1932

Abstract

The geographic distributions of marine species are changing rapidly, with leading range edges following climate poleward, deeper, and in other directions and trailing range edges often contracting in similar directions. These shifts have their roots in fine-scale interactions between organisms and their environment—including mosaics and gradients of temperature and oxygen—mediated by physiology, behavior, evolution, dispersal, and species interactions. These shifts reassemble food webs and can have dramatic consequences. Compared with species on land, marine species are more sensitive to changing climate but have a greater capacity for colonization. These differences suggest that species cope with climate change at different spatial scales in the two realms and that range shifts across wide spatial scales are a key mechanism at sea. Additional research is needed to understand how processes interact to promote or constrain range shifts, how the dominant responses vary among species, and how the emergent communities of the future ocean will function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010916
2020-01-03
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010916.html?itemId=/content/journals/10.1146/annurev-marine-010419-010916&mimeType=html&fmt=ahah

Literature Cited

  1. Alarcón-Muñoz R, Cubillos L, Gatica C 2008. Jumbo squid (Dosidicus gigas) biomass off central Chile: effects on Chilean hake (Merluccius gayi). Calif. Coop. Ocean. Fish. Investig. Rep. 48:157–66
    [Google Scholar]
  2. Allen RM, Metaxas A, Snelgrove PVR 2018. Applying movement ecology to marine animals with complex life cycles. Annu. Rev. Mar. Sci. 10:19–42
    [Google Scholar]
  3. Amélineau F, Fort J, Mathewson PD, Speirs DC, Courbin N et al. 2018. Energyscapes and prey fields shape a North Atlantic seabird wintering hotspot under climate change. R. Soc. Open Sci. 5:171883
    [Google Scholar]
  4. Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ 2011. Do species’ traits predict recent shifts at expanding range edges?. Ecol. Lett. 14:677–89
    [Google Scholar]
  5. Araújo MB, Luoto M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16:743–53
    [Google Scholar]
  6. Aspillaga E, Bartumeus F, Starr RM, López-Sanz À, Linares C et al. 2017. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7:526
    [Google Scholar]
  7. Bates AE, Barrett NS, Stuart-Smith RD, Holbrook NJ, Thompson PA, Edgar GJ 2014. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4:62–67
    [Google Scholar]
  8. Bates AE, McKelvie CM, Sorte CJ, Morley SA, Jones NA et al. 2013. Geographical range, heat tolerance and invasion success in aquatic species. Proc. Biol. Sci. 280:20131958
    [Google Scholar]
  9. Bates AE, Stuart-Smith RD, Barrett NS, Edgar GJ 2017. Biological interactions both facilitate and resist climate-related functional change in temperate reef communities. Proc. R. Soc. B 284:20170484
    [Google Scholar]
  10. Batt RD, Morley JW, Selden RL, Tingley MW, Pinsky ML 2017. Gradual changes in range size accompany long-term trends in species richness. Ecol. Lett. 20:1148–57
    [Google Scholar]
  11. Beaugrand G, Kirby RR. 2018. How do marine pelagic species respond to climate change? Theories and observations. Annu. Rev. Mar. Sci. 10:169–97
    [Google Scholar]
  12. Bernatchez L. 2016. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J. Fish Biol. 89:2519–56
    [Google Scholar]
  13. Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA et al. 2011. Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90
    [Google Scholar]
  14. Bogert CM. 1949. Thermoregulation in reptiles, a factor in evolution. Evolution 3:195–211
    [Google Scholar]
  15. Bontrager M, Angert AL. 2019. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3:55–68
    [Google Scholar]
  16. Bridle JR, Buckley J, Bodsworth EJ, Thomas CD 2013. Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change. Proc. R. Soc. B 281:20131800
    [Google Scholar]
  17. Bridle JR, Vines TH. 2007. Limits to evolution at range margins: When and why does adaptation fail?. Trends Ecol. Evol. 22:140–47
    [Google Scholar]
  18. Brooker RW, Travis JMJ, Clark EJ, Dytham C 2007. Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J. Theor. Biol. 245:59–65
    [Google Scholar]
  19. Brownscombe JW, Cooke SJ, Danylchuk AJ 2017. Spatiotemporal drivers of energy expenditure in a coastal marine fish. Oecologia 183:689–99
    [Google Scholar]
  20. Burgess SC, Treml EA, Marshall DJ 2012. How do dispersal costs and habitat selection influence realized population connectivity?. Ecology 93:1378–87
    [Google Scholar]
