1932

Abstract

Advances in technologies for molecular observation are leading to novel types of data, including gene, transcript, protein, and metabolite levels, which are fundamentally different from the types traditionally compared with microbial ecosystem models, such as biomass (e.g., chlorophyll ) and nutrient concentrations. A grand challenge is to use these data to improve predictive models and use models to explain observed patterns. This article presents a framework that aligns observations and models along the dimension of abstraction or biological organization—from raw sequences to ecosystem patterns for observations, and from sequence simulators to ecological theory for models. It then reviews 16 studies that compared model results with molecular observations. Molecular data can and are being combined with microbial ecosystem models, but to keep up with and take advantage of the full scope of observations, models need to become more mechanistically detailed and complex, which is a technical and cultural challenge for the ecological modeling community.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010829
2020-01-03
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010829.html?itemId=/content/journals/10.1146/annurev-marine-010419-010829&mimeType=html&fmt=ahah

Literature Cited

  1. Angly FE, Willner D, Rohwer F, Tyson GW, Hugenholtz P 2012. Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res 40:e94
    [Google Scholar]
  2. Bandara A, Fraser S, Chambers PJ, Stanley GA 2009. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9:1208–16
    [Google Scholar]
  3. Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ 2010. Patterns of diversity in marine phytoplankton. Science 327:1509–11
    [Google Scholar]
  4. Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF 2001. Proteorhodopsin phototrophy in the ocean. Nature 411:786–89
    [Google Scholar]
  5. Bucci V, Nunez-Milland D, Twining B, Hellweger F 2012. Microscale patchiness leads to large and important intraspecific internal nutrient heterogeneity in phytoplankton. Aquat. Ecol. 46:101–18
    [Google Scholar]
  6. Chapra SC. 1997. Surface Water-Quality Modeling Boston: McGraw-Hill
    [Google Scholar]
  7. Coles VJ, Hood RR. 2016. Approaches and challenges for linking marine biogeochemical models with the “omics” revolution. Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective PM Glibert, TM Kana 45–63 Cham, Switz: Springer
    [Google Scholar]
  8. Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC et al. 2017. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358:1149–54
    [Google Scholar]
  9. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA 2012. The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–62
    [Google Scholar]
  10. D'hoe K, Vet S, Faust K, Moens F, Falony G et al. 2018. Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. eLife 7:e37090
    [Google Scholar]
  11. Dam P, Fonseca LL, Konstantinidis KT, Voit EO 2016. Dynamic models of the complex microbial metapopulation of Lake Mendota. npj Syst. Biol. Appl. 2:16007
    [Google Scholar]
  12. Dick GJ. 2017. Embracing the mantra of modellers and synthesizing omics, experiments and models. Environ. Microbiol. Rep. 9:18–20
    [Google Scholar]
  13. Durham BP, Sharma S, Luo H, Smith CB, Amin SA et al. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. PNAS 112:453–57
    [Google Scholar]
  14. Ehira S, Ohmori M, Sato N 2003. Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 10:97–113
    [Google Scholar]
  15. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson 2008. Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7:129–43
    [Google Scholar]
  16. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW 2007. Emergent biogeography of microbial communities in a model ocean. Science 315:1843–46
    [Google Scholar]
  17. Fuhrman J, Follows M, Forde S 2013. Applying “-omics” data in marine microbial oceanography. Eos Trans. AGU 94:241
    [Google Scholar]
  18. Georges AA, El-Swais H, Craig SE, Li WKW, Walsh DA 2014. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J 8:1301
    [Google Scholar]
  19. Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A et al. 2003. Global analysis of protein expression in yeast. Nature 425:737–41
    [Google Scholar]
  20. Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M et al. 2018. Emergent simplicity in microbial community assembly. Science 361:469–74
    [Google Scholar]
  21. Hellweger FL. 2009. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ. Microbiol 11:1386–94
    [Google Scholar]
  22. Hellweger FL. 2010. Resonating circadian clocks enhance fitness in cyanobacteria in silico. Ecol. Model 221:1620–29
    [Google Scholar]
  23. Hellweger FL. 2015. 100 years since Streeter and Phelps: It is time to update the biology in our water quality models. Environ. Sci. Technol. 49:6372–73
    [Google Scholar]
  24. Hellweger FL, Bucci V. 2009. A bunch of tiny individuals—individual-based modeling for microbes. Ecol. Model. 220:8–22
    [Google Scholar]
  25. Hellweger FL, Clegg RJ, Clark JR, Plugge CM, Kreft J-U 2016a. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 14:461–71
    [Google Scholar]
