1932

Abstract

In this article, we analyze the impacts of climate change on Antarctic marine ecosystems. Observations demonstrate large-scale changes in the physical variables and circulation of the Southern Ocean driven by warming, stratospheric ozone depletion, and a positive Southern Annular Mode. Alterations in the physical environment are driving change through all levels of Antarctic marine food webs, which differ regionally. The distributions of key species, such as Antarctic krill, are also changing. Differential responses among predators reflect differences in species ecology. The impacts of climate change on Antarctic biodiversity will likely vary for different communities and depend on species range. Coastal communities and those of sub-Antarctic islands, especially range-restricted endemic communities, will likely suffer the greatest negative consequences of climate change. Simultaneously, ecosystem services in the Southern Ocean will likely increase. Such decoupling of ecosystem services and endemic species will require consideration in the management of human activities such as fishing in Antarctic marine ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-011028
2020-01-03
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-011028.html?itemId=/content/journals/10.1146/annurev-marine-010419-011028&mimeType=html&fmt=ahah

Literature Cited

  1. Ainley DG, Ballard G, Dugger KM 2006. Competition among penguins and cetaceans reveals trophic cascades in the Ross Sea, Antarctica. Ecology 87:2080–93
    [Google Scholar]
  2. Alcaraz M, Almeda R, Duarte CM, Horstkotte B, Lasternas S, Agustí S 2014. Changes in the C, N, and P cycles by the predicted salps-krill shift in the Southern Ocean. Front. Mar. Sci. 1:45
    [Google Scholar]
  3. Annett AL, Fitzsimmons JN, Seguret MJM, Lagerstrom M, Meredith MP et al. 2017. Controls on dissolved and particulate iron distributions in surface waters of the Western Antarctic Peninsula shelf. Mar. Chem. 196:81–97
    [Google Scholar]
  4. Armour K, Marshall J, Scott JR, Donohoe A, Newsom ER 2016. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9:549–54
    [Google Scholar]
  5. Arrigo KR, van Dijken GL, Bushinsky S 2008. Primary production in the Southern Ocean, 1997–2006. J. Geophys. Res. 113:C08004
    [Google Scholar]
  6. Atkinson A, Hill SL, Pakhomov EA, Siegel V, Reiss CS et al. 2019. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9:142–47
    [Google Scholar]
  7. Atkinson A, Siegel V, Pakhomov E, Rothery P 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–3
    [Google Scholar]
  8. Atkinson A, Ward P, Hunt B, Pakhomov E, Hosie G 2012. An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships. CCAMLR Sci 19:171–218
    [Google Scholar]
  9. Bargagli R. 2008. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 400:212–26
    [Google Scholar]
  10. Barnes DKA. 2015. Antarctic sea ice losses drive gains in benthic carbon immobilization. Curr. Biol. 25:789–90
    [Google Scholar]
  11. Barnes DKA. 2017. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Change Biol. 23:5083–91
    [Google Scholar]
  12. Barnes DKA, Fleming A, Sands CJ, Quartino ML, Deregibus D 2018. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A 376:20170176
    [Google Scholar]
  13. Barnes DKA, Hodgson DA, Convey P, Allen CS, Clarke A 2006. Incursion and excursion of Antarctic biota: past, present and future. Glob. Ecol. Biogeogr. 15:121–42
    [Google Scholar]
  14. Barnes DKA, Kuklinski P, Jackson JA, Keel GW, Morley SA, Winston JE 2011. Scott's collections help reveal accelerating marine life growth in Antarctica. Curr. Biol. 21:R147–48
    [Google Scholar]
  15. Bejder M, Johnston DW, Smith J, Friedlaender A, Bejder L 2016. Embracing conservation success of recovering humpback whale populations: Evaluating the case for downlisting their conservation status in Australia. Mar. Policy 66:137–41
    [Google Scholar]
  16. Belcher A, Henson SA, Manno C, Hill SL, Atkinson A et al. 2019. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10:889
    [Google Scholar]
  17. Belcher A, Tarling GA, Manno C, Atkinson A, Ward P et al. 2017. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol 40:2001–13
    [Google Scholar]
