1932

Abstract

Monitoring Earth's energy imbalance requires monitoring changes in the heat content of the ocean. Recent observational estimates indicate that ocean heat uptake is accelerating in the twenty-first century. Examination of estimates of ocean heat uptake over the industrial era, the Common Era of the last 2,000 years, and the period since the Last Glacial Maximum, 20,000 years ago, permits a wide perspective on modern-day warming rates. In addition, this longer-term focus illustrates how the dynamics of the deep ocean and the cryosphere were active in the past and are still active today. The large climatic shifts that started with the melting of the great ice sheets have involved significant ocean heat uptake that was sustained over centuries and millennia, and modern-ocean heat content changes are small by comparison.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010844
2021-01-03
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-010419-010844.html?itemId=/content/journals/10.1146/annurev-marine-010419-010844&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham JP, Baringer M, Bindoff N, Boyer T, Cheng L et al. 2013. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51:450–83
    [Google Scholar]
  2. Adcroft A, Scott JR, Marotzke J 2001. Impact of geothermal heating on the global ocean circulation. Geophys. Res. Lett. 28:1735–38
    [Google Scholar]
  3. Adkins JF, Ingersoll AP, Pasquero C 2005. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev. 24:581–94
    [Google Scholar]
  4. Adkins JF, McIntyre K, Schrag DP 2002. The salinity, temperature, and of the glacial deep ocean. Science 298:1769–73
    [Google Scholar]
  5. Amrhein DE, Wunsch C, Marchal O, Forget G 2018. A global glacial ocean state estimate constrained by upper-ocean temperature proxies. J. Clim. 31:8059–79
    [Google Scholar]
  6. Arbic BK, MacAyeal DR, Mitrovica JX, Milne GA 2004. Palaeoclimate: ocean tides and Heinrich events. Nature 432:460–60
    [Google Scholar]
  7. Baggenstos D, Häberli M, Schmitt J, Shackleton SA, Birner B et al. 2019. Earth's radiative imbalance from the Last Glacial Maximum to the present. PNAS 116:14881–86
    [Google Scholar]
  8. Balmaseda MA, Trenberth KE, Källén E 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40:1754–59
    [Google Scholar]
  9. Bereiter B, Kawamura K, Severinghaus JP 2018a. New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Commun. Mass Spectrom. 32:801–14
    [Google Scholar]
  10. Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J 2018b. Mean global ocean temperatures during the last glacial transition. Nature 553:39–44
    [Google Scholar]
  11. Berger A, Yin Q, Nifenecker H, Poitou J 2017. Slowdown of global surface air temperature increase and acceleration of ice melting. Earth's Future 5:811–22
    [Google Scholar]
  12. Bracewell RN 1986. The Fourier Transform and Its Applications New York: McGraw-Hill
    [Google Scholar]
  13. Breitkreuz C, Paul A, Schulz M 2019. A dynamical reconstruction of the Last Glacial Maximum ocean state constrained by global oxygen isotope data. Clim. Past Discuss. https://doi.org/10.5194/cp-2019-52
    [Crossref] [Google Scholar]
  14. Bretherton F, Davis R, Fandry C 1976. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res 23:559–82
    [Google Scholar]
  15. Brook EJ, Buizert C. 2018. Antarctic and global climate history viewed from ice cores. Nature 558:200–8
    [Google Scholar]
  16. Bryan SP, Marchitto TM. 2008. Mg/Ca–temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23:PA2220
    [Google Scholar]
  17. Buizert C, Cuffey K, Severinghaus J, Baggenstos D, Fudge T et al. 2015. The WAIS Divide deep ice core WD2014 chronology – part 1: methane synchronization (68–31 ka BP) and the gas age–ice age difference. Clim. Past 11:153–73
    [Google Scholar]
  18. Chan D, Kent EC, Berry DI, Huybers P 2019. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571:393–97
    [Google Scholar]
  19. Cheng L, Trenberth KE, Fasullo J, Boyer T, Abraham J, Zhu J 2017. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3:e1601545
    [Google Scholar]