  21. Burrows MT, Schoeman DS, Buckley LB, Moore PJ, Poloczanska ES et al. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–55
    [Google Scholar]
  22. Cahill AE, Aiello‐Lammens ME, Fisher‐Reid MC, Hua X, Karanewsky CJ et al. 2014. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41:429–42
    [Google Scholar]
  23. Caselle JE, Davis K, Marks LM 2018. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21:43–53
    [Google Scholar]
  24. Cheng L, Abraham J, Hausfather Z, Trenberth KE 2019. How fast are the oceans warming?. Science 363:128–29
    [Google Scholar]
  25. Cheung WWL, Frölicher TL, Asch RG, Jones MC, Pinsky ML et al. 2016. Building confidence in projections of the responses of living marine resources to climate change. ICES J. Mar. Sci. 73:1283–96
    [Google Scholar]
  26. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–51
    [Google Scholar]
  27. Cowles RB, Bogert CM. 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83:265–96
    [Google Scholar]
  28. Cox JG, Lima SL. 2006. Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21:674–80
    [Google Scholar]
  29. Daly EA, Brodeur RD, Auth TD 2017. Anomalous ocean conditions in 2015: impacts on spring Chinook salmon and their prey field. Mar. Ecol. Prog. Ser. 566:169–82
    [Google Scholar]
  30. Dana JD. 1853. On an isothermal oceanic chart, illustrating the geographic distribution of marine animals. Am. J. Sci. Arts 16:153–67314–27
    [Google Scholar]
  31. Darwin C. 1859. On the Origin of Species by Means of Natural Selection London: John Murray
    [Google Scholar]
  32. Denny MW. 1993. Air and Water: The Biology and Physics of Life's Media Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  33. Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB 2015. Climate change tightens metabolic constraint on marine habitats. Science 348:1132–35
    [Google Scholar]
  34. DeWoody JA, Avise JC. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish Biol. 56:461–73
    [Google Scholar]
  35. Diez JM, D'Antonio CM, Dukes JS, Grosholz ED, Olden JD et al. 2012. Will extreme climatic events facilitate biological invasions?. Front. Ecol. Environ. 10:249–57
    [Google Scholar]
  36. Dulvy NK, Rogers SI, Jennings S, Stelznmüller V, Dye SR, Skjoldal HR 2008. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45:1029–39
    [Google Scholar]
  37. Edgar GJ, Bates AE, Bird TJ, Jones AH, Kininmonth SJ et al. 2016. New approaches to marine conservation through the scaling up of ecological data. Annu. Rev. Mar. Sci. 8:435–61
    [Google Scholar]
  38. Elder LE, Seibel BA. 2015. The thermal stress response to diel vertical migration in the hyperiid amphipod Phronima sedentaria. Comp. Biochem. Physiol. A 187:20–26
    [Google Scholar]
  39. Fey SB, Vasseur DA, Alujević K, Kroeker KJ, Logan ML et al. 2019. Opportunities for behavioral rescue under rapid environmental change. Glob. Change Biol. 25:3110–20
    [Google Scholar]
  40. Finnegan S, Heim NA, Peters SE, Fischer WW 2012. Climate change and the selective signature of the Late Ordovician mass extinction. PNAS 109:6829–34
    [Google Scholar]
  41. Fraser CI, Morrison AK, Hogg AM, Macaya EC, van Sebille E et al. 2018. Antarctica's ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8:704–8
    [Google Scholar]
  42. Freitas C, Olsen EM, Knutsen H, Albretsen J, Moland E 2016. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85:628–37
    [Google Scholar]
  43. Frölicher TL, Fischer EM, Gruber N 2018. Marine heatwaves under global warming. Nature 560:360–64
    [Google Scholar]
  44. Geerts AN, Vanoverbeke J, Vanschoenwinkel B, Van Doorslaer W, Feuchtmayr H et al. 2015. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5:665–68
    [Google Scholar]
  45. Gentemann CL, Minnett PJ, Borgne PL, Merchant CJ 2008. Multi-satellite measurements of large diurnal warming events. Geophys. Res. Lett. 35:L22602
    [Google Scholar]
  46. Gibb R, Browning E, Glover-Kapfer P, Jones KE 2019. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10:169–85
    [Google Scholar]
  47. Gilman SE. 2006. The northern geographic range limit of the intertidal limpet Collisella scabra: a test of performance, recruitment, and temperature hypotheses. Ecography 29:709–20
    [Google Scholar]
  48. Giomi F, Fusi M, Barausse A, Mostert B, Portner HO, Cannicci S 2014. Improved heat tolerance in air drives the recurrent evolution of air-breathing. Proc. R. Soc. B 281:20132927
    [Google Scholar]
  49. Gomulkiewicz R, Holt RD. 1995. When does evolution by natural selection prevent extinction?. Evolution 49:201–7
    [Google Scholar]
