1932

Abstract

Much of the global cooling during ice ages arose from changes in ocean carbon storage that lowered atmospheric CO. A slew of mechanisms, both physical and biological, have been proposed as key drivers of these changes. Here we discuss the current understanding of these mechanisms with a focus on how they altered the theoretically defined soft-tissue and biological disequilibrium carbon storage at the peak of the last ice age. Observations and models indicate a role for Antarctic sea ice through its influence on ocean circulation patterns, but other mechanisms, including changes in biological processes, must have been important as well, and may have been coordinated through links with global air temperature. Further research is required to better quantify the contributions of the various mechanisms, and there remains great potential to use the Last Glacial Maximum and the ensuing global warming as natural experiments from which to learn about climate-driven changes in the marine ecosystem.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010906
2020-01-03
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010906.html?itemId=/content/journals/10.1146/annurev-marine-010419-010906&mimeType=html&fmt=ahah

Literature Cited

  1. Abelmann A, Gersonde R, Knorr G, Zhang X, Chapligin B et al. 2015. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nat. Commun. 6:8136
    [Google Scholar]
  2. Adkins JF. 2013. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28:539–61
    [Google Scholar]
  3. Adkins JF, McIntyre K, Schrag DP 2002. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298:1769–73
    [Google Scholar]
  4. Allen AP, Gillooly JF, Brown JH 2005. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19:202–13
    [Google Scholar]
  5. Allen KA, Hönisch B. 2012. The planktic foraminiferal B/Ca proxy for seawater carbonate chemistry: a critical evaluation. Earth Planet. Sci. Lett. 345:203–11
    [Google Scholar]
  6. Allen KA, Sikes EL, Hönisch B, Elmore AC, Guilderson TP et al. 2015. Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric CO2 during the Last Glacial Termination. Quat. Sci. Rev. 122:180–91
    [Google Scholar]
  7. Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ et al. 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–48
    [Google Scholar]
  8. Anderson RF, Sachs JP, Fleisher MQ, Allen KA, Yu J et al. 2019. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33:301–17
    [Google Scholar]
  9. Bard E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3:635–95
    [Google Scholar]
  10. Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J 2018. Mean global ocean temperatures during the last glacial transition. Nature 553:39–44
    [Google Scholar]
  11. Bianchi D, Galbraith ED, Carozza DA, Mislan KAS, Stock CA 2013. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6:545–48
    [Google Scholar]
  12. Bopp L, Kohfeld KE, Le Quere C, Aumont O 2003. Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18:1046
    [Google Scholar]
  13. Bopp L, Resplandy L, Untersee A, Le Mezo P, Kageyama M 2017. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth system models. Philos. Trans. R. Soc. A 375:20160323
    [Google Scholar]
  14. Boscolo-Galazzo F, Crichton K, Barker S, Pearson P 2018. Temperature dependency of metabolic rates in the upper ocean: a positive feedback to global climate change?. Glob. Planet. Change 170:201–12
    [Google Scholar]
  15. Bouttes N, Paillard D, Roche DM 2010. Impact of brine-induced stratification on the glacial carbon cycle. Clim. Past 6:575–89
    [Google Scholar]
  16. Bouttes N, Paillard D, Roche DM, Brovkin V, Bopp L 2011. Last Glacial Maximum CO2 and δ13C successfully reconciled. Geophys. Res. Lett. 38:L02705
    [Google Scholar]
  17. Boyd PW, Claustre H, Levy M, Siegel DA, Weber T 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–35
    [Google Scholar]
  18. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA et al. 2007. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–17
    [Google Scholar]
  19. Brewer PG. 1978. Direct observation of the oceanic CO2 increase. Geophys. Res. Lett. 5:997–1000
