1932

Abstract

Oceanic uptake of anthropogenic carbon dioxide (CO) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including coastal upwelling, river–ocean mixing, air–water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO (CO), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-011004
2021-01-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-010419-011004.html?itemId=/content/journals/10.1146/annurev-marine-010419-011004&mimeType=html&fmt=ahah

Literature Cited

  1. Abril G, Etcheber H, Delille B, Frankignoulle M, Borges AV 2003. Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar. Ecol. Prog. Ser. 259:12938
    [Google Scholar]
  2. Adelsman H, Binder LW 2012. Ocean acidification: from knowledge to action Rep., Wash. State Dep. Ecol Olympia:
    [Google Scholar]
  3. Albright R, Takeshita Y, Koweek DA, Ninokawa A, Wolfe K et al. 2018. Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature 555:516–19
    [Google Scholar]
  4. Álvarez M, Sanleón-Bartolomé H, Tanhua T, Mintrop L, Luchetta A et al. 2014. The CO2 system in the Mediterranean Sea: a basin wide perspective. Ocean Sci 10:69–92
    [Google Scholar]
  5. Auburn ME, Ignell SE. 2000. Food habits of juvenile salmon in the Gulf of Alaska July–August 1996. North Pac. Anadramous Fish Comm. Bull. 2:89–97
    [Google Scholar]
  6. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR 2011. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81:169–93
    [Google Scholar]
  7. Barton A, Waldbusser GG, Feely RA, Weisberg SB, Newton JA et al. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28:2146–159
    [Google Scholar]
  8. Bates NR, Astor Y, Church M, Currie K, Dore J et al. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27:1126–41
    [Google Scholar]
  9. Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ 2012. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9:2509–22
    [Google Scholar]
  10. Bates RG. 1973. Determination of pH: Theory and Practice New York: Wiley & Sons
    [Google Scholar]
  11. Baucke FG. 2002. New IUPAC recommendations on the measurement of pH – background and essentials. Anal. Bioanal. Chem. 374:772–77
    [Google Scholar]
  12. Baumann H, Smith EM. 2018. Quantifying metabolically driven pH and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. Estuaries Coasts 41:1102–17
    [Google Scholar]
  13. Bednaršek N, Feely RA, Beck MW, Alin SR, Siedlecki SA et al. 2020a. Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients. Sci. Total Environ. 716:136610
    [Google Scholar]
  14. Bednaršek N, Feely RA, Beck MW, Glippa O, Kanerva M, Engström-Öst J 2018. El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California Current System with implications for increased bioenergetic costs. Front. Mar. Sci. 5:486
    [Google Scholar]
  15. Bednaršek N, Feely RA, Howes EL, Hunt BP V, Kessouri F et al. 2019. Systematic review and meta-analysis toward synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming. Front. Mar. Sci. 6:227
    [Google Scholar]
  16. Bednaršek N, Feely RA, Reum JCP, Peterson B, Menkel J et al. 2014. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B 281:20140123
    [Google Scholar]
  17. Bednaršek N, Feely RA, Tolimieri N, Hermann AJ, Siedlecki SA et al. 2017. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Sci. Rep. 7:4526
    [Google Scholar]
  18. Bednaršek N, Newton JA, Beck MW, Alin SR, Feely RAet al 2020b. Severe biological effects under present-day estuarine acidification in the seasonally variable Salish Sea. Sci. Total Environ. In press. https://doi.org/10.1016/j.scitotenv.2020.142689
    [Crossref] [Google Scholar]
  19. Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica (Gmelin). Mar. Ecol. Prog. Ser. 419:95–108
    [Google Scholar]
  20. Bernard FR. 1977. Fishery and reproductive cycle of the red sea urchin, Strongylocentrotus franciscanus, in British Columbia. J. Fish. Board Can. 34:604–10
