small LF, Fowler SW 1981. An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnol. Oceanogr. 26:172–80
    [Google Scholar]
  68. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L et al. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19:1884–96
    [Google Scholar]
  69. Le Bris A, Pershing AJ, Hernandez CM, Mills KE, Sherwood GD 2015. Modelling the effects of variation in reproductive traits on fish population resilience. ICES J. Mar. Sci. 72:2590–99
    [Google Scholar]
  70. Lindemann C, St. John MA 2014. A seasonal diary of phytoplankton in the North Atlantic. Front. Mar. Sci. 1:37
    [Google Scholar]
  71. Link J. 2002. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser. 230:1–9
    [Google Scholar]
  72. Longhurst A. 1998. Ecological Geography of the Sea San Diego, CA: Academic
    [Google Scholar]
  73. Lotze HK, Milewski I. 2004. Two centuries of multiple human impacts and successive changes in a North Atlantic food web. Ecol. Appl. 14:1428–47
    [Google Scholar]
  74. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M et al. 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13:2509–37
    [Google Scholar]
  75. MacKenzie BR, Andersen KH, Lindegren M, Mariani P 2017. Trophic impact of Atlantic bluefin tuna migrations in the North Sea. ICES J. Mar. Sci. 74:1552–60
    [Google Scholar]
  76. Maps F, Pershing AJ, Record NR 2012. A generalized approach for simulating growth and development in diverse marine copepod species. ICES J. Mar. Sci. 69:370–79
    [Google Scholar]
  77. Maps F, Record NR, Pershing AJ 2014. A metabolic approach to dormancy in pelagic copepods helps explaining inter- and intra-specific variability in life-history strategies. J. Plankton Res. 36:18–30
    [Google Scholar]
  78. Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1:493–509
    [Google Scholar]
  79. Mayo CA, Marx MK. 1990. Surface foraging behavior of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68:2214–20
    [Google Scholar]
  80. McGillicuddy DJ Jr., McCarthy JJ, Robinson AR. 1995. Coupled physical and biological modeling of the spring bloom in the North Atlantic (I): model formulation and one dimensional bloom processes. Deep-Sea Res. I 42:1313–57
    [Google Scholar]
  81. Melvin GD, Stephenson RL. 2007. The dynamics of a recovering fish stock: Georges Bank herring. ICES J. Mar. Sci. 64:69–82
    [Google Scholar]
  82. MERCINA (Mar. Ecosyst. Responses Clim. N. Atl.) Work. Group 2012. Recent Arctic climate change and its remote forcing of Northwest Atlantic Shelf ecosystems. Oceanography 25:3208–13
    [Google Scholar]
  83. Meyer‐Gutbrod EL, Greene CH. 2018. Uncertain recovery of the North Atlantic right whale in a changing ocean. Glob. Change Biol. 24:455–64
    [Google Scholar]
  84. Meyer-Gutbrod EL, Greene CH, Sullivan PJ, Pershing AJ 2015. Climate-associated changes in prey availability drive reproductive dynamics of the North Atlantic right whale population. Mar. Ecol. Prog. Ser. 535:243–58
    [Google Scholar]
  85. Miller CB, Crain JA, Morgan CA 2000. Oil storage variability in Calanus finmarchicus. ICES J. Mar. Sci 57:1786–99
    [Google Scholar]
  86. Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang F et al. 2013a. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave. Oceanography 26:2191–95
    [Google Scholar]
  87. Mills KE, Pershing AJ, Sheehan TF, Mountain D 2013b. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations. Glob. Change Biol. 19:3046–61
    [Google Scholar]
  88. Montevecchi WA, Birt-Friesen VL, Cairns DK 1992. Reproductive energetics and prey harvest of Leach's storm‐petrels in the northwest Atlantic. Ecology 73:823–32