    [Google Scholar]
  20. Broecker WS. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11:151–97
    [Google Scholar]
  21. Brovkin V, Ganopolski A, Archer D, Munhoven G 2012. Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Clim. Past 8:251–64
    [Google Scholar]
  22. Brunelle BG, Sigman DM, Jaccard SL, Keigwin LD, Plessen B et al. 2010. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat. Sci. Rev. 29:2579–90
    [Google Scholar]
  23. Buchanan PJ, Matear RJ, Lenton A, Phipps SJ, Chase Z, Etheridge DM 2016. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle. Clim. Past 12:2271–95
    [Google Scholar]
  24. Buitenhuis ET, Hashioka T, Le Quéré C 2013. Combined constraints on global ocean primary production using observations and models. Glob. Biogeochem. Cycles 27:847–58
    [Google Scholar]
  25. Burke A, Robinson LF. 2012. The Southern Ocean's role in carbon exchange during the last deglaciation. Science 335:557–61
    [Google Scholar]
  26. Butterworth BJ, Miller SD. 2016. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. Geophys. Res. Lett. 43:7223–30
    [Google Scholar]
  27. Cartapanis O, Galbraith ED, Bianchi D, Jaccard SL 2018. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past 14:1819–50
    [Google Scholar]
  28. Christensen JJ, Murray JW, Devol AH, Codispoti LA 1987. Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Glob. Biogeochem. Cycles 1:97–116
    [Google Scholar]
  29. Cram JA, Weber T, Leung SW, McDonnell AM, Liang JH, Deutsch C 2018. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32:858–76
    [Google Scholar]
  30. Crichton K, Bouttes N, Roche D, Chappellaz J, Krinner G 2016. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9:683–86
    [Google Scholar]
  31. Curry WB, Oppo D. 2005. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20: PA1017
    [Google Scholar]
  32. de la Fuente M, Calvo E, Skinner L, Pelejero C, Evans D et al. 2017. The evolution of deep ocean chemistry and respired carbon in the eastern equatorial Pacific over the last deglaciation. Paleoceanography 32:1371–85
    [Google Scholar]
  33. Deutsch C, Sigman DM, Thunell RC, Meckler AN, Haug GH 2004. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycles 18: GB4012
    [Google Scholar]
  34. DeVries T, Deutsch C, Rafter P, Primeau F 2013. Marine denitrification rates determined from a global 3-D inverse model. Biogeosciences 10:2481–96
    [Google Scholar]
  35. DeVries T, Holzer M. 2019. Radiocarbon and helium isotope constraints on deep ocean ventilation and mantle-3He sources. J. Geophys. Res. Oceans 124:3036–57
    [Google Scholar]
  36. DeVries T, Primeau F. 2011. Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr. 41:2381–401
    [Google Scholar]
  37. DeVries T, Primeau F, Deutsch C 2012. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39:L13601
    [Google Scholar]
  38. DeVries T, Weber T. 2017. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31:535–55
    [Google Scholar]
  39. Duteil O, Koeve W, Oschlies A, Bianchi D, Galbraith E et al. 2013. A novel estimate of ocean oxygen utilisation points to a reduced rate of respiration in the ocean interior. Biogeosciences 10:7723–38
    [Google Scholar]
  40. Eggleston S, Galbraith ED. 2018. The devil's in the disequilibrium: sensitivity of ocean carbon storage to climate state and iron fertilization in a general circulation model. Biogeosciences 15:3761–77
    [Google Scholar]
  41. Eppley RW. 1972. Temperature and phytoplankton growth in sea. Fish. Bull. 70:1063–85
    [Google Scholar]
  42. Eugster O, Gruber N, Deutsch C, Jaccard SL, Payne MR 2013. The dynamics of the marine nitrogen cycle across the last deglaciation. Paleoceanography 28:116–29
    [Google Scholar]
  43. Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–75
    [Google Scholar]
  44. Falkowski PG, Scholes RJ, Boyle E, Canadell J, Canfield D et al. 2000. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–96
    [Google Scholar]
  45. Ferrari R, Jansen MF, Adkins JF, Burke A, Stewart AL, Thompson AF 2014. Antarctic sea ice control on ocean circulation in present and glacial climates. PNAS 111:8753–58