    [Google Scholar]
  21. Bianucci L, Long W, Khangaonkar T, Pelletier G, Ahmed A, Mohamedali T 2018. Sensitivity of the regional ocean acidification and the carbonate system in Salish Sea to ocean and freshwater inputs. Elem. Sci. Anthr. 6:22
    [Google Scholar]
  22. Borges AV, Abril G. 2011. Carbon dioxide and methane dynamics in estuaries. Treatise on Estuarine and Coastal Science, Vol. 5 E Wolanski, D McLusky 119–61 Waltham, MA: Academic
    [Google Scholar]
  23. Borges AV, Gypens N. 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr. 55:346–53
    [Google Scholar]
  24. Boudreau BP, Canfield DE. 1993. A comparison of closed-system and open-system models for porewater pH and calcite-saturation state. Geochim. Cosmochim. Acta. 57:317–34
    [Google Scholar]
  25. Brewer PG. 2009. A changing ocean seen with clarity. PNAS 106:12213–14
    [Google Scholar]
  26. Brodeur JR, Chen B, Su J, Xu Y, Hussain N et al. 2019. Chesapeake Bay inorganic carbon: spatial distribution and seasonal variability. Front. Mar. Sci. 6:99
    [Google Scholar]
  27. Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA et al. 2002. Measurement of pH. Definition, standards, and procedures (IUPAC recommendations 2002). Pure Appl. Chem. 74:2169–200
    [Google Scholar]
  28. Cai W-J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration. ? Annu. Rev. Mar. Sci. 3:123–45
    [Google Scholar]
  29. Cai W-J, Chen F, Powell EN, Walker SE, Parsons-Hubbard KM et al. 2006. Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth Planet. Sci. Lett. 248:227–43
    [Google Scholar]
  30. Cai W-J, Guo X, Chen C-TA, Dai M, Zhang L et al. 2008. A comparative overview of weathering intensity and HCO3 flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont. Shelf Res. 28:1538–49
    [Google Scholar]
  31. Cai W-J, Hu X, Huang W-J, Jiang L-Q, Wang Y et al. 2010a. Alkalinity distribution in the western North Atlantic Ocean margins. J. Geophys. Res. Oceans 115:1538–49
    [Google Scholar]
  32. Cai W-J, Hu X, Huang W-J, Murrell MC, Lehrter JC et al. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4:766–70
    [Google Scholar]
  33. Cai W-J, Huang W-J, Luther GW, Pierrot D, Li M et al. 2017. Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nat. Commun. 8:369
    [Google Scholar]
  34. Cai W-J, Luther GW III, Cornwell JC, Giblin AE 2010b. Carbon cycling and the coupling between proton and electron transfer reactions in aquatic sediments in Lake Champlain. Aquat. Geochem. 16:421–46
    [Google Scholar]
  35. Cai W-J, Pomeroy LR, Moran MA, Wang YC 1999. Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern US. Limnol. Oceanogr. 44:639–49
    [Google Scholar]
  36. Cai W-J, Reimers CE. 1993. The development of pH and pCO2 microelectrodes for studying the carbonate chemistry of pore waters near the sediment-water interface. Limnol. Oceanogr. 38:1762–73
    [Google Scholar]
  37. Cai W-J, Wang Y. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 43:657–68
    [Google Scholar]
  38. Cai W-J, Wang Y, Hodson RE 1998. Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochim. Cosmochim. Acta. 62:473–83
    [Google Scholar]
  39. Cai W-J, Xu Y-Y, Feely RA, Wanninkhof R, Jönsson B et al. 2020. Controls on surface water carbonate chemistry along North American ocean margins. Nat. Commun. 11:2691
    [Google Scholar]
  40. Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425:365
    [Google Scholar]
  41. Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J et al. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113:27–40
    [Google Scholar]
  42. Cannon GA, Holbrook JR, Pashinski DJ 1990. Variations in the onset of bottom-water intrusions over the entrance sill of a fjord. Estuaries 13:31–42
    [Google Scholar]
  43. Carter BR, Feely RA, Wanninkhof R, Kouketsu S, Sonnerup RE et al. 2019. Pacific anthropogenic carbon between 1991 and 2017. Glob. Biogeochem. Cycles 33:597–617