    [Google Scholar]
  89. Mountain DG, Kane J. 2010. Major changes in the Georges Bank ecosystem, 1980s to the 1990s. Mar. Ecol. Prog. Ser. 398:81–91
    [Google Scholar]
  90. Myers RA, Worm B. 2003. Rapid worldwide depletion of predatory fish communities. Nature 423:280–83
    [Google Scholar]
  91. NEFSC (Northeast Fish. Sci. Cent.) 2017. Operational assessment of 19 northeast groundfish stocks, updated through 2016 Ref. Doc. 17-17, NEFSC, Natl. Mar. Fish. Serv., Natl Ocean. Atmos. Adm. Woods Hole, MA:
    [Google Scholar]
  92. NEFSC (Northeast Fish. Sci. Cent.) 2018. 65th Northeast Regional Stock Assessment Workshop (65th SAW) assessment summary report Ref. Doc. 18-08, NEFSC, Natl. Mar. Fish. Serv., Natl Ocean. Atmos. Adm. Woods Hole, MA:
    [Google Scholar]
  93. Nye JA, Joyce TM, Kwon Y-O, Link JS 2011. Silver hake tracks changes in Northwest Atlantic circulation. Nat. Commun. 2:412
    [Google Scholar]
  94. O'Driscoll RL, Parsons MJD, Rose GA 2001. Feeding of capelin (Mallotus villosus) in Newfoundland waters. Sarsia 86:165–76
    [Google Scholar]
  95. Ohman MD, Runge JA. 1994. Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr. 39:21–36
    [Google Scholar]
  96. Ottersen G, Hjermann , Stenseth NC 2006. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15:230–43
    [Google Scholar]
  97. Parks SE, Warren JD, Stamieszkin K, Mayo CA, Wiley D 2011. Dangerous dining: surface foraging of North Atlantic right whales increases risk of vessel collisions. Biol. Lett. 8:57–60
    [Google Scholar]
  98. Parrish DL, Behnke RJ, Gephard SR, McCormick SD, Reeves GH 1998. Why aren't there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55:281–87
    [Google Scholar]
  99. Pauly D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10:430
    [Google Scholar]
  100. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr 1998. Fishing down marine food webs. Science 279:860–63
    [Google Scholar]
  101. Pedersen T, Fossheim M. 2008. Diet of 0-group stages of capelin (Mallotus villosus), herring (Clupea harengus) and cod (Gadus morhua) during spring and summer in the Barents Sea. Mar. Biol. 153:1037–46
    [Google Scholar]
  102. Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Le Bris A et al. 2015. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–12
    [Google Scholar]
  103. Pershing AJ, Christensen LB, Record NR, Sherwood GD, Stetson PB 2010. The impact of whaling on the ocean carbon cycle: why bigger was better. PLOS ONE 5:e12444
    [Google Scholar]
  104. Pershing AJ, Greene CH, Jossi JW, O'Brien L, Brodziak JKT, Bailey BA 2005. Interdecadal variability in the Gulf of Maine zooplankton community with potential impacts on fish recruitment. ICES J. Mar. Sci. 62:1511–23
    [Google Scholar]
  105. Pershing AJ, Mills KE, Dayton AM, Franklin BS, Kennedy BT 2018. Evidence for adaptation from the 2016 marine heatwave in the northwest Atlantic. Oceanography 31:2152–61
    [Google Scholar]
  106. Pershing AJ, Record NR, Monger BC, Pendleton DE, Woodard LA 2009. Model-based estimates of Calanus finmarchicus abundance in the Gulf of Maine. Mar. Ecol. Prog. Ser. 378:245–57
    [Google Scholar]
  107. Pettis HM, Pace RM III, Hamilton PK 2018. North Atlantic Right Whale Consortium 2018 annual report card Rep., North Atl Right Whale Consort https://www.narwc.org/uploads/1/1/6/6/116623219/2018report_cardfinal.pdf
    [Google Scholar]
  108. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA 2013. Marine taxa track local climate velocities. Science 341:1239–42
    [Google Scholar]
  109. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM 1992. Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19:117–34