  20. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG et al. 2011. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38:L18601
    [Google Scholar]
  21. Clark P, Dyke A, Shakun J, Carlson A, Clark J et al. 2009. The Last Glacial Maximum. Science 325:710–14
    [Google Scholar]
  22. Clayson CA, Bogdanoff AS. 2013. The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Clim. 26:2546–56
    [Google Scholar]
  23. Crowley TJ, Unterman MB. 2013. Technical details concerning development of a 1200 year proxy index for global volcanism. Earth Syst. Sci. Data 5:187–97
    [Google Scholar]
  24. Curry J, Webster P. 1999. Ocean surface exchanges of heat and fresh water. Thermodyn. Atmos. Oceans 65:247–65
    [Google Scholar]
  25. Deleersnijder E, Campin JM, Delhez EJM 2001. The concept of age in marine modelling I. Theory and preliminary model results. J. Mar. Syst. 28:229–67
    [Google Scholar]
  26. Desbruyères D, McDonagh EL, King BA, Thierry V 2017. Global and full-depth ocean temperature trends during the early twenty-first century from argo and repeat hydrography. J. Clim. 30:1985–97
    [Google Scholar]
  27. Dewar WK, Bingham RJ, Iverson R, Nowacek DP, St. Laurent LC, Wiebe PH 2006. Does the marine biosphere mix the ocean. ? J. Mar. Res. 64:541–61
    [Google Scholar]
  28. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE et al. 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–93
    [Google Scholar]
  29. Dufresne JL, Bony S. 2008. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Clim. 21:5135–44
    [Google Scholar]
  30. Durack PJ, Gleckler PJ, Landerer FW, Taylor KE 2014. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Change 4:999–1005
    [Google Scholar]
  31. Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave I et al. 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337:704–9
    [Google Scholar]
  32. Emile-Geay J, Madec G. 2009. Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci 5:203–17
    [Google Scholar]
  33. Emile-Geay J, McKay NP, Kaufman DS, Von Gunten L, Wang J et al. 2017. A global multiproxy database for temperature reconstructions of the common era. Sci. Data 4:170088
    [Google Scholar]
  34. Emiliani C. 1955. Pleistocene temperatures. J. Geol. 63:538–75
    [Google Scholar]
  35. Feistel R, Wagner W. 2005. High-pressure thermodynamic Gibbs functions of ice and sea ice. J. Mar. Res. 63:95–139
    [Google Scholar]
  36. Feistel R, Wagner W. 2006. A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data 35:1021–47
    [Google Scholar]
  37. Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41:253–82
    [Google Scholar]
  38. Galbraith ED, Merlis TM, Palter JB 2016. Destabilization of glacial climate by the radiative impact of Atlantic meridional overturning circulation disruptions. Geophys. Res. Lett. 43:8214–21
    [Google Scholar]
  39. Gebbie G. 2012. Tracer transport timescales and the observed Atlantic-Pacific lag in the timing of the last Termination. Paleoceanography 27:PA3225
    [Google Scholar]
  40. Gebbie G. 2014. How much did Glacial North Atlantic Water shoal. ? Paleoceanography 29:190–209
    [Google Scholar]
  41. Gebbie G, Huybers P. 2011. How is the ocean filled. ? Geophys. Res. Lett. 38:L06604
    [Google Scholar]
  42. Gebbie G, Huybers P. 2012. The mean age of ocean waters inferred from radiocarbon observations: sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr. 42:291–305
    [Google Scholar]
  43. Gebbie G, Huybers P. 2019. The Little Ice Age and 20th-century deep Pacific cooling. Science 363:70–74
    [Google Scholar]
  44. Gebbie G, Peterson CD, Lisiecki LE, Spero HJ 2015. Global-mean and its uncertainty in a glacial state estimate. Quat. Sci. Rev 125:144–59
    [Google Scholar]
  45. Gleckler PJ, Durack PJ, Stouffer RJ, Johnson GC, Forest CE 2016. Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Change 6:394–98
    [Google Scholar]
  46. Gleckler PJ, Wigley TML, Santer BD, Gregory JM, AchutaRao K, Taylor KE 2006. Volcanoes and climate: Krakatoa's signature persists in the ocean. Nature 439:675
    [Google Scholar]
  47. Gouretski V, Koltermann K. 2004. WOCE Global Hydrographic Climatology Tech. Rep 35: Bundesamtes Seeschifffahrt Hydrogr Hamburg, Ger:.