    [Google Scholar]
  46. Ferreira D, Marshall J, Ito T, McGee D 2018. Linking glacial‐interglacial states to multiple equilibria of climate. Geophys. Res. Lett. 45:9160–70
    [Google Scholar]
  47. François R, Altabet MA, Yu E-F, Sigman DM, Bacon MP et al. 1997. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389:929–35
    [Google Scholar]
  48. Fraser CI, Nikula R, Spencer HG, Waters JM 2009. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. PNAS 106:3249–53
    [Google Scholar]
  49. Galbraith ED, de Lavergne C 2019. Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages. Clim. Dyn. 52:653–79
    [Google Scholar]
  50. Galbraith ED, Eggleston S. 2017. A lower limit to atmospheric CO2 concentrations over the past 800,000 years. Nat. Geosci. 10:295–98
    [Google Scholar]
  51. Galbraith ED, Jaccard SL. 2015. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies. Quat. Sci. Rev. 109:38–48
    [Google Scholar]
  52. Galbraith ED, Kienast M, Albuquerque AL, Altabet M, Batista F et al. 2013. The acceleration of oceanic denitrification during deglacial warming. Nat. Geosci. 6:579–84
    [Google Scholar]
  53. Galbraith ED, Kwon EY, Bianchi D, Hain MP, Sarmiento JL 2015. The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean. Glob. Biogeochem. Cycles 29:307–24
    [Google Scholar]
  54. Galbraith ED, Martiny AC. 2015. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. PNAS 112:8199–204
    [Google Scholar]
  55. Ganeshram RS, Pedersen TF, Calvert SE, Murray JW 1995. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376:755–58
    [Google Scholar]
  56. Garcia HE, Weathers K, Paver CR, Smolyar I, Boyer TP et al. 2018. World Ocean Atlas 2018 Vol. 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation Tech. Ed. A. Mishonov. NOAA Atlas NESDIS 83 Washington, DC: Natl. Ocean. Atmos. Adm.
  57. Gebbie G. 2014. How much did Glacial North Atlantic Water shoal?. Paleoceanography 29:190–209
    [Google Scholar]
  58. Gottschalk J, Skinner LC, Lippold J, Vogel H, Frank N et al. 2016a. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7:11539
    [Google Scholar]
  59. Gottschalk J, Vázquez Riveiros N, Waelbroeck C, Skinner LC, Michel E et al. 2016b. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanography 31:1583–602
    [Google Scholar]
  60. Gray AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL et al. 2018. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high‐latitude Southern Ocean. Geophys. Res. Lett. 45:9049–57
    [Google Scholar]
  61. Gruber N, Landschützer P, Lovenduski NS 2019. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11:159–86
    [Google Scholar]
  62. Gruber N, Sarmiento JL, Stocker TF 1996. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10:809–37
    [Google Scholar]
  63. Hain MP, Sigman DM, Haug GH 2010. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24: GB4023
    [Google Scholar]
  64. Hansell DA, Carlson CA. 2013. Localized refractory dissolved organic carbon sinks in the deep ocean. Glob. Biogeochem. Cycles 27:705–10
    [Google Scholar]
  65. Heine KB, Abebe A, Wilson AE, Hood WR 2019. Copepod respiration increases by 7% per °C increase in temperature: a meta-analysis. Limnol. Oceanogr. Lett. 4:53–61
    [Google Scholar]
  66. Hoogakker BA, Elderfield H, Schmiedl G, McCave IN, Rickaby RE 2015. Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8:40–43
    [Google Scholar]
  67. Hoogakker BA, Lu Z, Umling N, Jones L, Zhou X et al. 2018. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562:410–13
    [Google Scholar]
  68. Howe JN, Piotrowski AM, Noble TL, Mulitza S, Chiessi CM, Bayon G 2016. North Atlantic Deep Water production during the last glacial maximum. Nat. Commun. 7:11765
    [Google Scholar]
  69. Hutchins DA, Fu FX, Zhang Y, Warner ME, Feng Y et al. 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 52:1293–304
    [Google Scholar]
  70. Huybers P, Langmuir C. 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet. Sci. Lett. 286:479–91
    [Google Scholar]