  50. Gonzalez A, Ronce O, Ferrière R, Hochberg ME 2013. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. B 368:20120404
    [Google Scholar]
  51. Grantham BA, Chan F, Nielsen KJ, Fox DS, Barth JA et al. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–54
    [Google Scholar]
  52. Gravel D, Albouy C, Thuiller W 2016. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B 371:20150268
    [Google Scholar]
  53. Grieve B, Curchitser E, Rykaczewski R 2016. Range expansion of the invasive lionfish in the Northwest Atlantic with climate change. Mar. Ecol. Prog. Ser. 546:225–37
    [Google Scholar]
  54. Gunderson AR, Dillon ME, Stillman JH 2017. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31:1529–39
    [Google Scholar]
  55. Gunderson AR, Leal M. 2016. A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change. Ecol. Lett. 19:111–20
    [Google Scholar]
  56. Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282:20150401
    [Google Scholar]
  57. Guzman HM, Gomez CG, Hearn A, Eckert SA 2018. Longest recorded trans-Pacific migration of a whale shark (Rhincodon typus). Mar. Biodivers. Rec. 11:8
    [Google Scholar]
  58. Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8:461–67
    [Google Scholar]
  59. Hare JA, Able KW. 2007. Mechanistic links between climate and fisheries along the east coast of the United States: explaining population outbursts of Atlantic croaker (Micropogonias undulatus). Fish. Oceanogr. 16:31–45
    [Google Scholar]
  60. Harley CDG, Paine RT. 2009. Contingencies and compounded rare perturbations dictate sudden distributional shifts during periods of gradual climate change. PNAS 106:11172–76
    [Google Scholar]
  61. Hartmann DJ, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S et al. 2013. Observations: atmosphere and surface. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.159–254 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  62. Harvey BP, Gwynn-Jones D, Moore PJ 2013. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3:1016–30
    [Google Scholar]
  63. Harvey BP, Moore PJ. 2017. Ocean warming and acidification prevent compensatory response in a predator to reduced prey quality. Mar. Ecol. Prog. Ser. 563:111–22
    [Google Scholar]
  64. Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G et al. 2018. Transient phenomena in ecology. Science 361:eaat6412
    [Google Scholar]
  65. Hellberg ME, Balch DP, Roy K 2001. Climate-driven range expansion and morphological evolution in a marine gastropod. Science 292:1707–10
    [Google Scholar]
  66. Hiddink JG, Burrows MT, Molinos JG 2015. Temperature tracking by North Sea benthic invertebrates in response to climate change. Glob. Change Biol. 21:117–29
    [Google Scholar]
  67. Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S et al. 2014. The ocean. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Part B: Regional Aspects VR Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach et al.1655–731 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  68. Hoffmann AA, Sgro CM. 2011. Climate change and evolutionary adaptation. Nature 470:479–85
    [Google Scholar]
  69. Holland KN, Brill RW, Chang RKC, Sibert JR, Fournier DA 1992. Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus). Nature 358:410–12
    [Google Scholar]
  70. Holmes MW, Hammond TT, Wogan GOU, Walsh RE, Labarbera K et al. 2016. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25:864–81
    [Google Scholar]
  71. Howell D, Filin AA. 2014. Modelling the likely impacts of climate-driven changes in cod-capelin overlap in the Barents Sea. ICES J. Mar. Sci. 71:72–80
    [Google Scholar]
  72. Hunsicker ME, Ciannelli L, Bailey KM, Zador S, Stige LC 2013. Climate and demography dictate the strength of predator-prey overlap in a subarctic marine ecosystem. PLOS ONE 8:e66025
    [Google Scholar]
  73. Hyndes GA, Heck KL Jr, Vergés A, Harvey ES, Kendrick GA et al. 2016. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66:938–48
    [Google Scholar]
  74. Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5:3271
    [Google Scholar]
  75. Jackson ST, Sax DF. 2009. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25:153–60
    [Google Scholar]
  76. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK et al. 2011. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400:17–32
    [Google Scholar]
  77. Johnson CR, Ling SD, Ross DJ, Shepherd S, Miller KJ 2005. Establishment of the long-spined sea urchin (Centrostephanus rodgersii) in Tasmania: first assessment of potential threats to fisheries Fish. Res. Dev. Corp. Proj. 2001/044, Sch. Zool. and Tasmanian Aquac. Fish. Inst., Univ. Tasmania, Hobart, Aust .