    [Google Scholar]
  44. Carter HH, Pritchard DW. 1988. Oceanography of Chesapeake Bay. Hydrodynamics of Estuaries, Vol. 2: Estuarine Case Studies B Kjerfve 1–16 Boca Raton, FL: CRC
    [Google Scholar]
  45. Chan F, Boehm AB, Barth JA, Chornesky EA, Dickson AG et al. 2016. The West Coast Ocean Acidification and Hypoxia Science Panel: major findings, recommendations, and actions Rep., Calif. Ocean Sci. Trust Oakland:
    [Google Scholar]
  46. Chen C, Liu H, Beardsley RC 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 20:159–86
    [Google Scholar]
  47. Clayton TD, Byrne RH. 1993. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. I 40:2115–29
    [Google Scholar]
  48. Crim R, Sunday J, Harley C 2011. Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J. Exp. Mar. Biol. Ecol. 400:272–77
    [Google Scholar]
  49. Dai M, Lu Z, Zhai W, Chen B, Cao Z et al. 2009. Diurnal variations of surface seawater CO2 in contrasting coastal environments. Limnol. Oceanogr. 54:735–45
    [Google Scholar]
  50. Dickson AG. 1993. The measurement of sea water pH. Mar. Chem. 44:131–42
    [Google Scholar]
  51. Dickson AG, Camões MF, Spitzer P, Fisicaro P, Stoica D et al. 2016. Metrological challenges for measurements of key climatological observables. Part 3: seawater pH. Metrologia 53:R26
    [Google Scholar]
  52. Doney SC, Busch DS, Cooley SR, Kroeker KJ 2020. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45:83–112
    [Google Scholar]
  53. Doney SC, Fabry VJ, Feely RA, Kleypas JA 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:69–92
    [Google Scholar]
  54. Doubleday AJ, Hopcroft RR. 2015. Interannual patterns during spring and late summer of larvaceans and pteropods in the coastal Gulf of Alaska, and their relationship to pink salmon survival. J. Plankton Res. 37:134–50
    [Google Scholar]
  55. Du J, Shen J. 2016. Water residence time in Chesapeake Bay for 1980–2012. J. Mar. Syst. 164:101–11
    [Google Scholar]
  56. Egleston ES, Sabine CL, Morel FMM 2010. Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24:GB1002
    [Google Scholar]
  57. Ekstrom JA, Suatoni L, Cooley SR, Pendleton LH, Waldbusser GG et al. 2015. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5:207–14
    [Google Scholar]
  58. Evans W, Mathis JT, Cross JN 2014. Calcium carbonate corrosivity in an Alaskan Inland Sea. Biogeosciences 11:365–79
    [Google Scholar]
  59. Evans W, Pocock K, Hare A, Weekes C, Hales B et al. 2019. Marine CO2 patterns in the northern Salish Sea. Front. Mar. Sci. 5:536
    [Google Scholar]
  60. Fassbender AJ, Rodgers KB, Palevsky HI, Sabine CL 2018. Seasonal asymmetry in the evolution of surface ocean pCO2 and pH thermodynamic drivers and the influence on sea-air CO2 flux. Glob. Biogeochem. Cycles 32:1476–97
    [Google Scholar]
  61. Feely RA, Alin SR, Carter B, Bednaršek N, Hales B et al. 2016. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183:260–70
    [Google Scholar]
  62. Feely RA, Alin SR, Newton JA, Sabine CL, Warner M et al. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88:442–49
    [Google Scholar]
  63. Feely RA, Doney SC, Cooley SR 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:436–47
    [Google Scholar]
  64. Feely RA, Klinger T, Newton JA, Chadsey M 2012a. Scientific summary of ocean acidification in Washington State marine waters Rep., Off. Ocean. Atmos. Res., Natl. Ocean. Atmos. Adm Silver Spring, MD:
    [Google Scholar]
  65. Feely RA, Okazaki RR, Cai W-J, Bednaršek N, Alin SR et al. 2018. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Cont. Shelf Res. 152:50–60
    [Google Scholar]
  66. Feely RA, Sabine CL, Byrne RH, Millero FJ, Dickson AG et al. 2012b. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Glob. Biogeochem. Cycles 26:GB3001
    [Google Scholar]
  67. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–92
    [Google Scholar]