  18. Bender N, Crosbie K, Lynch H 2016. Patterns of tourism in the Antarctic Peninsula region: a 20-year analysis. Antarct. Sci. 28:194–203
    [Google Scholar]
  19. Béné C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G et al. 2015. Feeding 9 billion by 2050 – putting fish back on the menu. Food Secur 7:261–74
    [Google Scholar]
  20. Böning CW, Dispert A, Visbeck M, Rintoul SR, Swarzkopf FU 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1:864–69
    [Google Scholar]
  21. Boveng PL, Hiruki LM, Schwartz MK, Bengston JL 1998. Population growth of Antarctic fur seals: limitation by a top predator, the leopard seal. ? Ecology 79:2863–77
    [Google Scholar]
  22. Boyd P, Laroche J, Gall M, Frew R, McKay RML 1999. Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand. J. Geophys. Res. 104:13395–408
    [Google Scholar]
  23. Branch TA, Stafford KM, Palacios DM, Allison C, Bannister JL et al. 2007. Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean. Mamm. Rev. 37:116–75
    [Google Scholar]
  24. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW et al. 2007. Revisiting carbon flux through the ocean's twilight zone. Science 316:567–70
    [Google Scholar]
  25. Buesseler KO, McDonnell AMP, Schofield OME, Steinberg DK, Ducklow HW 2010. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett. 37:L22606
    [Google Scholar]
  26. Casanovas P, Naveen R, Forrest S, Poncet J, Lynch HJ 2015. A comprehensive coastal seabird survey maps out the front lines of ecological change on the western Antarctic Peninsula. Polar Biol 38:927–40
    [Google Scholar]
  27. Casillo A, Papa R, Ricciardelli A, Sannino F, Ziaco M et al. 2017. Anti-biofilm activity of a long-chain fatty aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm. Front. Cell. Infect. Microbiol. 7:46
    [Google Scholar]
  28. Cavanagh RD, Murphy EJ, Bracegirdle TJ, Turner J, Knowland CA 2017. A synergistic approach for evaluating climate model output for ecological applications. Front. Mar. Sci. 4:308
    [Google Scholar]
  29. CCAMLR (Comm. Conserv. Antarct. Mar. Living Resour.) 2013. Statistical Bulletin, Vol. 25: Hobart, Aust.: CCAMLR. https://www.ccamlr.org/en/document/publications/ccamlr-statistical-bulletin-vol-24-database-version
    [Google Scholar]
  30. CCAMLR (Comm. Conserv. Antarct. Mar. Living Resour.) 2018. Convention area. Commission for the Conservation of Antarctic Marine Living Resources https://www.ccamlr.org/en/organisation/convention-area
    [Google Scholar]
  31. Chambers DP. 2018. Using kinetic energy measurements from altimetry to detect shifts in the positions of fronts in the Southern Ocean. Ocean Sci 14:105–16
    [Google Scholar]
  32. Chapman CC. 2017. New perspectives on frontal variability in the Southern Ocean. J. Phys. Oceanogr. 47:1151–68
    [Google Scholar]
  33. Chapman EW, Hofmann EE, Patterson DL, Ribic CA, Fraser WR 2011. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436:273–89
    [Google Scholar]
  34. Cheung WWL. 2018. The future of fishes and fisheries in the changing oceans. J. Fish Biol. 92:790–803
    [Google Scholar]
  35. Cheung WWL, Lam VWY, Pauly D, eds. 2008. Modelling Present and Climate Shifted Distribution of Marine Fishes and Invertebrates Fish. Cent. Res. Rep 163 Vancouver, Can.: Univ. B.C.
    [Google Scholar]
  36. Cimino MA, Lynch HJ, Saba VS, Oliver MJ 2016. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci. Rep. 6:28785
    [Google Scholar]
  37. Clapham PJ, Baker CS. 2001. How many whales were killed in the Southern Hemisphere in the 20th century? Rep. 53, Int Whal. Comm Cambridge, UK:
    [Google Scholar]
  38. Clarke A, Barnes DKA, Hodgson D 2005. How isolated is Antarctica?. Trends Ecol. Evol. 20:1–3
    [Google Scholar]
  39. Clucas GV, Dunn MJ, Dyke G, Emslie SD, Levy H et al. 2014. A reversal of fortunes: climate change ‘winners’ and ‘losers’ in Antarctic Peninsula penguins. Sci. Rep. 4:5024
    [Google Scholar]
  40. Comiso JC, Gersten RA, Stock LV, Turner J, Perez GJ, Cho K 2017. Positive trend in the Antarctic sea-ice cover and associated changes in surface temperature. J. Clim. 30:2251–67
    [Google Scholar]