    [Google Scholar]
  78. Jones T, Parrish JK, Peterson WT, Bjorkstedt EP, Bond NA et al. 2018. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett. 45:3193–202
    [Google Scholar]
  79. Jonkers L, Hillebrand H, Kucera M 2019. Global change drives modern plankton communities away from the pre-industrial state. Nature 570:372–75
    [Google Scholar]
  80. Kinlan BP, Gaines SD. 2003. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–20
    [Google Scholar]
  81. Kolar CS, Lodge DM. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199–204
    [Google Scholar]
  82. Kordas RL, Donohue I, Harley CDG 2017. Herbivory enables marine communities to resist warming. Sci. Adv. 3:e1701349
    [Google Scholar]
  83. Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J et al. 2012. Climate-driven regime shifts in Arctic marine benthos. PNAS 109:14052–57
    [Google Scholar]
  84. Kortsch S, Primicerio R, Fossheim M, Dolgov AV, Aschan M 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. Biol. Sci. 282:20151546
    [Google Scholar]
  85. Kumagai NH, García Molinos J, Yamano H, Takao S, Fujii M, Yamanaka Y 2018. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. PNAS 115:201716826
    [Google Scholar]
  86. Ledoux J-B, Aurelle D, Bensoussan N, Marschal C, Féral J-P, Garrabou J 2015. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean. Ecol. Evol. 5:1178–92
    [Google Scholar]
  87. Lefevre S, McKenzie DJ, Nilsson GE 2017. Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Glob. Change Biol. 23:3449–59
    [Google Scholar]
  88. Lima FP, Gomes F, Seabra R, Wethey DS, Seabra MI et al. 2016. Loss of thermal refugia near equatorial range limits. Glob. Change Biol. 22:254–63
    [Google Scholar]
  89. Ling SD, Johnson CR, Frusher SD, Ridgway KR 2009. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. PNAS 106:22341–45
    [Google Scholar]
  90. Lönnstedt OM, McCormick MI. 2013. Ultimate predators: lionfish have evolved to circumvent prey risk assessment abilities. PLOS ONE 8:e75781
    [Google Scholar]
  91. Louthan AM, Doak DF, Angert AL 2015. Where and when do species interactions set range limits?. Trends Ecol. Evol. 30:780–92
    [Google Scholar]
  92. Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR 2011. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc. R. Soc. B 279:1033–40
    [Google Scholar]
  93. MacKenzie DI, Nichols J, Royle J, Pollock K, Bailey L, Hines J 2006. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence London: Academic
    [Google Scholar]
  94. Magurran AE, Dornelas M, Moyes F, Gotelli NJ, McGill BJ 2015. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6:8405
    [Google Scholar]
  95. McCann KS. 2007. Protecting biostructure. Nature 446:29
    [Google Scholar]
  96. McCann KS, Rooney N. 2009. The more food webs change, the more they stay the same. Philos. Trans. R. Soc. Lond. B 364:1789–801
    [Google Scholar]
  97. McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR 2015. Marine defaunation: animal loss in the global ocean. Science 347:1255641
    [Google Scholar]
  98. Menéndez R, González-Megías A, Lewis OT, Shaw MR, Thomas CD 2008. Escape from natural enemies during climate-driven range expansion: a case study. Ecol. Entomol. 33:413–21
    [Google Scholar]
  99. Merilä J, Hendry AP. 2014. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7:1–14
    [Google Scholar]
  100. Molinos JG, Burrows MT, Poloczanska ES 2017. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7:1332
    [Google Scholar]
  101. Molinos JG, Halpern BS, Schoeman DS, Brown CJ, Kiessling W et al. 2015. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6:83–88
    [Google Scholar]
  102. Morley JW, Selden RL, Latour RJ, Frölicher TL, Seagraves RJ, Pinsky ML 2018. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLOS ONE 13:e0196127
    [Google Scholar]
  103. Mouritsen KN, Tompkins DM, Poulin R 2005. Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146:476–83
    [Google Scholar]
  104. Munday PL, Donelson JM, Domingos JA 2017. Potential for adaptation to climate change in a coral reef fish. Glob. Change Biol. 23:307–17
    [Google Scholar]
  105. Murawski SA. 1993. Climate change and marine fish distributions: forecasting from historical analogy. Trans. Am. Fish. Soc. 122:647–58
    [Google Scholar]
  106. Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N 2012. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2:747–51
    [Google Scholar]