    [Google Scholar]
  110. Preziosi BM, Runge JA, Christensen JP, Jones RJ 2017. Effects of pH and temperature on egg hatching success of the marine planktonic copepod, Calanus finmarchicus. Mar. Biol. 164:218
    [Google Scholar]
  111. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A et al. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5:475–80
    [Google Scholar]
  112. Record NR, Ji RB, Maps F, Varpe O, Runge JA et al. 2018. Copepod diapause and the biogeography of the marine lipidscape. J. Biogeogr. 45:2238–51
    [Google Scholar]
  113. Record NR, Pershing AJ, Jossi JW 2010. Biodiversity as a dynamic variable in the Gulf of Maine continuous plankton recorder transect. J. Plankton Res. 32:1675–84
    [Google Scholar]
  114. Record NR, Runge JA, Pendleton DE, Balch WM, Davies KTA et al. 2019. Rapid climate-driven circulation changes threaten conservation of endangered North Atlantic right whales. Oceanography 32(2):162–69
    [Google Scholar]
  115. Reeves RR, Smith TD. 2006. A taxonomy of world whaling. Whales, Whaling, and Ocean Ecosystems JA Estes, DP DeMaster, DF Doak, TM Williams, RL Brownell Jr. 82–101 Berkeley: Univ. Calif. Press
    [Google Scholar]
  116. Reeves RR, Smith TD, Josephson EA 2007. Near-annihilation of a species: right whaling in the North Atlantic. The Urban Whale SD Kraus, RM Rolland 39–74 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  117. Reygondeau G, Beaugrand G. 2011. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol 17:756–66
    [Google Scholar]
  118. Riley GA. 1946. Factors controlling phytoplankton populations on Georges Bank. J. Mar. Res. 6:54–73
    [Google Scholar]
  119. Roman J, Estes JA, Morissette L, Smith C, Costa D et al. 2014. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12:377–85
    [Google Scholar]
  120. Roman J, McCarthy JJ. 2010. The whale pump: Marine mammals enhance primary productivity in a coastal basin. PLOS ONE 5:e13255
    [Google Scholar]
  121. Roman J, Nevins J, Altabet M, Koopman H, McCarthy J 2016. Endangered right whales enhance primary productivity in the Bay of Fundy. PLOS ONE 11:e0156553
    [Google Scholar]
  122. Ronconi RA, Koopman HN, McKinstry CAE, Wong SNP, Westgate AJ 2010. Inter-annual variability in diet of non-breeding pelagic seabirds Puffinus spp. at migratory staging areas: evidence from stable isotopes and fatty acids. Mar. Ecol. Prog. Ser. 419:267–82
    [Google Scholar]
  123. Rose GA, deYoung B, Kulka DW, Goddard SV, Fletcher GL 2000. Distribution shifts and overfishing the northern cod (Gadus morhua): a view from the ocean. Can. J. Fish. Aquat. Sci. 57:644–63
    [Google Scholar]
  124. Ruegg K, Rosenbaum HC, Anderson EC, Engel M, Rothschild A et al. 2013. Long-term population size of the North Atlantic humpback whale within the context of worldwide population structure. Conserv. Genet. 14:103–14
    [Google Scholar]
  125. Runge JA, Ji RB, Thompson CRS, Record NR, Chen CS et al. 2015. Persistence of Calanus finmarchicus in the western Gulf of Maine during recent extreme warming. J. Plankton Res. 37:221–32
    [Google Scholar]
  126. Saba VS, Griffies SM, Anderson WG, Winton M, Alexander MA et al. 2016. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121:118–32
    [Google Scholar]
  127. Salomon M, Markus T, Dross M 2014. Masterstroke or paper tiger – the reform of the EU's Common Fisheries Policy. Mar. Policy 47:76–84
    [Google Scholar]
  128. Saumweber WJ, Durbin EG. 2006. Estimating potential diapause duration in Calanus finmarchicus. Deep-Sea Res. II 53:2597–617
    [Google Scholar]