  41. Constable AJ, Costa DP, Schofield O, Newman L, Urban ER Jr et al. 2016. Developing priority variables (“ecosystem Essential Ocean Variables”—eEOVs) for observing dynamics and change in Southern Ocean ecosystems. J. Mar. Syst. 161:26–41
    [Google Scholar]
  42. Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C et al. 2014. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly effect marine biota. Glob. Change Biol. 20:3004–25
    [Google Scholar]
  43. Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 22:541–44
    [Google Scholar]
  44. Cook AJ, Holland PR, Meredith MP, Murray T, Luckman A, Vaughan DG 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353:283–86
    [Google Scholar]
  45. Corrigan LJ, Fabiani A, Chauke LF, McMahon CR, de Bruyn M et al. 2016. Population differentiation in the context of Holocene climate change for a migratory marine species, the southern elephant seal. J. Evol. Biol. 29:1667–79
    [Google Scholar]
  46. Cox MJ, Candy S, de la Mare WK, Nicol S, Kawaguchi S, Gales N 2018. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crustac. Biol. 38:656–61
    [Google Scholar]
  47. Davis LB, Hofmann EE, Klinck JM, Piñones A, Dinniman MS 2017. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 584:45–65
    [Google Scholar]
  48. DeConto R, Pollard D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531:591–97
    [Google Scholar]
  49. Deininger M, Koellner T, Brey T, Teschke K 2016. Towards mapping and assessing Antarctic marine ecosystem services – the Weddell Sea case study. Ecosyst. Serv. 22:174–92
    [Google Scholar]
  50. Deppeler SL, Davidson AT. 2017. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. 4:40
    [Google Scholar]
  51. Dinniman MS, Klinck JM, Smith WO Jr 2007. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. J. Geophys. Res. Oceans 112:C11013
    [Google Scholar]
  52. Dinniman MS, Klinck JM, Smith WO Jr 2011. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Res. II 58:1508–23
    [Google Scholar]
  53. Douglass LL, Turner J, Grantham HS, Kaiser S, Constable A et al. 2014. A hierarchical classification of benthic biodiversity and assessment of protected areas in the Southern Ocean. PLOS ONE 9:e100551
    [Google Scholar]
  54. Ducklow HW, Erickson M, Kelly J, Smith RC, Stammerjohn SE et al. 2008. Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: a long term record, 1992–2006. Deep-Sea Res. II 55:2118–31
    [Google Scholar]
  55. Dunn MJ, Forcada J, Jackson JA, Waluda CM, Nichol C, Trathan PN 2019. A long-term study of gentoo penguin (Pygoscelis papua) population trends at a major Antarctic tourist site, Goudier Island, Port Lockroy. Biodivers. Conserv. 28:37–53
    [Google Scholar]
  56. Emslie SD, Polito MJ, Patterson WP 2013. Stable isotope analysis of ancient and modern gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 25:213–18
    [Google Scholar]
  57. Eveleth R, Cassar N, Sherrell RM, Ducklow H, Meredith MP et al. 2017. Ice melt influence on summertime net community production along the Western Antarctic Peninsula. Deep-Sea Res. II 139:89–102
    [Google Scholar]
  58. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D et al. 2000. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–96
    [Google Scholar]
  59. Flores H, Atkinson A, Kawagushi S, Krafft BA, Milinevsky G et al. 2012. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458:1–19
    [Google Scholar]
  60. Forcada J, Trathan PN. 2009. Penguin responses to climate change in the Southern Ocean. Glob. Change Biol. 15:1618–30
    [Google Scholar]
  61. Forcada J, Trathan PN, Boveng PL, Boyd IL, Burns JM et al. 2012. Responses of Antarctic pack ice seals to environmental change and increasing krill fishing. Biol. Conserv. 149:40–50
    [Google Scholar]
  62. Foxton P. 1966. The Distribution and Life History ofSalpa thompsoniFoxton with Observations on a Related Species, Salpa gerlacheiFoxton Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  63. Fretwell PT, Trathan PN. 2009. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18:543–52
    [Google Scholar]
  64. Friedlaender AS, Johnston DW, Goldbogen JA, Tyson RB et al. 2016. Two-step decisions in a marine central-place forager. R. Soc. Open Sci. 3:160043
    [Google Scholar]