  71. Insua TL, Spivack AJ, Graham D, D'Hondt S, Moran K 2014. Reconstruction of Pacific Ocean bottom water salinity during the Last Glacial Maximum. Geophys. Res. Lett. 41:2914–20
    [Google Scholar]
  72. Ito T, Follows MJ. 2005. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63:813–39
    [Google Scholar]
  73. Ito T, Follows MJ, Boyle EA 2004. Is AOU a good measure of respiration in the oceans?. Geophys. Res Lett. 31:L17305
    [Google Scholar]
  74. Jaccard SL, Galbraith ED, Frölicher TL, Gruber N 2014. Ocean (de)oxygenation across the last deglaciation. Oceanography 27:126–35
    [Google Scholar]
  75. Jaccard SL, Haug GH, Sigman DM, Pedersen TF, Thierstein HR, Rohl U 2005. Glacial/interglacial changes in subarctic North Pacific stratification. Science 308:1003–6
    [Google Scholar]
  76. Jaccard SL, Hayes CT, Martinez-Garcia A, Hodell DA, Anderson RF et al. 2013. Two modes of change in Southern Ocean productivity over the past million years. Science 339:1419–23
    [Google Scholar]
  77. Jansen MF. 2017. Glacial ocean circulation and stratification explained by reduced atmospheric temperature. PNAS 114:45–50
    [Google Scholar]
  78. Jónasdóttir SH, Visser AW, Richardson K, Heath MR 2015. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–26
    [Google Scholar]
  79. Jones DC, Ito T, Takano Y, Hsu WC 2014. Spatial and seasonal variability of the air‐sea equilibration timescale of carbon dioxide. Glob. Biogeochem. Cycles 28:1163–78
    [Google Scholar]
  80. Khatiwala S, Schmittner A, Muglia J 2019. Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 5: eaaw4981
    [Google Scholar]
  81. Kohfeld KE, Chase Z. 2011. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean. Quat. Sci. Rev. 30:3350–63
    [Google Scholar]
  82. Kohfeld KE, Chase Z. 2017. Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle. Earth Planet. Sci. Lett. 472:206–15
    [Google Scholar]
  83. Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF 2005. Role of marine biology in glacial-interglacial CO2 cycles. Science 308:74–78
    [Google Scholar]
  84. Kohfeld KE, Ridgwell A. 2009. Glacial-interglacial variability in atmospheric CO2. Surface Ocean–Lower Atmosphere Processes C Le Quéré, ES Saltzman 251–86 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  85. Korff L, Dobeneck T, Frederichs T, Kasten S, Kuhn G et al. 2016. Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: evidence for glacial oxygen depletion and carbon trapping. Paleoceanography 31:600–24
    [Google Scholar]
  86. Kremer CT, Thomas MK, Litchman E 2017. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceangr. 62:1658–70
    [Google Scholar]
  87. Kurahashi-Nakamura T, Paul A, Losch M 2017. Dynamical reconstruction of the global ocean state during the Last Glacial Maximum. Paleoceanography 32:326–50
    [Google Scholar]
  88. Kwon EY, Primeau F, Sarmiento JL 2009. The impact of remineralization depth on the air-sea carbon balance. Nat. Geosci. 2:630–35
    [Google Scholar]
  89. Lindgren A, Hugelius G, Kuhry P 2018. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560:219–22
    [Google Scholar]
  90. Lippold J, Gutjahr M, Blaser P, Christner E, de Carvalho Ferreira ML et al. 2016. Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation. Earth Planet. Sci. Lett. 445:68–78
    [Google Scholar]
  91. Lønborg C, Álvarez-Salgado XA, Letscher RT, Hansell DA 2018. Large stimulation of recalcitrant dissolved organic carbon degradation by increasing ocean temperatures. Front. Mar. Sci. 4:436
    [Google Scholar]
  92. Longhurst AR. 1991. Role of the marine biosphere in the global carbon cycle. Limnol. Oceanogr. 36:1507–26
    [Google Scholar]
  93. Lu Z, Hoogakker BA, Hillenbrand C-D, Zhou X, Thomas E et al. 2016. Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nat. Commun. 7:11146
    [Google Scholar]
  94. Marinov I, Follows M, Gnanadesikan A, Sarmiento JL, Slater RD 2008a. How does ocean biology affect atmospheric pCO2? Theory and models. J. Geophys. Res. Oceans 113:C07032
    [Google Scholar]
  95. Marinov I, Gnanadesikan A, Sarmiento JL, Toggweiler JR, Follows M, Mignone BK 2008b. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Glob. Biogeochem. Cycles 22: GB3007