  68. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J et al. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–66
    [Google Scholar]
  69. Fennel K, Testa JM. 2019. Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11:105–30
    [Google Scholar]
  70. Frankignoulle M. 1994. A complete set of buffer factors for acid-base CO2 system in seawater. J. Mar. Syst. 5:111–18
    [Google Scholar]
  71. Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Hauck J et al. 2019. Global Carbon Budget 2019. Earth Syst. Sci. Data. 11:1783–838
    [Google Scholar]
  72. Friedman JR, Shadwick EH, Friedrichs MAM, Najjar RG, De Meo OA et al. 2020. Seasonal variability of the CO2 system in a large coastal plain estuary. J. Geophys. Res. Oceans 125:e2019JC015609
    [Google Scholar]
  73. Geyer WR, MacCready P. 2014. The estuarine circulation. Annu. Rev. Fluid Mech. 46:175–97
    [Google Scholar]
  74. Glandon HL, Miller TJ. 2017. No effect of high pCO2 on juvenile blue crab, Callinectes sapidus, growth and consumption despite positive responses to concurrent warming. ICES J. Mar. Sci. 74:1201–9
    [Google Scholar]
  75. Goodrich DM, Boicourt WC, Hamilton P, Pritchard DW 1987. Wind-induced destratification in Chesapeake Bay. J. Phys. Oceanogr. 17:2232–40
    [Google Scholar]
  76. Green MA, Waldbusser GG, Reilly SL, Emerson K, O'Donnell S 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54:1037–47
    [Google Scholar]
  77. Hagens M, Slomp CP, Meysman FJR, Seitaj D, Harlay J et al. 2015. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences 12:1561–83
    [Google Scholar]
  78. Hales B, Suhrbier A, Waldbusser GG, Feely RA, Newton JA 2016. The carbonate chemistry of the “fattening line,” Willapa Bay, 2011–2014. Estuaries Coasts 40:173–86
    [Google Scholar]
  79. Halverson MJ, Bélanger C, Gay SM 2013. Seasonal transport variations in the straits connecting Prince William Sound to the Gulf of Alaska. Cont. Shelf Res. 63:S63–78
    [Google Scholar]
  80. Herrmann M, Najjar RG, Da F, Friedman J, Friedrichs MAM, Goldberger S et al. 2020. Challenges in quantifying air–water carbon dioxide flux using estuarine water quality data: case study for Chesapeake Bay. J. Geophys. Res. Oceans 125: e2019JC015610
    [Google Scholar]
  81. Hettinger A, Sanford E, Hill T, Russell A, Sato K et al. 2012. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93:2758–68
    [Google Scholar]
  82. Hofmann AF, Middelburg JJ, Soetaert K, Meysman FJR 2009. pH modelling in aquatic systems with time-variable acid-base dissociation constants applied to the turbid, tidal Scheldt estuary. Biogeosciences 6:1539–61
    [Google Scholar]
  83. Hofmann AF, Soetaert K, Middelburg J, Meysman FR 2010. AquaEnv: an aquatic acid-base modelling environment in R. Aquat. Geochem. 16:507–46
    [Google Scholar]
  84. Hu X, Cai W-J. 2013. Estuarine acidification and minimum buffer zone—a conceptual study. Geophys. Res. Lett. 40:5176–81
    [Google Scholar]
  85. Huang W-J, Cai W-J, Wang Y, Lohrenz SE, Murrell MC 2015. The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux. J. Geophys. Res. Oceans 120:1429–45
    [Google Scholar]
  86. Huang W-J, Cai W-J, Xie X, Li M 2019. Wind-driven lateral variations of partial pressure of carbon dioxide in a large estuary. J. Mar. Syst. 195:67–73
    [Google Scholar]
  87. Hunt CW, Salisbury JE, Vandemark D 2011. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 8:3069–76
    [Google Scholar]
  88. Ianson D, Allen SE, Moore-Maley BL, Johannessen SC, Macdonald RW 2016. Vulnerability of a semienclosed estuarine sea to ocean acidification in contrast with hypoxia. Geophys. Res. Lett. 43:5793–801
    [Google Scholar]
  89. Jansson A, Lischka S, Boxhammer T, Schulz KG, Norkko J 2016. Survival and settling of larval Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels. Biogeosciences 12:20411–35
    [Google Scholar]