  65. Gorman KB, Williams TD, Fraser WR 2014. Ecological sexual dimorphism and environmental variability within a community of Antarctic penguins (genus Pygoscelis). PLOS ONE 9:e90081
    [Google Scholar]
  66. Grant SM, Hill SL, Trathan PN, Murphy EJ 2013. Ecosystem services of the Southern Ocean: trade-offs in decision-making. Antarct. Sci. 25:603–17
    [Google Scholar]
  67. Griffiths HJ. 2010. Antarctic marine biodiversity – what do we know about the distribution of life in the Southern Ocean?. PLOS ONE 5:e11683
    [Google Scholar]
  68. Griffiths HJ, Meijers AJS, Bracegirdle TJ 2017. More losers than winners in a century of future Southern Ocean seafloor warming. Nat. Clim. Change 7:749–54
    [Google Scholar]
  69. Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J et al. 2015. The Southern Ocean ecosystem under multiple climate change stresses – an integrated circumpolar assessment. Glob. Change Biol. 21:1434–53
    [Google Scholar]
  70. Haberman KL, Ross RM, Quetin LB 2003. Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J. Exp. Mar. Biol. Ecol. 283:97–113
    [Google Scholar]
  71. Hauck J, Völker C. 2015. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor. Geophys. Res. Lett. 42:1459–64
    [Google Scholar]
  72. Hauck J, Völker C, Wolf-Gladrow DA, Laufkötter C, Vogt M et al. 2015. On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Glob. Biogeochem. Cycles 29:1451–70
    [Google Scholar]
  73. Haumann FA, Gruber N, Münnich M, Frenger I, Kern S 2016. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537:89–92
    [Google Scholar]
  74. Henschke N, Everett JD, Richardson AJ, Suthers IM 2016. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31:720–33
    [Google Scholar]
  75. Henschke N, Pakhomov EA. 2019. Latitudinal variations in Salpa thompsoni reproductive fitness. Limnol. Oceanogr. 64:575–84
    [Google Scholar]
  76. Henschke N, Pakhomov EA, Groeneveld J, Meyer B 2018. Modelling the life cycle of Salpa thompsoni. Ecol. . Model 387:17–26
    [Google Scholar]
  77. Henson SA, Sanders R, Madsen E 2012. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26:GB1028
    [Google Scholar]
  78. Hill SL, Phillips T, Atkinson A 2013. Potential climate change effects on the habitat of Antarctic krill in the Weddell Quadrant of the Southern Ocean. PLOS ONE 8:e72246
    [Google Scholar]
  79. Hindell MA, McMahon CR, Bester MN, Boehme L, Costa D et al. 2016. Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere 75:01213
    [Google Scholar]
  80. Hinke JT, Polito MJ, Reiss CS, Trivelpiece SG, Trivelpiece WZ 2012. Flexible reproductive timing can buffer reproductive success of Pygoscelis spp. penguins in the Antarctic Peninsula region. Mar. Ecol. Prog. Ser. 454:91–104
    [Google Scholar]
  81. Hogg AM, Meredith MP, Chambers DP, Abrahamsen EP, Hughes CW, Morrison AK 2015. Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans 120:257–67
    [Google Scholar]
  82. Hogg OT, Barnes DKA, Griffiths HJ 2011. Highly diverse, poorly studied and uniquely threatened by climate change: an assessment of marine biodiversity on South Georgia's continental shelf. PLOS ONE 6:e19795
    [Google Scholar]
  83. Hoover C, Pitcher T, Pakhomov E 2012. The Antarctic peninsula marine ecosystem model and simulations 1978-present. From the Tropics to the Poles: Ecosystem Models of Hudson Bay, Kaloko-Honokōhau, Hawai'i, and the Antarctic Peninsula CCC Wabnitz, C Hoover 108–88 Fish. Cent. Res. Rep 202 Vancouver, Can: Univ. B.C.
    [Google Scholar]
  84. Hoppe CJM, Klaas C, Ossebaar S, Soppa MA, Cheah W et al. 2017. Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current. Deep-Sea Res. II 138:63–73
    [Google Scholar]
  85. IAATO (Int. Assoc. Antarct. Tour Oper.) 2017. Tourism statistics. International Association of Antarctica Tour Operators Accessed May 30, 2018. https://iaato.org/tourism-statistics
    [Google Scholar]
  86. Inst. Mar. Res 2017. Mesopelagic Initiative: unleashing new marine resources for a growing human population Rep., Inst. Mar Res., Bergen, Nor.
    [Google Scholar]
  87. IPCC (Intergov. Panel Clim. Change) 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  88. ISA (Int. Seabed Auth.) 2018. The International Seabed Authority releases stakeholder submissions to draft exploitation regulations Press Release, Jan. 11 Kingston, Jam.