    [Google Scholar]
  96. Mariotti V, Paillard D, Roche D, Bouttes N, Bopp L 2013. Simulated Last Glacial Maximum Δ14Catm and the deep glacial ocean carbon reservoir. Radiocarbon 55:1595–602
    [Google Scholar]
  97. Marsay CM, Sanders RJ, Henson SA, Pabortsava K, Achterberg EP, Lampitt RS 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112:1089–94
    [Google Scholar]
  98. Martin JH. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13
    [Google Scholar]
  99. Martínez-García A, Sigman DM, Ren H, Anderson RF, Straub M et al. 2014. Iron fertilization of the Subantarctic Ocean during the last ice age. Science 343:1347–50
    [Google Scholar]
  100. Matsumoto K. 2007. Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry. Geophys. Res. Lett. 34:L20605
    [Google Scholar]
  101. McCorkle DC, Emerson SR. 1988. The relationship between pore water carbon isotopic composition and bottom water oxygen concentration. Geochim. Cosmochim. Acta 52:1169–78
    [Google Scholar]
  102. Menviel L, Joos F, Ritz SP 2012. Simulating atmospheric CO2, 13C and the marine carbon cycle during the last glacial–interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory. Quat. Sci. Rev. 56:46–68
    [Google Scholar]
  103. Menviel L, Yu J, Joos F, Mouchet A, Meissner K, England M 2017. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data‐model comparison study. Paleoceanography 32:2–17
    [Google Scholar]
  104. Millar RJ, Fuglestvedt JS, Friedlingstein P, Rogelj J, Grubb MJ et al. 2017. Emission budgets and pathways consistent with limiting warming to 1.5°C. Nat. Geosci. 10:741–47
    [Google Scholar]
  105. Misumi K, Lindsay K, Moore JK, Doney SC, Tsumune D, Yoshida Y 2013. Humic substances may control dissolved iron distributions in the global ocean: implications from numerical simulations. Glob. Biogeochem. Cycles 27:450–62
    [Google Scholar]
  106. Mix AC, Bard E, Schneider R 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20:627–57
    [Google Scholar]
  107. Moore C, Mills M, Arrigo K, Berman-Frank I, Bopp L et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10
    [Google Scholar]
  108. Muglia J, Skinner LC, Schmittner A 2018. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496:47–56
    [Google Scholar]
  109. Neftel A, Oeschger H, Schwander J, Stauffer B, Zumbrunn R 1982. Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295:220–23
    [Google Scholar]
  110. Ödalen M, Nycander J, Oliver KI, Brodeau L, Ridgwell A 2018. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model. Biogeosciences 15:1367–93
    [Google Scholar]
  111. Passow U, Carlson CA. 2012. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470:249–71
    [Google Scholar]
  112. Pelegrí JL, de la Fuente P, Olivella R, García-Olivares A 2013. Global constraints on net primary production and inorganic carbon supply during glacial and interglacial cycles. Paleoceanography 28:713–25
    [Google Scholar]
  113. Peterson CD, Lisiecki LE, Stern JV 2014. Deglacial whole‐ocean δ13C change estimated from 480 benthic foraminiferal records. Paleoceanography 29:549–63
    [Google Scholar]
  114. Rae JW, Burke A, Robinson L, Adkins J, Chen T et al. 2018. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562:569–73
    [Google Scholar]
  115. Rae JW, Foster GL, Schmidt DN, Elliott T 2011. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302:403–13
    [Google Scholar]
  116. Rae JW, Sarnthein M, Foster GL, Ridgwell A, Grootes PM, Elliott T 2014. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29:645–67
    [Google Scholar]
  117. Rathburn AE, Willingham J, Ziebis W, Burkett AM, Corliss BH 2018. A new biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera. Sci. Rep. 8:9456
    [Google Scholar]
  118. Ren H, Sigman DM, Meckler AN, Plessen B, Robinson RS et al. 2009. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323:244–48
    [Google Scholar]
  119. Roth R, Joos F. 2012. Model limits on the role of volcanic carbon emissions in regulating glacial–interglacial CO2 variations. Earth Planet. Sci. Lett. 329:141–49