  26. Hellweger FL, Fredrick ND, Berges JA 2014a. Age-correlated stress resistance improves fitness of yeast: support from agent-based simulations. BMC Syst. Biol. 8:18
    [Google Scholar]
  27. Hellweger FL, Fredrick ND, McCarthy MJ, Gardner WS, Wilhelm SW, Paerl HW 2016b. Dynamic, mechanistic, molecular-level modelling of cyanobacteria: Anabaena and nitrogen interaction. Environ. Microbiol. 18:2721–31
    [Google Scholar]
  28. Hellweger FL, Huang Y, Luo H 2018. Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model. ISME J 12:1180–87
    [Google Scholar]
  29. Hellweger FL, van Sebille E, Calfee BC, Chandler JW, Zinser ER et al. 2016c. The role of ocean currents in the temperature selection of plankton: insights from an individual-based model. PLOS ONE 11:e0167010
    [Google Scholar]
  30. Hellweger FL, van Sebille E, Fredrick ND 2014b. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345:1346–49
    [Google Scholar]
  31. Horner-Devine MC, Leibold MA, Smith VH, Bohannan BJM 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecol. Lett. 6:613–22
    [Google Scholar]
  32. Hum. Microbiome Proj. Consort 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14
    [Google Scholar]
  33. Jang S, Lee B, Jeong H-H, Jin SH, Jang S et al. 2016. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab Chip 16:1909–16
    [Google Scholar]
  34. Jöhnk KD, Huisman JEF, Sharples J, Sommeijer BEN, Visser PM, Stroom JM 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14:495–512
    [Google Scholar]
  35. Johnson ZI, Martiny AC. 2015. Techniques for quantifying phytoplankton biodiversity. Annu. Rev. Mar. Sci. 7:299–324
    [Google Scholar]
  36. Kaiser K, Benner R. 2012. Organic matter transformations in the upper mesopelagic zone of the North Pacific: chemical composition and linkages to microbial community structure. J. Geophys. Res. Oceans 117:C01023
    [Google Scholar]
  37. Kardinaal WEA, Visser PM. 2005. Dynamics of cyanobacterial toxins. Harmful Cyanobacteria J Huisman, HCP Matthijs, PM Visser 41–63 Dordrecht, Neth: Springer
    [Google Scholar]
  38. Koropatkin NM, Pakrasi HB, Smith TJ 2006. Atomic structure of a nitrate-binding protein crucial for photosynthetic productivity. PNAS 103:9820–25
    [Google Scholar]
  39. Kreft J-U, Plugge CM, Grimm V, Prats C, Leveau JHJ et al. 2013. Mighty small: observing and modeling individual microbes becomes big science. PNAS 110:18027–28
    [Google Scholar]
  40. Kreft J-U, Plugge CM, Prats C, Leveau JHJ, Zhang W, Hellweger FL 2017. From genes to ecosystems in microbiology: modeling approaches and the importance of individuality. Front. Microbiol. 8:2299
    [Google Scholar]
  41. Küenzi MT, Fiechter A. 1969. Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae. Arch. Microbiol 64:396–407
    [Google Scholar]
  42. Le Quéré C, Buitenhuis ET, Moriarty R, Alvain S, Aumont O et al. 2016. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13:4111–33
    [Google Scholar]
  43. Lesur I, Campbell JL. 2004. The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol. Biol. Cell 15:1297–312
    [Google Scholar]
  44. Levy SF, Ziv N, Siegal ML 2012. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLOS Biol 10:e1001325
    [Google Scholar]
  45. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW 2005. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438:86–89
    [Google Scholar]
  46. Louca S, Hawley AK, Katsev S, Torres-Beltran M, Bhatia MP et al. 2016. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone. PNAS 113:E5925–33
    [Google Scholar]
  47. Malmstrom RR, Kiene RP, Kirchman DL 2004. Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol. Oceanogr. 49:597–606
    [Google Scholar]
  48. Manrique JM, Jones LR. 2017. Are ocean currents too slow to counteract SAR11 evolution? A next-generation sequencing, phylogeographic analysis. Mol. Phylogenet. Evol. 107:324–37
    [Google Scholar]
  49. Martín-Figueroa E, Navarro F, Florencio FJ 2000. The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 476:282–86
    [Google Scholar]
  50. Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC 2011. Drivers of bacterial β-diversity depend on spatial scale. PNAS 108:7850–54
    [Google Scholar]
  51. Miller TR, Beversdorf L, Chaston SD, McMahon KD 2013. Spatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis-Aphanizomenon interactions. PLOS ONE 8:e74933
    [Google Scholar]
  52. Mock T, Daines SJ, Geider R, Collins S, Metodiev M et al. 2016. Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. Glob. Change Biol. 22:61–75
    [Google Scholar]
  53. Monteiro FM, Follows MJ, Dutkiewicz S 2010. Distribution of diverse nitrogen fixers in the global ocean. Glob. Biogeochem. Cycles 24:GB3017
    [Google Scholar]
  54. Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A et al. 2012. Sizing up metatranscriptomics. ISME J 7:237–43
    [Google Scholar]
  55. Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G 2010. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4:673–85
    [Google Scholar]
  56. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M et al. 2006. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–46
    [Google Scholar]
  57. Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP et al. 2013. Pattern and synchrony of gene expression among sympatric marine microbial populations. PNAS 110:E488–97