    [Google Scholar]
  89. Iversen MH, Pakhomov EA, Hunt BPV, van der Jagt H, Wolf-Gladrow DA, Klaas C 2017. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep-Sea Res. II 138:116–25
    [Google Scholar]
  90. Jenouvrier S, Caswell H, Barbraud C, Holland M, Stroeve J, Weimerskirch H 2009. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. PNAS 106:1844–47
    [Google Scholar]
  91. Jenouvrier S, Holland M, Stroeve J, Serreze M, Barbraud C et al. 2014. Projected continent wide declines of the emperor penguin under climate change. Nat. Clim. Change 4:715–18
    [Google Scholar]
  92. Johnson C. 2017. The relevance of the Southern Ocean to the development of a global regime for marine areas beyond national jurisdiction—an uncommon commons. Int. J. Mar. Coast. Law 32:709–32
    [Google Scholar]
  93. Jones EM, Hoppema M, Strass V, Hauck J, Salt L et al. 2017. Mesoscale features create hotspots of carbon uptake in the Antarctic Circumpolar Current. Deep-Sea Res. II 138:39–51
    [Google Scholar]
  94. Kaufman DE, Friedrichs MA, Smith WO Jr, Hofmann EE, Dinniman MS, Hemmings JC 2017. Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export. J. Geophys. Res. Oceans 122:2339–59
    [Google Scholar]
  95. Kaufman DE, Friedrichs MA, Smith WO Jr, Queste BY, Heywood KJ 2014. Biogeochemical variability in the southern Ross Sea as observed by a glider deployment. Deep-Sea Res. I 92:93–106
    [Google Scholar]
  96. Keys H. 1999. Towards additional protection of Antarctic wilderness areas Inf. Pap. 80 23rd Antarctic Treaty Consultative Meeting, Lima Peru: May 24–June 4
    [Google Scholar]
  97. Khatiwala S, Primeau F, Hall T 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–49
    [Google Scholar]
  98. Kim H, Doney SC, Iannuzzi RA, Meredith MP, Martinson DG, Ducklow HW 2016. Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: An interdecadal (1993–2013) analysis. J. Geophys. Res. Biogeosci. 121:2369–89
    [Google Scholar]
  99. Klein ES, Hill SL, Hinke JT, Phillips T, Watters GM 2018. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLOS ONE 13:e0191011
    [Google Scholar]
  100. Kuhnt W, Holbourne A, Hall R, Zuvela-Aloise M, Käse RH 2004. Neogene history of the Indonesian flow through. Continent‐Ocean Interactions Within East Asian Marginal Seas P Clift, W, Kuhnt, P Wang, D Hayes 299–320 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  101. Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DC et al. 2015. The reinvigoration of the Southern Ocean carbon sink. Science 349:1221–24
    [Google Scholar]
  102. Laptikhovsky V. 2010. Migrations and structure of the species range in ridge-scaled rattail Macrourus carinatus (Southwest Atlantic) and their application to fisheries management. ICES J. Mar. Sci 68:309–18
    [Google Scholar]
  103. Larsen JN, Anisimov OA, Constable A, Hollowed AB, Maynard N et al. 2014. Polar regions. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mac et al.1567–612 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  104. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI et al. 2016a. Global carbon budget 2016. Earth Syst. Sci. Data 8:605–49
    [Google Scholar]
  105. Le Quéré C, Buitenhuis ET, Moriarty R, Alvain S, Aumont O et al. 2016b. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13:4111–33
    [Google Scholar]
  106. Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R et al. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–38
    [Google Scholar]
  107. Levy H, Clucas GV, Rogers AD, Leaché AD, Ciborowski K et al. 2016. Population structure and phylogeography of the gentoo penguin (Pygocelis papua) across the Scotia Arc. Ecol. Evol. 6:1834–53
    [Google Scholar]
  108. Liggett D, Frame B, Gilbert N, Morgan F 2017. Is it all going south? Four future scenarios for Antarctica. Polar Rec 53:459–78
    [Google Scholar]
  109. Liggett D, McIntosh A, Thompson A, Gilbert N, Storey B 2011. From frozen continent to tourism hotspot? Five decades of Antarctic tourism development and management, and a glimpse into the future. Tour. Manag. 32:357–66
    [Google Scholar]
  110. Lima M, Estay SA. 2013. Warming effects in the western Antarctic Peninsula ecosystem: the role of population dynamic models for explaining and predicting penguin trends. Popul. Ecol. 55:557–65
    [Google Scholar]
  111. Liu Y, Moore JC, Cheng X, Gladstone RM, Bassis JN et al. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. PNAS 112:3263–68
    [Google Scholar]
  112. Llano DX, McMahon RA. 2018. Modelling, control and sensorless speed estimation of micro-wind turbines for deployment in Antarctica. IET Renew. Power Gen. 12:342–50
    [Google Scholar]
  113. Loeb VJ, Santora JA. 2012. Population dynamics of Salpa thompsoni near the Antarctic Peninsula: growth rates and interannual variations in reproductive activity (1993–2009). Prog. Oceanogr. 96:93–107