    [Google Scholar]
  120. Rutberg RL, Goldstein SL, Hemming SR, Anderson RF 2005. Sr isotope evidence for sources of terrigenous sediment in the southeast Atlantic Ocean: Is there increased available Fe for enhanced glacial productivity?. Paleoceanography 20: PA1018
    [Google Scholar]
  121. Salvatteci R, Gutierrez D, Field D, Sifeddine A, Ortlieb L et al. 2019. Fish debris in sediments from the last 25 kyr in the Humboldt Current reveal the role of productivity and oxygen on small pelagic fishes. Prog. Oceanogr. 176:102114
    [Google Scholar]
  122. Sarnthein M, Schneider B, Grootes PM 2013. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Clim. Past 9:2595–614
    [Google Scholar]
  123. Schmittner A, Gruber N, Mix AC, Key RM, Tagliabue A, Westberry TK 2013. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean. Biogeosciences 10:5793–816
    [Google Scholar]
  124. Schmittner A, Somes CJ. 2016. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft‐tissue biological pump. Paleoceanogr. Paleoclimatol. 31:669–93
    [Google Scholar]
  125. Schneider B, Bopp L, Gehlen M 2008. Assessing the sensitivity of modeled air‐sea CO2 exchange to the remineralization depth of particulate organic and inorganic carbon. Glob. Biogeochem. Cycles 22:GB3021
    [Google Scholar]
  126. Shin SI, Liu Z, Otto‐Bliesner BL, Kutzbach JE, Vavrus SJ 2003. Southern Ocean sea‐ice control of the glacial North Atlantic thermohaline circulation. Geophys. Res. Lett. 30:1096
    [Google Scholar]
  127. Shoenfelt EM, Winckler G, Lamy F, Anderson RF, Bostick BC 2018. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. PNAS 115:11180–85
    [Google Scholar]
  128. Sigman DM, Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–69
    [Google Scholar]
  129. Sigman DM, Hain MP, Haug GH 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466:47–55
    [Google Scholar]
  130. Sigman DM, Haug GH. 2003. The biological pump in the past. Treatise on Geochemistry D Holland, KK Turekian 491–528 Amsterdam: Elsevier
    [Google Scholar]
  131. Sigman DM, Jaccard SL, Haug GH 2004. Polar ocean stratification in a cold climate. Nature 428:59–63
    [Google Scholar]
  132. Sikes EL, Cook MS, Guilderson TP 2016. Reduced deep ocean ventilation in the Southern Pacific Ocean during the last glaciation persisted into the deglaciation. Earth Planet. Sci. Lett. 438:130–38
    [Google Scholar]
  133. Sikes EL, Guilderson TP. 2016. Southwest Pacific Ocean surface reservoir ages since the last glaciation: circulation insights from multiple‐core studies. Paleoceanography 31:298–310
    [Google Scholar]
  134. Skinner LC. 2009. Glacial-interglacial atmospheric CO2 change: a possible “standing volume” effect on deep-ocean carbon sequestration. Clim. Past 5:537–50
    [Google Scholar]
  135. Skinner LC, Fallon S, Waelbroeck C, Michel E, Barker S 2010. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328:1147–51
    [Google Scholar]
  136. Skinner LC, McCave I, Carter L, Fallon S, Scrivner A, Primeau F 2015. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period. Earth Planet. Sci. Lett. 411:45–52
    [Google Scholar]
  137. Skinner LC, Primeau F, Freeman E, de la Fuente M, Goodwin P et al. 2017. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nat. Commun. 8:16010
    [Google Scholar]
  138. Somes CJ, Schmittner A, Muglia J, Oschlies A 2017. A three-dimensional model of the marine nitrogen cycle during the last glacial maximum constrained by sedimentary isotopes. Front. Mar. Sci. 4:108
    [Google Scholar]
  139. Soulet G, Skinner LC, Beaupré SR, Galy V 2016. A note on reporting of reservoir 14C disequilibria and age offsets. Radiocarbon 58:205–11
    [Google Scholar]
  140. Stephens BB, Keeling RF. 2000. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404:171–74
    [Google Scholar]
  141. Studer AS, Sigman DM, Martínez‐García A, Benz V, Winckler G et al. 2015. Antarctic Zone nutrient conditions during the last two glacial cycles. Paleoceanogr. Paleoclimatol. 30:845–62
    [Google Scholar]
  142. Sugden DE, McCulloch RD, Bory AJ-M, Hein AS 2009. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nat. Geosci. 2:281–85