    [Google Scholar]
  48. Gregory JM. 2000. Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim. Dyn. 16:50115
    [Google Scholar]
  49. Gregory JM, Forster PM. 2008. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. Atmos. 113:D23105
    [Google Scholar]
  50. Haine TWN, Hall TM. 2002. A generalized transport theory: water-mass composition and age. J. Phys. Oceanogr. 32:193246
    [Google Scholar]
  51. Haine TWN, Zhang H, Waugh DW, Holzer M 2008. On transit-time distributions in unsteady circulation models. Ocean Model 21:3545
    [Google Scholar]
  52. Hakim GJ, Emile-Geay J, Steig EJ, Noone D, Anderson DM et al. 2016. The last millennium climate reanalysis project: framework and first results. J. Geophys. Res. Atmos. 121:674564
    [Google Scholar]
  53. Huang RX. 2010. Ocean Circulation: Wind-Driven and Thermohaline Processes Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  54. Huybers P, Curry W. 2006. Links between annual, Milankovitch and continuum temperature variability. Nature 442:32932
    [Google Scholar]
  55. IOC (Intergov. Oceanogr. Comm.), SCOR (Sci. Comm. Ocean. Res.), IAPSO (Int. Assoc. Phys. Sci. Oceans) 2010. The international thermodynamic equation of seawater – 2010: calculation and use of thermodynamic properties Man. Guides 56, UN Educ. Sci. Cult. Organ Paris:
    [Google Scholar]
  56. Ishii M, Fukuda Y, Hirahara S, Yasui S, Suzuki T, Sato K 2017. Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13:16367
    [Google Scholar]
  57. Jayne SR St, Laurent LC 2001. Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett. 28:81114
    [Google Scholar]
  58. Johnson GC, Lyman JM, Loeb NG 2016. Improving estimates of Earth's energy imbalance. Nat. Clim. Change 6:63940
    [Google Scholar]
  59. Joyce T. 1986. The geothermal heating of the abyssal subarctic Pacific Ocean. Deep-Sea Res. I 33:100315
    [Google Scholar]
  60. Kennedy J, Rayner N, Smith R, Parker D, Saunby M 2011. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res. Atmos. 116:D14104
    [Google Scholar]
  61. Khatiwala S, Visbeck M, Schlosser P 2001. Age tracers in an ocean GCM. Deep-Sea Res. I 48:142341
    [Google Scholar]
  62. Kurahashi-Nakamura T, Paul A, Losch M 2017. Dynamical reconstruction of the global ocean state during the Last Glacial Maximum. Paleoceanography 32:32650
    [Google Scholar]
  63. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS 111:15296303
    [Google Scholar]
  64. Levermann A, Clark PU, Marzeion B, Milne GA, Pollard D et al. 2013. The multimillennial sea-level commitment of global warming. PNAS 110:1374550
    [Google Scholar]
  65. Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE et al. 2012. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39:L10603
    [Google Scholar]
  66. Lin L, Khider D, Lisiecki LE, Lawrence CE 2014. Probabilistic sequence alignment of stratigraphic records. Paleoceanography 29:97689
    [Google Scholar]
  67. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR et al. 2012. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 5:11013
    [Google Scholar]
  68. Loeb NG, Thorsen TJ, Norris JR, Wang H, Su W 2018. Changes in Earth's energy budget during and after the pause in global warming: an observational perspective. Climate 6:62
    [Google Scholar]
  69. Lueck R, Reid R. 1984. On the production and dissipation of mechanical energy in the ocean. J. Geophys. Res. Oceans 89:343945
    [Google Scholar]
  70. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC et al. 2010. Robust warming of the global upper ocean. Nature 465:33437
    [Google Scholar]
  71. Marchitto T, Bryan S, Doss W, McCulloch M, Montagna P 2018. A simple biomineralization model to explain Li, Mg, and Sr incorporation into aragonitic foraminifera and corals. Earth Planet. Sci. Lett. 481:2029
    [Google Scholar]
  72. Marchitto T, Curry W, Lynch-Stieglitz J, Bryan S, Cobb K, Lund D 2014. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta 130:111
    [Google Scholar]
  73. Marcott SA, Bauska TK, Buizert C, Steig EJ, Rosen JL et al. 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514:61619
    [Google Scholar]
  74. Marshall J, Scott JR, Armour KC, Campin JM, Kelley M, Romanou A 2015. The ocean's role in the transient response of climate to abrupt greenhouse gas forcing. Clim. Dyn. 44:228799
    [Google Scholar]
  75. Martin P, Lea D, Rosenthal Y, Shackleton N, Sarnthein M, Papenfuss T 2002. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth Planet. Sci. Lett. 198:193209