    [Google Scholar]
  114. Loeb VJ, Siegel V, Holm-Hansen O, Hewitt R, Fraser W et al. 1997. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900
    [Google Scholar]
  115. Lynch HJ, Fagan WF, Naveen R, Trivelpiece SG, Trivelpiece WZ 2012. Differential advancement of breeding phenology in response to climate may alter staggered breeding among sympatric pygoscelid penguins. Mar. Ecol. Prog. Ser. 454:135–45
    [Google Scholar]
  116. Lynch HJ, LaRue MA. 2014. First global census of the Adélie penguin. Auk 131:457–66
    [Google Scholar]
  117. Lynch HJ, White R, Naveen R, Black A, Meixier MS, Fagan WF 2016. In stark contrast to widespread declines along the Scotia Arc, a survey of the South Sandwich Islands finds a robust seabird community. Polar Biol 39:1615–25
    [Google Scholar]
  118. Mack SL, Dinniman MS, McGillicuddy DJ Jr, Sedwick PN, Klinck JM 2017. Dissolved iron transport pathways in the Ross Sea: influence of tides and horizontal resolution in a regional model. J. Mar. Syst 166:73–86
    [Google Scholar]
  119. Maldonado MT, Surma S, Pakhomov EA 2016. Southern Ocean biological iron cycling in the prewhaling and present ecosystems. Philos. Trans. R. Soc. A 374:20150292
    [Google Scholar]
  120. Manno C, Stowasser G, Enderlein P, Fielding S, Tarling GA 2015. The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12:1955–65
    [Google Scholar]
  121. Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA 2004. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 31:L14205
    [Google Scholar]
  122. Mastrandrea MD, Field CB, Stocker TF, Edenhofer O, Ebi KL et al. 2010. Guidance note for lead authors of the IPCC Fifth Assessment Report on consistent treatment of uncertainties Guid. Note, Intergov Panel Clim. Change, Geneva https://wg1.ipcc.ch/guidancepaper/ar5_uncertainty-guidance-note.pdf
    [Google Scholar]
  123. McBride MM, Dalpadado P, Drinkwater KF, Rune Godø O, Hobday AJ et al. 2014. Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71:1934–55
    [Google Scholar]
  124. McGillicuddy DJ Jr, Sedwick PN, Dinniman MS, Arrigo KR, Bibby TS et al. 2015. Iron supply and demand in an Antarctic shelf ecosystem. Geophys. Res. Lett. 42:8088–97
    [Google Scholar]
  125. McMahon CR, Bester MN, Burton HR, Hindell MA, Bradshaw CJA 2005. Population status, trends and a re-examination of the hypotheses explaining the recent declines of the southern elephant seal Mirounga leonina. Mamm. . Rev 35:82–100
    [Google Scholar]
  126. McNeil BI, Matear RJ. 2008. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. PNAS 105:18860–64
    [Google Scholar]
  127. Melbourne-Thomas J, Corney SP, Trebilco R, Meiners KM, Stevens RP et al. 2016. Under ice habitats for Antarctic krill larvae: Could less mean more under climate warming?. Geophys. Res. Lett. 43:10322–27
    [Google Scholar]
  128. Millenn. Ecosyst. Assess 2005. Ecosystems and Human Well-Being: Synthesis Washington, DC: Island
    [Google Scholar]
  129. Miller AK, Kappes MA, Trivelpiece SG, Trivelpiece WZ 2010. Foraging-niche separation of breeding gentoo and chinstrap penguins, South Shetland Islands, Antarctica. Condor 112:683–95
    [Google Scholar]
  130. Miller AK, Trivelpiece WZ. 2008. Chinstrap penguins alter foraging and diving behavior in response to the size of their principle prey, Antarctic krill. Mar. Biol. 154:201–8
    [Google Scholar]
  131. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D et al. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–73
    [Google Scholar]
  132. Moore JK, Fu W, Primeau F, Britten GL, Lindsay K et al. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:1139–43
    [Google Scholar]
  133. Murphy EJ, Cavanagh RD, Drinkwater KF, Grant SM, Heymans JJ et al. 2016. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc. R. Soc. 283:20161646
    [Google Scholar]
  134. Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP et al. 2012. Spatial and temporal operation of the Scotia Sea ecosystem. Antarctic Ecosystems: An Extreme Environment in a Changing World AD Rogers, NM Johnston, EJ Murphy, A Clarke 160–212 Oxford, UK: Wiley
    [Google Scholar]
  135. Naveen R, Lynch HJ, Forrest S, Mueller T, Polito M 2012. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol 35:1879–88
    [Google Scholar]
  136. O'Connor S, Campbell R, Cortez H, Knowles T 2009. Whale watching worldwide: Tourism numbers, expenditures and expanding economic benefits Rep Int. Fund Anim Welf., Yarmouth, MA:
    [Google Scholar]
  137. Olsen EK, de Cerf CK, Dziwornu GA, Puccinelli E, Ansorge IJ et al. 2016. Cytotoxic activity of marine sponge extracts from the sub-Antarctic Islands and the Southern Ocean. S. Afr. J. Sci. 112:20160202