    [Google Scholar]
  143. Sundquist ET. 1993. The global carbon-dioxide budget. Science 259:934–41
    [Google Scholar]
  144. Tagliabue A, Aumont O, DeAth R, Dunne JP, Dutkiewicz S et al. 2016. How well do global ocean biogeochemistry models simulate dissolved iron distributions?. Glob. Biogeochem. Cycles 30:149–74
    [Google Scholar]
  145. Tagliabue A, Bopp L, Roche DM, Bouttes N, Dutay JC et al. 2009. Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum. Clim. Past 5:695–706
    [Google Scholar]
  146. Talley LD. 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26:180–97
    [Google Scholar]
  147. Tamburini F, Föllmi K. 2009. Phosphorus burial in the ocean over glacial-interglacial time scales. Biogeosciences 6:501–13
    [Google Scholar]
  148. Thornalley DJR, Barker S, Broecker WS, Elderfield H, McCave IN 2011. The deglacial evolution of North Atlantic deep convection. Science 331:202–5
    [Google Scholar]
  149. Timmermann A, Friedrich T, Timm OE, Chikamoto MO, Abe-Ouchi A, Ganopolski A 2014. Modeling obliquity and CO2 effects on Southern Hemisphere climate during the past 408 ka. J. Clim. 27:1863–75
    [Google Scholar]
  150. Toggweiler JR. 1999. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14:571–88
    [Google Scholar]
  151. Toggweiler JR, Russell JL, Carson SR 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21: PA2005
    [Google Scholar]
  152. Turner JT. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130:205–48
    [Google Scholar]
  153. Volk T, Hoffert MI. 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO2: Natural Variations Archaean to Present ET Sundquist, W Broecker 99–110 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  154. Wagner M, Hendy IL. 2017. Trace metal evidence for a poorly ventilated glacial Southern Ocean. Quat. Sci. Rev. 170:109–20
    [Google Scholar]
  155. Wallmann K, Schneider B, Sarnthein M 2016. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study. Clim. Past 12:339–75
    [Google Scholar]
  156. Wang XT, Sigman DM, Prokopenko MG, Adkins JF, Robinson LF et al. 2017. Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age. PNAS 114:3352–57
    [Google Scholar]
  157. Watson AJ, Garabato ACN. 2006. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change. Tellus B 58:73–87
    [Google Scholar]
  158. Watson AJ, Vallis GK, Nikurashin M 2015. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci. 8:861–64
    [Google Scholar]
  159. Weber T, Cram JA, Leung SW, DeVries T, Deutsch C 2016. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. PNAS 113:8606–11
    [Google Scholar]
  160. Williams RG, Follows MJ. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms Cambridge, UK: Cambridge Univ. Press
  161. Wolf MK, Hamme RC, Gilbert D, Yashayaev I, Thierry V 2018. Oxygen saturation surrounding deep water formation events in the Labrador Sea from Argo-O2 data. Glob. Biogeochem. Cycles 32:635–53
    [Google Scholar]
  162. Yamamoto A, Abe-Ouchi A, Ohgaito R, Ito A, Oka A 2019. Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust. Clim. Past 15:981–96
    [Google Scholar]
  163. Yu J, Anderson RF, Jin ZD, Rae JWB, Opdyke BN, Eggins SM 2013. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle. Quat. Sci. Rev. 76:39–52
    [Google Scholar]
  164. Yu J, Anderson RF, Rohling EJ 2014. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes. Oceanography 27:116–25
    [Google Scholar]
  165. Yu J, Elderfield H, Hönisch B 2007. B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography 22: PA2202
    [Google Scholar]
  166. Yu J, Menviel L, Jin Z, Thornalley D, Foster G et al. 2019. More efficient North Atlantic carbon pump during the Last Glacial Maximum. Nat. Commun. 10:2170
    [Google Scholar]
  167. Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM 2010. Warming alters the metabolic balance of ecosystems. Philos. Trans. R. Soc. B 365:2117–26
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010906
Loading
/content/journals/10.1146/annurev-marine-010419-010906
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error