    [Google Scholar]
  76. McDougall TJ. 2003. Potential enthalpy: a conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr. 33:94563
    [Google Scholar]
  77. McDuff R. 1985. The chemistry of interstitial waters, Deep Sea Drilling Project Leg 86. In Initial Reports of the Deep Sea Drilling Project, Vol. 86 GR Heath, LH Burckle 67587 Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  78. McGregor HV, Evans MN, Goosse H, Leduc G, Martrat B et al. 2015. Robust global ocean cooling trend for the pre-industrial Common Era. Nat. Geosci. 8:67177
    [Google Scholar]
  79. Meyssignac B, Boyer T, Zhao Z, Hakuba MZ, Landerer FW et al. 2019. Measuring global ocean heat content to estimate the earth energy imbalance. Front. Mar. Sci. 6:432
    [Google Scholar]
  80. Miller MD, Simons M, Adkins JF, Minson SE 2015. The information content of pore fluid δ18O and [Cl]. J. Phys. Oceanogr 45:207094
    [Google Scholar]
  81. Mitchell LE, Brook EJ, Sowers T, McConnell J, Taylor K 2011. Multidecadal variability of atmospheric methane, 1000–1800 CE. J. Geophys. Res. Biogeosci. 116:G02007
    [Google Scholar]
  82. Mouchet A, Deleersnijder E. 2008. The leaky funnel model, a metaphor of the ventilation of the world ocean as simulated in an OGCM. Tellus A 60:76174
    [Google Scholar]
  83. Muglia J, Skinner LC, Schmittner A 2018. Weak overturning circulation and high Southern Ocean utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496:4756
    [Google Scholar]
  84. Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45:19772010
    [Google Scholar]
  85. Murray J. 1895. A Summary of the Scientific Results Obtained at the Sounding, Dredging and Trawling Stations of H.M.S. Challenger, Vol. 1 Edinburgh: H.M. Station. Off.
    [Google Scholar]
  86. Myhre G, Shindell D, Bréon F, Collins W, Fuglestvedt J et al. 2013. Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.659740 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  87. Oppo DW, Rosenthal Y, Linsley BK 2009. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460:111316
    [Google Scholar]
  88. Paasche Ø, Bakke J 2010. Defining the Little Ice Age. Clim. Past Discuss. 6:215975
    [Google Scholar]
  89. Palter JB, Griffies SM, Samuels BL, Galbraith ED, Gnanadesikan A, Klocker A 2014. The deep ocean buoyancy budget and its temporal variability. J. Clim. 27:55173
    [Google Scholar]
  90. Parrenin F, Masson-Delmotte V, Köhler P, Raynaud D, Paillard D et al. 2013. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339:106063
    [Google Scholar]
  91. Peixoto J, Oort AH. 1992. Physics of Climate New York: Springer
    [Google Scholar]
  92. Primeau F. 2005. Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr. 35:54564
    [Google Scholar]
  93. Purkey SG, Johnson GC. 2010. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23:633651
    [Google Scholar]
  94. Purkey SG, Smethie WM Jr, Gebbie G, Gordon AL, Sonnerup RE et al. 2018. A synoptic view of the ventilation and circulation of Antarctic Bottom Water from chlorofluorocarbons. Annu. Rev. Mar. Sci. 10:50327
    [Google Scholar]
  95. Ritz SP, Stocker TF, Severinghaus JP 2011. Noble gases as proxies of mean ocean temperature: sensitivity studies using a climate model of reduced complexity. Quat. Sci. Rev. 30:372841
    [Google Scholar]
  96. Roemmich D, Gould WJ, Gilson J 2012. 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat. Clim. Change 2:42528
    [Google Scholar]
  97. Rosenthal Y, Kalansky J, Morley A, Linsley B 2017. A paleo-perspective on ocean heat content: lessons from the Holocene and Common Era. Quat. Sci. Rev. 155:112
    [Google Scholar]
  98. Scheen J, Stocker TF. 2020. Glacial ocean over-turning intensified by tidal mixing in a global circulation model. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2020-30
    [Crossref] [Google Scholar]
  99. Schmittner A, Green J, Wilmes S 2015. Glacial ocean over-turning intensified by tidal mixing in a global circulation model. Geophys. Res. Lett. 42:401422
    [Google Scholar]
  100. Schrag D, Hampt G, Murray D 1996. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272:193032
    [Google Scholar]
  101. Shackleton N. 1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Les Méthodes Quantitative d'Étude des Variations du Climat au cours du Pléistocène J Labeyrie 2039 Coll. Int. CNRS Vol. 219 Paris: CNRS
    [Google Scholar]
  102. Shackleton N, Lamb H, Worssam B, Hodgson J, Lord A et al. 1977. The oxygen isotope stratigraphic record of the Late Pleistocene. Philos. Trans. R. Soc. Lond. B 280:16982