    [Google Scholar]
  138. Orsi AH, Johnson GC, Bullister JL 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 43:55–109
    [Google Scholar]
  139. Pakhomov EA, Froneman PW, Perissinotto R 2002. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep-Sea Res. II 49:1881–907
    [Google Scholar]
  140. Pakhomov EA, Hunt BPV. 2017. Trans-Atlantic variability in ecology of the pelagic tunicate Salpa thompsoni near the Antarctic Polar Front. Deep-Sea Res. II 138:126–40
    [Google Scholar]
  141. Park J, Kuzminov FI, Bailleul B, Yang EJ, Lee S et al. 2017. Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnol. Oceanogr. 62:2260–76
    [Google Scholar]
  142. Pascual U, Balvanera P, Díaz S, Pataki G, Roth E et al. 2017. Valuing nature's contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26–27:7–16
    [Google Scholar]
  143. Peck LS, Barnes DKA, Cook AJ, Fleming AH, Clarke A 2010. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob. Change Biol. 16:2614–23
    [Google Scholar]
  144. Pellichero V, Sallée J-B, Schmidtko S, Roquet F, Charrassin J-B 2017. The ocean mixed-layer under Southern Ocean sea-ice: seasonal cycle and forcing. J. Geophys. Res. Oceans 122:1608–33
    [Google Scholar]
  145. Phillips B, Kremer P, Madin LP 2009. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol. 156:455–67
    [Google Scholar]
  146. Pinkerton MH, Bradford-Grieve JM, Hanchet SM 2010. A balanced model of the food web of the Ross Sea, Antarctica. CCAMLR Sci 17:1–32
    [Google Scholar]
  147. Piñones A, Fedorov AV. 2016. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophys. Res. Lett. 43:8580–89
    [Google Scholar]
  148. Quetin LB, Ross RM. 2003. Episodic recruitment in Antarctic krill Euphausia superba, in the Palmer LTER study region. Mar. Ecol. Prog. Ser. 259:185–200
    [Google Scholar]
  149. Quetin LB, Ross RM. 2009. Life under Antarctic pack ice: a krill perspective. Smithsonian at the Poles: Contributions to International Polar Year Science I Krupnik, MA Lang, SE Miller 285–98 Washington, DC: Smithson. Inst.
    [Google Scholar]
  150. Rintoul SR, Hughes CW, Olbers D 2001. The Antarctic Circumpolar Current system. Ocean Circulation and Climate G Siedler, J Church, J Gould 271–302 London: Academic
    [Google Scholar]
  151. Rintoul SR, Meredith MP, Schofield O, Newman L 2012. The Southern Ocean Observing System. Oceanography 25:368–69
    [Google Scholar]
  152. Roberts SJ, Monien P, Foster LC, Loftfield J, Hocking EP et al. 2017. Past penguin colony responses to explosive volcanism on the Antarctic Peninsula. Nat. Commun. 8:14914
    [Google Scholar]
  153. Robinson S, Wynen L, Goldsworthy S 1999. Predation by a Hooker's sea lion (Phocarctos hookeri) on a small population of fur seals (Arctocephalus spp.) at Macquarie Island. Mar. Mamm. Sci. 15:888–93
    [Google Scholar]
  154. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S 2007. Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr. 37:162–73
    [Google Scholar]
  155. Rogers AD. 2012. Evolution and biodiversity of Antarctic organisms: a molecular perspective. Antarctic Ecosystems: An Extreme Environment in a Changing World AD Rogers, NM Johnston, EJ Murphy, A Clarke 417–67 Oxford, UK: Wiley
    [Google Scholar]
  156. Rogers AD, Frinault BAV, eds. 2017. Climate change impacts on Antarctic marine ecosystems: implications for management of living resources and conservation Workshop Rep., Univ Oxford, Oxford, UK:
    [Google Scholar]
  157. Rogers AD, Yesson C, Gravestock P 2015. A biophysical and economic profile of South Georgia and the South Sandwich Islands as potential large-scale Antarctic protected areas. Adv. Mar. Biol. 70:1–286
    [Google Scholar]
  158. Saba GK, Fraser WR, Saba VS, Iannuzzi RA, Coleman KE et al. 2014. Winter and spring controls of the summer marine food web in the western Antarctic Peninsula. Nat. Commun. 5:4318
    [Google Scholar]
  159. Sabine CL, Feely RA, Gruber N, Key RM, Lee K et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71
    [Google Scholar]
  160. Schmidtko S, Stramma L, Visbeck M 2017. Decline in global oceanic oxygen content during the past five decades. Nature 542:335–39
    [Google Scholar]
  161. Slade RW, Moritz C, Hoelzel AR, Burton HR 1998. Molecular population genetics of the southern elephant seal Mirounga leonina. . Genetics 149:1945–57
    [Google Scholar]
  162. Smetacek V, Nicol S. 2005. Polar ocean ecosystems in a changing world. Nature 437:362–68
    [Google Scholar]
  163. Smith WO Jr, Ainley DG, Arrigo KR, Dinniman MS. 2014a. The oceanography and ecology of the Ross Sea. Annu. Rev. Mar. Sci. 6:469–87
    [Google Scholar]
  164. Smith WO Jr, Dinniman MS, Hofmann EE, Klinck JM. 2014b. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century. Geophys. Res. Lett. 41:1624–31