  107. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA 2014. Mechanisms of reef coral resistance to future climate change. Science 344:895–98
    [Google Scholar]
  108. Pappalardo P, Pringle JM, Wares JP, Byers JE 2015. The location, strength, and mechanisms behind marine biogeographic boundaries of the east coast of North America. Ecography 38:722–31
    [Google Scholar]
  109. Payne JL, Clapham ME. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40:89–111
    [Google Scholar]
  110. Penn JL, Deutsch C, Payne JL, Sperling EA 2018. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:eaat1327
    [Google Scholar]
  111. Perry AL, Low PJ, Ellis JR, Reynolds JD 2005. Climate change and distribution shifts in marine fishes. Science 308:1912–15
    [Google Scholar]
  112. Petitgas P, Alheit J, Peck MA, Raab K, Irigoien X et al. 2012. Anchovy population expansion in the North Sea. Mar. Ecol. Prog. Ser. 444:1–13
    [Google Scholar]
  113. Pikitch EK. 2018. A tool for finding rare marine species. Science 360:1180–82
    [Google Scholar]
  114. Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM 2019. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:108–11
    [Google Scholar]
  115. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA 2013. Marine taxa track local climate velocities. Science 341:1239–42
    [Google Scholar]
  116. Pitt NR, Poloczanska ES, Hobday AJ 2010. Climate-driven range changes in Tasmanian intertidal fauna. Mar. Freshw. Res. 61:963–70
    [Google Scholar]
  117. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS et al. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–25
    [Google Scholar]
  118. Poloczanska ES, Burrows MT, Brown CJ, García Molinos J, Halpern BS et al. 2016. Responses of marine organisms to climate change across oceans. Front. Mar. Sci 3:62
    [Google Scholar]
  119. Pörtner HO, Karl D, Boyd PW, Cheung W, Lluch-Cota SE et al. 2014. Ocean systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Part A: Global and Sectoral Aspects CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.pp. 411–84 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  120. Pörtner HO, Knust R. 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97
    [Google Scholar]
  121. Prince ED, Luo J, Goodyear CP, Hoolihan JP, Snodgrass D et al. 2010. Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes. Fish. Oceanogr. 19:448–62
    [Google Scholar]
  122. Renaud PE, Daase M, Banas NS, Gabrielsen TM, Soreide JE et al. 2018. Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75:1871–81
    [Google Scholar]
  123. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D et al. 2013. Observations: ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.255–316 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  124. Richardson AJ, Poloczanska ES. 2008. Under-resourced, under threat. Science 320:1294–95
    [Google Scholar]
  125. Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE et al. 2011. Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20:789–802
    [Google Scholar]
  126. Sadowski JS, Gonzalez JA, Lonhart SI, Jeppesen R, Grimes TM, Grosholz ED 2018. Temperature-induced range expansion of a subtropical crab along the California coast. Mar. Ecol. 39:e12528
    [Google Scholar]
  127. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC et al. 2004. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18:GB3003
    [Google Scholar]
  128. Schloss CA, Nuñez TA, Lawler JJ 2012. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. PNAS 109:8606–11
    [Google Scholar]
  129. Schmidt-Nielsen K. 1972. Locomotion: energy cost of swimming, flying, and running. Science 177:222–28
    [Google Scholar]
  130. Shakun JD, Clark PU, He F, Marcott SA, Mix AC et al. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54
    [Google Scholar]
  131. Siddon EC, Kristiansen T, Mueter FJ, Holsman KK, Heintz RA, Farley EV 2013. Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea. PLOS ONE 8:e84526
    [Google Scholar]
  132. Smale DA, Wernberg T. 2013. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280:20122829
    [Google Scholar]
  133. Smith TB, Maté JL, Gyory J 2017. Thermal refuges and refugia for stony corals in the eastern tropical Pacific. Coral Reefs of the Eastern Tropical Pacific PW Glynn, DP Manzello, IC Enochs 501–15 Dordrecht, Neth: Springer
    [Google Scholar]
  134. Sorte CJB, Williams SL, Carlton JT 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19:303–16
    [Google Scholar]