    [Google Scholar]
  103. Shackleton S, Baggenstos D, Menking J, Dyonisius M, Bereiter B et al. 2020. Global ocean heat content in the last interglacial. Nat. Geosci. 13:7781
    [Google Scholar]
  104. Shackleton S, Bereiter B, Baggenstos D, Bauska T, Brook EJ et al. 2019. Is the noble gas-based rate of ocean warming during the Younger Dryas overestimated. ? Geophys. Res. Lett. 46:592836
    [Google Scholar]
  105. Shakun JD, Clark PU, He F, Marcott SA, Mix AC et al. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:4954
    [Google Scholar]
  106. Shakun JD, Lea DW, Lisiecki LE, Raymo ME 2015. An 800-kyr record of global surface ocean and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett 426:5868
    [Google Scholar]
  107. Simms AR, Lisiecki LE, Gebbie G, Whitehouse P, Clark JF 2019. Balancing the Last Glacial Maximum (LGM) sea-level budget. Quat. Sci. Rev. 205:14353
    [Google Scholar]
  108. Sosdian S, Rosenthal Y. 2009. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325:30610
    [Google Scholar]
  109. St. Laurent L, Simmons H. 2006. Estimates of power consumed by mixing in the ocean interior. J. Clim. 19:487790
    [Google Scholar]
  110. Stein CA, Stein S. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res. Solid Earth 99:308195
    [Google Scholar]
  111. Steinhilber F, Beer J, Fröhlich C 2009. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36:L19704
    [Google Scholar]
  112. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F 2009. Volcanic signals in oceans. J. Geophys. Res. Atmos. 114:D16104
    [Google Scholar]
  113. Talley L, Feely R, Sloyan B, Wanninkhof R, Baringer M et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185215
    [Google Scholar]
  114. Trenberth KE, Fasullo JT, Von Schuckmann K, Cheng L 2016. Insights into Earth's energy imbalance from multiple sources. J. Clim. 29:7495505
    [Google Scholar]
  115. Umling N, Oppo D, Chen P, Yu J, Liu Z et al. 2019. Atlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation. Paleoceanogr. Paleoclimatol. 34:9901005
    [Google Scholar]
  116. Von Schuckmann K, Palmer M, Trenberth K, Cazenave A, Chambers D et al. 2016. An imperative to monitor Earth's energy imbalance. Nat. Clim. Change 6:13844
    [Google Scholar]
  117. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus J et al. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21:295305
    [Google Scholar]
  118. Waelbroeck C, Paul A, Kucera M, Rosell-Melé A, Weinelt M et al. 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2:12732
    [Google Scholar]
  119. Wang W, Chengchun Q, Ruixin H 2006. Mechanical energy input to the world oceans due to atmospheric loading. Chin. Sci. Bull. 51:32730
    [Google Scholar]
  120. Warren BA. 2006. The first law of thermodynamics in a salty ocean. Prog. Oceanogr. 70:14967
    [Google Scholar]
  121. Waugh DW, Hall TM, Haine TWN 2003. Relationships among tracer ages. J. Geophys. Res. 108:3138
    [Google Scholar]
  122. Wijffels S, Roemmich D, Monselesan D, Church J, Gilson J 2016. Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Change 6:11618
    [Google Scholar]
  123. Willis JK, Lyman JM, Johnson GC, Gilson J 2007. Correction to “Recent cooling of the upper ocean.”. Geophys. Res. Lett. 34:L16601
    [Google Scholar]
  124. Wunsch C. 1996. The Ocean Circulation Inverse Problem New York: Cambridge Univ. Press
    [Google Scholar]
  125. Wunsch C. 2016. Global ocean integrals and means, with trend implications. Annu. Rev. Mar. Sci. 8:133
    [Google Scholar]
  126. Wunsch C. 2016. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios. Clim. Past 12:128196
    [Google Scholar]
  127. Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36:281314
    [Google Scholar]
  128. Wunsch C, Heimbach P. 2008. How long to oceanic tracer and proxy equilibrium?. Quat. Sci. Rev 27:63751
    [Google Scholar]
  129. Zanna L, Khatiwala S, Gregory JM, Ison J, Heimbach P 2019. Global reconstruction of historical ocean heat storage and transport. PNAS 116:112631
    [Google Scholar]
  130. Zhu F, Emile-Geay J, McKay NP, Hakim GJ, Khider D et al. 2019. Climate models can correctly simulate the continuum of global-average temperature variability. PNAS 116:872833
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010844
Loading
/content/journals/10.1146/annurev-marine-010419-010844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error