  90. Jensen HS, Nielsen OI, Koch MS, de Vicentea I 2009. Phosphorus release with carbonate dissolution coupled to sulfide oxidation in Florida Bay seagrass sediments. Limnol. Oceanogr. 54:1753–64
    [Google Scholar]
  91. Jiang L-Q, Carter BR, Feely RA, Lauvset SK, Olsen A 2019. Surface ocean pH and buffer capacity: past, present and future. Sci. Rep. 9:18624
    [Google Scholar]
  92. Jiang L-Q, Feely RA, Carter BR, Greeley DJ, Gledhill DK, Arzayus KM 2015. Climatological distribution of aragonite saturation state in the global oceans. Glob. Biogeochem. Cycles 29:165673
    [Google Scholar]
  93. Jiang Z-P, Cai W-J, Chen B, Wang K, Han C et al. 2019. Physical and biogeochemical controls on pH dynamics in the northern Gulf of Mexico during summer hypoxia. J. Geophys. Res. Oceans 124:5979–98
    [Google Scholar]
  94. Joesoef A, Huang W-J, Gao Y, Cai W-J 2015. Air-water fluxes and sources of carbon dioxide in the Delaware Estuary: spatial and seasonal variability. Biogeosciences 12:6086–101
    [Google Scholar]
  95. Joesoef A, Kirchman DL, Sommerfield CK, Cai W-J 2017. Seasonal variability of the inorganic carbon system in a large coastal plain estuary. Biogeosciences 14:4949–63
    [Google Scholar]
  96. Kato S, Schroeter SC. 1985. Biology of the red sea urchin, Strongylocentrotus franciscanus, and its fishery in California. Mar. Fish. Rev. 47:1–20
    [Google Scholar]
  97. Khangaonkar T, Sackmann B, Long W, Mohamedali T, Roberts M 2012. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model. Ocean Dyn 62:1353–79
    [Google Scholar]
  98. Kim T, Khangaonkar T. 2012. An offline unstructured biogeochemical model (UBM) for complex estuarine and coastal environments. Environ. Model. Softw. 31:47–63
    [Google Scholar]
  99. Kwiatkowski L, Orr JC. 2018. Diverging seasonal extremes for ocean acidification during the twenty-first century. Nat. Clim. Change 8:141–45
    [Google Scholar]
  100. Landschützer P, Gruber N, Bakker DCE, Stemmler I, Six KD 2018. Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2. Nat. Clim. Change 8:146–50
    [Google Scholar]
  101. Lee DY, Owens MS, Doherty M, Eggleston EM, Hewson I et al. 2015. The effects of oxygen transition on community respiration and potential chemoautotrophic production in a seasonally stratified anoxic estuary. Estuaries Coasts 38:104–17
    [Google Scholar]
  102. Lewis E, Wallace D. 1998. Program developed for CO2 system calculations Rep. ORNL/CDIAC-105, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab Oak Ridge, TN:
    [Google Scholar]
  103. Li M, Zhong L, Boicourt WC 2005. Simulations of Chesapeake Bay estuary: sensitivity to turbulence mixing parameterizations and comparison with observations. J. Geophys. Res. Oceans 110:C12004
    [Google Scholar]
  104. Loesch H. 1960. Sporadic mass shoreward migrations of demersal fish and crustaceans in Mobile Bay, Alabama. Ecology 41:292–98
    [Google Scholar]
  105. Long WC, Swiney KM, Foy RJ 2013a. Effects of ocean acidification on the embryos and larvae of red king crab. Paralithodes camtschaticus. Mar. Pollut. Bull. 69:38–47
    [Google Scholar]
  106. Long WC, Swiney KM, Harris C, Page HN, Foy RJ 2013b. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus) and Tanner crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLOS ONE 8:e60959
    [Google Scholar]
  107. Masson D. 2006. Seasonal water mass analysis for the Straits of Juan de Fuca and Georgia. Atmos. Ocean 44:1–15
    [Google Scholar]
  108. Mathis JT, Cooley SR, Lucey N, Colt S, Ekstrom J et al. 2015. Ocean acidification risk assessment for Alaska's fishery sector. Prog. Oceanogr. 136:71–91
    [Google Scholar]
  109. McNeil BI, Sasse TP. 2016. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 529:383–86
    [Google Scholar]
  110. Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S et al. 2013. Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim. Change 120:965–75
    [Google Scholar]