  135. Sousa T, Domingos T, Poggiale JC, Kooijman SALM 2010. Dynamic energy budget theory restores coherence in biology. Philos. Trans. R. Soc. Lond. B 365:3413–28
    [Google Scholar]
  136. Stachowicz JJ, Fried H, Osman RW, Whitlatch RB 2002. Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83:2575–90
    [Google Scholar]
  137. Steele JH. 1985. A comparison of terrestrial and marine ecological systems. Nature 313:355–58
    [Google Scholar]
  138. Stewart JS, Hazen EL, Bograd SJ, Byrnes JEK, Foley DG et al. 2014. Combined climate- and prey-mediated range expansion of Humboldt squid (Dosidicus gigas), a large marine predator in the California Current System. Glob. Change Biol. 20:1832–43
    [Google Scholar]
  139. Stock CA, Dunne JP, John JG 2014. Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences 11:7125–35
    [Google Scholar]
  140. Stotz GC, Gianoli E, Cahill JF Jr 2016. Spatial pattern of invasion and the evolutionary responses of native plant species. Evol. Appl. 9:939–51
    [Google Scholar]
  141. Strauss SY, Lau JA, Carroll SP 2006. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities. ? Ecol. Lett. 9:357–74
    [Google Scholar]
  142. Sunday JM, Bates AE, Dulvy NK 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278:1823–30
    [Google Scholar]
  143. Sunday JM, Bates AE, Dulvy NK 2012. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2:686–90
    [Google Scholar]
  144. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK et al. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111:5610–15
    [Google Scholar]
  145. Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N et al. 2015. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18:944–53
    [Google Scholar]
  146. Szűcs M, Vahsen ML, Melbourne BA, Hoover C, Weiss-Lehman C, Hufbauer RA 2017. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. PNAS 114:13501–6
    [Google Scholar]
  147. Teske PR, McQuaid CD, Froneman PW, Barker NP 2006. Impacts of marine biogeographic boundaries on phylogeographic patterns of three South African estuarine crustaceans. Mar. Ecol. Prog. Ser. 314:283–93
    [Google Scholar]
  148. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG et al. 2001. Ecological and evolutionary processes at expanding range margins. Nature 411:577–81
    [Google Scholar]
  149. Thomas CD, Franco AMA, Hill JK 2006. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21:415–16
    [Google Scholar]
  150. Thomas MK, Kremer CT, Klausmeier CA, Litchman E 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–88
    [Google Scholar]
  151. Thorson JT, Pinsky ML, Ward EJ 2016. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods Ecol. Evol. 7:990–1002
    [Google Scholar]
  152. Tydecks L, Jeschke JM, Wolf M, Singer G, Tockner K 2018. Spatial and topical imbalances in biodiversity research. PLOS ONE 13:e0199327
    [Google Scholar]
  153. Tylianakis JM, Didham RK, Bascompte J, Wardle DA 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11:1351–63
    [Google Scholar]
  154. Tylianakis JM, Laliberte E, Nielsen A, Bascompte J 2010. Conservation of species interaction networks. Biol. Conserv. 143:2270–79
    [Google Scholar]
  155. Urban MC. 2015. Accelerating extinction risk from climate change. Science 348:571–73
    [Google Scholar]
  156. Verges A, Steinberg PD, Hay ME, Poore AGB, Campbell AH et al. 2014. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281:20140846
    [Google Scholar]
  157. Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K et al. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–72
    [Google Scholar]
  158. Wiens JJ. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol 14:e2001104
    [Google Scholar]
  159. Willett CS. 2010. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus. . Evolution 64:2521–34
    [Google Scholar]
  160. Williams JL, Kendall BE, Levine JM 2016. Rapid evolution accelerates plant population spread in fragmented experimental landscapes. Science 353:482–85
    [Google Scholar]
  161. Woodson CB, Litvin SY. 2015. Ocean fronts drive marine fishery production and biogeochemical cycling. PNAS 112:1710–15
    [Google Scholar]
  162. Zeidberg LD, Robison BH. 2007. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. PNAS 104:12948–50
    [Google Scholar]
  163. Zurell D, Thuiller W, Pagel J, Cabral JS, Münkemüller T et al. 2016. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22:2651–64
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010916
Loading
/content/journals/10.1146/annurev-marine-010419-010916
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error