  129. Schulze LM, Pickart RS, Moore GWK 2016. Atmospheric forcing during active convection in the Labrador Sea and its impact on mixed-layer depth. J. Geophys. Res. Oceans 121:6978–92
    [Google Scholar]
  130. Sherwood GD, Rideout RM, Fudge SB, Rose GA 2007. Influence of diet on growth, condition and reproductive capacity in Newfoundland and Labrador cod (Gadus morhua): insights from stable carbon isotopes (δ13C). Deep-Sea Res. II 54:2794–809
    [Google Scholar]
  131. Skagseth Ø, Slotte A, Stenevik EK, Nash RDM 2015. Characteristics of the Norwegian Coastal Current during years with high recruitment of Norwegian spring spawning herring (Clupea harengus L.). PLOS ONE 10:e0144117
    [Google Scholar]
  132. Stamieszkin K, Pershing AJ, Record NR, Pilskaln CH, Dam HG, Feinberg LR 2015. Size as the master trait in modeled copepod fecal pellet carbon flux. Limnol. Oceanogr. 60:2090–107
    [Google Scholar]
  133. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 47:137–58
    [Google Scholar]
  134. Stevick PT, Allen J, Clapham PJ, Friday N, Katona SK et al. 2003. North Atlantic humpback whale abundance and rate of increase four decades after protection from whaling. Mar. Ecol. Prog. Ser. 258:263–73
    [Google Scholar]
  135. Stevick PT, Incze LS, Kraus SD, Rosen S, Wolff N, Baukus A 2008. Trophic relationships and oceanography on and around a small offshore bank. Mar. Ecol. Prog. Ser. 363:15–28
    [Google Scholar]
  136. Sundby S, Drinkwater KF, Kjesbu OS 2016. The North Atlantic spring-bloom system—where the changing climate meets the winter dark. Front. Mar. Sci. 3:28
    [Google Scholar]
  137. Suttle CA. 2005. Viruses in the sea. Nature 437:356–61
    [Google Scholar]
  138. Sverdrup HU. 1953. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci. 18:287–95
    [Google Scholar]
  139. Taylor AH, Harbour DS, Harris RP, Burkill PH, Edwards ES 1993. Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen. J. Plankton Res. 15:875–91
    [Google Scholar]
  140. Thibodeau B, Not C, Zhu J, Schmittner A, Noone D et al. 2018. Last century warming over the Canadian Atlantic shelves linked to weak Atlantic meridional overturning circulation. Geophys. Res. Lett. 45:12376–85
    [Google Scholar]
  141. Thurstan RH, Brockington S, Roberts CM 2010. The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat. Commun. 1:15
    [Google Scholar]
  142. Townsend DW, Keller MD, Sieracki ME, Ackleson SG 1992. Spring phytoplankton blooms in the absence of vertical water column stratification. Nature 360:59–62
    [Google Scholar]
  143. Varpe Ø, Fiksen Ø 2010. Seasonal plankton–fish interactions: light regime, prey phenology, and herring foraging. Ecology 91:311–18
    [Google Scholar]
  144. Varpe Ø, Fiksen Ø, Slotte A 2005. Meta-ecosystems and biological energy transport from ocean to coast: the ecological importance of herring migration. Oecologia 146:443–51
    [Google Scholar]
  145. Verheye HM, Hutchings L, Peterson WT 1991. Life history and population maintenance strategies of Calanoides carinatus (Copepoda: Calanoida) in the southern Benguela ecosystem. S. Afr. J. Mar. Sci. 11:179–91
    [Google Scholar]
  146. Wassmann P, Reigstad M, Haug T, Rudels B, Carroll ML et al. 2006. Food webs and carbon flux in the Barents Sea. Prog. Oceanogr. 71:232–87
    [Google Scholar]
  147. Wishner KF, Schoenherr JR, Beardsley R, Chen CS 1995. Abundance, distribution and population structure of the copepod Calanus finmarchicus in a springtime right whale feeding area in the southwestern Gulf of Maine. Cont. Shelf Res. 15:475–507
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010752
Loading
/content/journals/10.1146/annurev-marine-010419-010752
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error