  111. Middelburg JJ, Soetaert K, Hagens M 2020. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 58:e2019RG000681
    [Google Scholar]
  112. Miller AW, Reynolds AC, Sobrino C, Riedel GF 2009. Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLOS ONE 4:e5661
    [Google Scholar]
  113. Miller J, Maher M, Bohaboy E, Friedman C, McElhany P 2016. Exposure to low pH reduces survival and delays development in early life stages of Dungeness crab (Cancer magister). Mar. Biol. 163:118
    [Google Scholar]
  114. Millero FJ. 1991. The oxidation of H2S in the Chesapeake Bay. Estuar. Coast. Shelf Sci. 33:52127
    [Google Scholar]
  115. Moore SK, Mantua NJ, Newton JA, Kawase M, Warner MJ, Kellogg JP 2008. A descriptive analysis of temporal and spatial patterns of variability in Puget Sound oceanographic properties. Estuar. Coast. Shelf Sci. 80:54554
    [Google Scholar]
  116. Moore-Maley BL, Allen SE, Ianson D 2016. Locally driven interannual variability of near-surface pH and ΩA in the Strait of Georgia. J. Geophys. Res. Oceans 121:160025
    [Google Scholar]
  117. Mucci A. 1983. The solubility of calcite and aragonite in seawater at various salinity, temperatures, and one atmosphere total pressure. Am. J. Sci. 283:78999
    [Google Scholar]
  118. Müller JD, Rehder G. 2018. Metrology of pH measurements in brackish waters—part 2: experimental characterization of purified meta-Cresol Purple for spectrophotometric pHT measurements. Front. Mar. Sci. 5:177
    [Google Scholar]
  119. Musgrave DL, Halverson MJ, Pegau WS 2013. Seasonal surface circulation, temperature, and salinity in Prince William Sound, Alaska. Cont. Shelf Res. 53:2029
    [Google Scholar]
  120. Najjar RG, Herrmann M, Cintrón Del Valle SM, Friedman JR, Friedrichs MAM et al. 2020. Alkalinity in tidal tributaries of the Chesapeake Bay. J. Geophys. Res. Oceans 125:e2019JC015597
    [Google Scholar]
  121. Natl. Geophys. Data Cent 2009. Prince William Sound, Alaska 8/3 Arc-second MHHW Coastal Digital Elevation Model Data Set, Natl. Geophys. Data Cent., Natl. Ocean. Atmos. Adm Silver Spring, MD:
    [Google Scholar]
  122. Neal EG, Hood E, Smikrud K 2010. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett. 37:L06404
    [Google Scholar]
  123. Ni W, Li M, Ross AC, Najjar RG 2019. Large projected decline in dissolved oxygen in a eutrophic estuary due to climate change. J. Geophys. Res. Oceans 124:827189
    [Google Scholar]
  124. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:68186
    [Google Scholar]
  125. Pacella SR, Brown CA, Waldbusser GG, Labiosa RG, Hales B 2018. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. PNAS 115:387075
    [Google Scholar]
  126. Pawlowicz R, Riche O, Halverson M 2007. The circulation and residence time of the Strait of Georgia using a simple mixing-box approach. Atmos. Ocean 45:17393
    [Google Scholar]
  127. Pelletier G, Roberts M, Keyzers M, Alin SR 2018. Seasonal variation in aragonite saturation in surface waters of Puget Sound – a pilot study. Elem. Sci. Anthr. 6:5
    [Google Scholar]
  128. Perez FF, Fontela M, García-Ibáñez MI, Mercier H, Velo A et al. 2018. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Nature 554:51518
    [Google Scholar]
  129. Pierrot D, Lewis E, Wallace D 2006. MS Excel program developed for CO2 system calculations Rep., ORNL/CDIAC-105a, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab Oak Ridge, TN:
    [Google Scholar]
  130. Reuter KE, Lotterhos KE, Crim RN, Thompson CA, Harley CD 2011. Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus. Glob. . Change Biol 17:16371
    [Google Scholar]
  131. Riahi K, Rao S, Krey V, Cho C, Chirkov V et al. 2011. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109:3357
    [Google Scholar]
  132. Riebesell U, Gattuso J-P. 2014. Lessons learned from ocean acidification research. Nat. Clim. Change 5:1214
    [Google Scholar]
  133. Ries JB, Cohen AL, McCorkle DC 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:113134