    [Google Scholar]
  58. Otwell AE, López García de Lomana A, Gibbons SM, Orellana MV, Baliga NS 2018. Systems biology approaches towards predictive microbial ecology. Environ. Microbiol. 20:4197–209
    [Google Scholar]
  59. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA 2009. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ. Microbiol. 11:1358–75
    [Google Scholar]
  60. Reed DC, Algar CK, Huber JA, Dick GJ 2014. Gene-centric approach to integrating environmental genomics and biogeochemical models. PNAS 111:1879–84
    [Google Scholar]
  61. Reed DC, Breier JA, Jiang H, Anantharaman K, Klausmeier CA et al. 2015. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME J 9:1857–69
    [Google Scholar]
  62. Reimers A-M, Knoop H, Bockmayr A, Steuer R 2017. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. PNAS 114:E6457–65
    [Google Scholar]
  63. Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39:4198–205
    [Google Scholar]
  64. Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P et al. 2014. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3:e03125
    [Google Scholar]
  65. Rowell P, Enticott S, Stewart WDP 1977. Glutamine synthetase and nitrogenase activity in the blue-green alga Anabaena cylindrica. . New Phytol 79:41–54
    [Google Scholar]
  66. Rust MJ, Markson JS, Lane WS, Fisher DS, O'Shea EK 2007. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809–12
    [Google Scholar]
  67. Shirani S, Hellweger FL. 2017. Neutral evolution and dispersal limitation produce biogeographic patterns in Microcystis aeruginosa populations of lake systems. Microb. Ecol. 74:416–26
    [Google Scholar]
  68. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P et al. 2015. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab 22:320–31
    [Google Scholar]
  69. Silljé HHW, Paalman JWG, ter Schure EG, Olsthoorn SQB, Verkleij AJ et al. 1999. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J. Bacteriol 181:396–400
    [Google Scholar]
  70. Silljé HHW, ter Schure EG, Rommens AJ, Huls PG, Woldringh CL et al. 1997. Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae. J. Bacteriol 179:6560–65
    [Google Scholar]
  71. Stec KF, Caputi L, Buttigieg PL, D'Alelio D, Ibarbalz FM et al. 2017. Modelling plankton ecosystems in the meta-omics era. Are we ready?. Mar. Genom. 32:1–17
    [Google Scholar]
  72. Steffen MM, Davis TW, McKay RML, Bullerjahn GS, Krausfeldt LE et al. 2017. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH. Environ. Sci. Technol. 51:6745–55
    [Google Scholar]
  73. Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G et al. 2013. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLOS Comput. Biol. 9:e1003388
    [Google Scholar]
  74. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. 2015. Structure and function of the global ocean microbiome. Science 348:1261359
    [Google Scholar]
  75. Swan JA, Golden SS, LiWang A, Partch CL 2018. Structure, function, and mechanism of the core circadian clock in cyanobacteria. J. Biol. Chem. 293:5026–34
    [Google Scholar]
  76. Tang X, Krausfeldt LE, Shao K, LeCleir GR, Stough JMA et al. 2018. Seasonal gene expression and the ecophysiological implications of toxic Microcystis aeruginosa blooms in Lake Taihu. Environ. Sci. Technol. 52:11049–59
    [Google Scholar]
  77. Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M et al. 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–38
    [Google Scholar]
  78. Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J et al. 2013. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3:979–84
    [Google Scholar]
  79. Trivedi P, Anderson IC, Singh BK 2013. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–51
    [Google Scholar]
  80. Venturelli OS, Carr AV, Fisher G, Hsu RH, Lau R et al. 2018. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14:e8157
    [Google Scholar]
  81. VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF 2009. Functional analysis of natural microbial consortia using community proteomics. Nat. Rev. Microbiol. 7:196–205
    [Google Scholar]
  82. Viant MR, Sommer U. 2013. Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9:144–58
    [Google Scholar]
  83. Vila-Costa M, Sharma S, Moran MA, Casamayor EO 2013. Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environ. Microbiol. 15:1190–203
    [Google Scholar]
  84. Vollenweider RA. 1968. The Scientific Basis of Lake and Stream Eutrophication, with Particular Reference to Phosphorus and Nitrogen as Eutrophication Factors Paris: Organ. Econ. Coop. Dev.
    [Google Scholar]
  85. Wang J, Chen L, Chen Z, Zhang W 2015. RNA-seq based transcriptomic analysis of single bacterial cells. Integr. Biol. 7:1466–76
    [Google Scholar]
  86. Woods J, Perilli A, Barkmann W 2005. Stability and predictability of a virtual plankton ecosystem created with an individual-based model. Prog. Oceanogr. 67:43–83
    [Google Scholar]
  87. Zwirglmaier K, Keiz K, Engel M, Geist J, Raeder U 2015. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6:1168
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010829
Loading
/content/journals/10.1146/annurev-marine-010419-010829
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error