    [Google Scholar]
  134. Roden EE, Tuttle JH. 1992. Sulfide release from estuarine sediments underlying anoxic bottom water. Limnol. Oceanogr. 37:72538
    [Google Scholar]
  135. Saba GK, Goldsmith KA, Cooley SR, Grosse D, Meseck SL et al. 2019. Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic. Estuar. Coast. Shelf Sci. 225:106188
    [Google Scholar]
  136. Sabine CL, Feely RA, Key RM, Bullister JL, Millero FJ et al. 2002. Distribution of anthropogenic CO2 in the Pacific Ocean. Glob. Biogeochem. Cycles 16:30–117
    [Google Scholar]
  137. Salisbury J, Green M, Hunt C, Campbell J 2008. Coastal acidification by rivers: a threat to shellfish. ? Eos Trans. AGU 89:513
    [Google Scholar]
  138. Sanford L, Sellner K, Breitburg D 1990. Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay. J. Mar. Res. 48:56790
    [Google Scholar]
  139. Scully ME. 2010. Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries Coasts 33:116475
    [Google Scholar]
  140. Scully ME, Friedrichs C, Brubaker J 2005. Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries 28:32126
    [Google Scholar]
  141. Sharp JH. 2010. Estuarine oxygen dynamics: What can we learn about hypoxia from long-time records in the Delaware Estuary. ? Limnol. Oceanogr. 55:535548
    [Google Scholar]
  142. Sharp JH, Yoshiyama K, Parker A, Schwartz M, Curless S et al. 2009. A biogeochemical view of estuarine eutrophication: seasonal and spatial trends and correlations in the Delaware estuary. Estuaries Coasts 32:102343
    [Google Scholar]
  143. Shen C, Testa JM, Li M, Cai W-J 2020. Understanding anthropogenic impacts on pH and aragonite saturation state in Chesapeake Bay: insights from a 30-year model study. J. Geophys. Res. Biogeosci. 125: e2019JG005620
    [Google Scholar]
  144. Shen C, Testa JM, Li M, Cai W-J, Waldbusser GG et al. 2019a. Controls on carbonate system dynamics in a coastal plain estuary: a modeling study. J. Geophys. Res. Biogeosci. 124:6178
    [Google Scholar]
  145. Shen C, Testa JM, Ni W, Cai W-J, Li M, Kemp WM 2019b. Ecosystem metabolism and carbon balance in Chesapeake Bay: a 30-year analysis using a coupled hydrodynamic-biogeochemical model. J. Geophys. Res. Oceans 124:614153
    [Google Scholar]
  146. Sommerfield C, Wong K-C. 2011. Mechanisms of sediment flux and turbidity maintenance in the Delaware Estuary. J. Geophys. Res. Oceans 116:C01005
    [Google Scholar]
  147. Song S, Wang ZA, Gonneea ME, Kroeger KD, Chu SN et al. 2020. An important biogeochemical link between organic and inorganic carbon cycling: effects of organic alkalinity on carbonate chemistry in coastal waters influenced by intertidal salt marshes. Geochim. Cosmochim. Acta 275:12339
    [Google Scholar]
  148. Stabeno PJ, Bond NA, Hermann AJ, Kachel NB, Mordy CW, Overland JE 2004. Meteorology and oceanography of the Northern Gulf of Alaska. Cont. Shelf Res. 24:85997
    [Google Scholar]
  149. St-Laurent P, Friedrichs MAM, Najjar RG, Shadwick EH, Tian H et al. 2020. Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay. Biogeosciences 17:377996
    [Google Scholar]
  150. Su J, Cai W-J, Brodeur J, Chen B, Hussain N et al. 2020a. Chesapeake Bay acidification buffered by spatially-decoupled carbonate mineral cycling. Nat. Geosci. 13:44147
    [Google Scholar]
  151. Su J, Cai W-J, Brodeur J, Hussain N, Chen B et al. 2020b. Source partitioning of oxygen-consuming organic matter in the hypoxic zone of the Chesapeake Bay. Limnol. Oceanogr. 65:180117
    [Google Scholar]
  152. Sunda WG, Cai W-J. 2012. Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric . Environ. Sci. Technol. 46:1065159
    [Google Scholar]
  153. Sutherland D, MacCready P, Banas N, Smedstad L 2011. A model study of the Salish Sea estuarine circulation. J. Phys. Oceanogr. 41:112543
    [Google Scholar]
  154. Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Glob. Biogeochem. Cycles 7:84378
    [Google Scholar]
  155. Takahashi T, Sutherland SC, Chipman DW, Goddard JG, Ho C et al. 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 164:95125
    [Google Scholar]
  156. Takeshita Y, Frieder CA, Martz TR, Ballard JR, Feely RA et al. 2015. Including high-frequency variability in coastal ocean acidification projections. Biogeosciences 12:585370
    [Google Scholar]
  157. Talmage SC, Gobler CJ. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and eastern oysters (Crassostrea virginica). Limnol. Oceanogr. 54:207280
    [Google Scholar]
  158. Testa JM, Murphy RR, Brady DC, Kemp WM 2018. Nutrient- and climate-induced shifts in the phenology of linked biogeochemical cycles in a temperate estuary. Front. Mar. Sci. 5:114
    [Google Scholar]
  159. Thrush S, Townsend M, Hewitt J, Davies K, Lohrer A et al. 2014. The many uses and values of estuarine ecosystems. Ecosystem Services in New Zealand: Conditions and Trends JR Dymond 22637 Lincoln, N.Z: Manaaki Whenua
    [Google Scholar]
  160. Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM 2011. Proteomic response to elevated level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J. Exp. Biol. 214:183644
    [Google Scholar]
  161. Van Dam BR, Wang H 2019. Decadal-scale acidification trends in adjacent North Carolina estuaries: competing role of anthropogenic CO2 and riverine alkalinity loads. Front. Mar. Sci. 6:136
    [Google Scholar]
  162. Völker C, Wallace DWR, Wolf-Gladrow DA 2002. On the role of heat fluxes in the uptake of anthropogenic carbon in the North Atlantic. Glob. Biogeochem. Cycles 16:8589
    [Google Scholar]
  163. Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P et al. 2015a. Ocean acidification has multiple modes of action on bivalve larvae. PLOS ONE 10:e0128376
    [Google Scholar]
  164. Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P et al. 2015b. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5:27380
    [Google Scholar]
  165. Waldbusser GG, Salisbury JE. 2014. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats. Annu. Rev. Mar. Sci. 6:22147
    [Google Scholar]
  166. Waldbusser GG, Voigt E, Bergschneider H, Green M, Newell RE 2011. Biocalcification in the Eastern Oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries Coasts 34:22131
    [Google Scholar]
  167. Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ 2014. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148:113
    [Google Scholar]
  168. Wang Y, Van Cappellen P 1996. A multicomponent reaction transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60:29933014
    [Google Scholar]
  169. Weingartner TJ, Danielson SL, Royer TC 2005. Freshwater variability and predictability in the Alaska Coastal Current. Deep-Sea Res. II 52:16991
    [Google Scholar]
  170. Xie X, Li M. 2018. Effects of wind straining on estuarine stratification: a combined observational and modeling study. J. Geophys. Res. Oceans 123:236380
    [Google Scholar]
  171. Xie X, Li M, Boicourt WC 2017. Baroclinic effects on wind-driven lateral circulation in Chesapeake Bay. J. Phys. Oceanogr. 47:43345
    [Google Scholar]
  172. Xu Y, Pierrot D, Cai W-J 2017. Ocean carbonate system computation for anoxic waters using an updated CO2SYS program. Mar. Chem. 195:9093
    [Google Scholar]
  173. Xue Z, He R, Fennel K, Cai W-J, Lohrenz S et al. 2016. Modeling pCO2 variability in the Gulf of Mexico. Biogeosciences 13:435977
    [Google Scholar]
  174. Yao W, Millero FJ. 1995. The chemistry of the anoxic waters in the Framvaren Fjord, Norway. Aquat. Geochem. 1:5388
    [Google Scholar]
  175. Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B 2001. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar. Chem. 74:2951
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-011004
Loading
/content/journals/10.1146/annurev-marine-010419-011004
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error