    [Google Scholar]
  165. Snow K, Rintoul SR, Sloyan B, Hogg AM 2018. Change in Dense Shelf Water and Adélie Land Bottom Water precipitated by iceberg calving. Geophys. Res. Lett. 45:2380–87
    [Google Scholar]
  166. Southwell CJ, Bengtson J, Bester M, Blix AS, Bornemann H et al. 2012. A review of data on abundance, trends in abundance, habitat use and diet of ice-breeding seals in the Southern Ocean. CCAMLR Sci 19:49–74
    [Google Scholar]
  167. Southwell CJ, Emmerson L, Takahashi A, Kato A, Barbraud C et al. 2017. Recent studies overestimate colonization and extinction events for Adélie penguin breeding colonies. Auk 134:39–50
    [Google Scholar]
  168. Southwell CJ, Paxton CGM, Borchers DL, Boveng PL, Nordy ES et al. 2008. Estimating population status under conditions of uncertainty: the Ross seal in East Antarctica. Antarct. Sci. 20:123–33
    [Google Scholar]
  169. St. John MA, Borja A, Chust G, Heath M, Grigorov I et al. 2016. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3:31
    [Google Scholar]
  170. Stammerjohn SE, Massom R, Rind D, Martinson DG 2012. Regions of rapid sea ice change: an inter‐hemispheric seasonal comparison. Geophys. Res. Lett. 39:L06501
    [Google Scholar]
  171. Stewart EJ, Liggett D, Dawson J 2017. The evolution of polar tourism scholarship: research themes, networks and agendas. Polar Geogr 40:59–84
    [Google Scholar]
  172. Stukel MR, Asher E, Couto N, Schofield O, Strebel S et al. 2015. The imbalance of new and export production in the western Antarctic Peninsula, a potentially “leaky” ecosystem. Glob. Biogeochem. Cycles 29:1400–20
    [Google Scholar]
  173. Suprenand PM, Ainsworth CH. 2017. Trophodynamic effects of climate change-induced alterations to primary production along the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 569:37–54
    [Google Scholar]
  174. Swart NC, Fyfe JC. 2012. Observed and simulated changes in Southern Hemisphere surface westerly wind stress. Geophys. Res. Lett. 39:L16711
    [Google Scholar]
  175. Swart NC, Gille ST, Fyfe JC, Gillett NP 2018. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11:836–41
    [Google Scholar]
  176. Sweetman AK, Thurber AR, Smith CR, Levin LA, Mora C et al. 2017. Major impacts of climate change on deep-sea benthic ecosystems. Elementa 5:4
    [Google Scholar]
  177. Teschke K, Beaver D, Bester MN, Bombosch A, Bornemann H et al. 2016. Scientific background document in support of the development of a CCAMLR MPA in the Weddell Sea (Antarctica) – Version 2016 – Part A: general context of the establishment of MPAs and background information on the Weddell Sea MPA planning area Doc. WG-EMM-16/01, Comm. Conserv. Antaract. Mar. Liv. Resour Hobart, Aust:.
    [Google Scholar]
  178. Thompson DWJ, Solomon S. 2002. Interpretation of recent Southern Hemisphere climate change. Science 296:895–99
    [Google Scholar]
  179. Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4:741–49
    [Google Scholar]
  180. Trathan PN, Fretwell PT, Stonehouse B 2011. First recorded loss of an emperor penguin colony in the recent period of Antarctic regional warming: implications for other colonies. PLOS ONE 6:e14738
    [Google Scholar]
  181. Trathan PN, Hill SL. 2016. The importance of krill predation in the Southern Ocean. Biology and Ecology of Antarctic Krill V Siegel 321–50 Cham, Switz: Springer
    [Google Scholar]
  182. Turner J, Barrand N, Bracegirdle T, Convey P, Hodgson D et al. 2014. Antarctic climate change and the environment: an update. Polar Rec 50:237–59
    [Google Scholar]
  183. Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T et al. 2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 36:L08502
    [Google Scholar]
  184. Weinstein B, Friedlaender AS. 2017. Dynamic foraging of a top predator in a seasonal polar marine environment. Oecologia 185:427–35
    [Google Scholar]
  185. Williams R, Kelly N, Boebel O, Friedlaender AS, Herr H et al. 2014. Counting whales in a challenging, changing environment. Sci. Rep. 4:4170
    [Google Scholar]
  186. Wong KFV, Hutley T, Salgado E 2012. Offshore wind power and its potential for development in the West Wind Drift. ASME International Mechanical Engineering Congress and Exposition, Vol. 5:Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B1161–69 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  187. Wynen LP, Goldsworthy SD, Guinet C, Bester MN, Boyd IL et al. 2000. Postsealing genetic variation and population structure of two species of fur seal (Arctocephalus gazella and A. tropicalis). Mol. Ecol. 9:299–314
    [Google Scholar]
  188. Xing S, Hou X, Aldahan A, Possnert G, Shi K et al. 2017. Water circulation and marine environment in the Antarctic traced by speciation of 129I and 127I. Sci. Rep. 7:7726
    [Google Scholar]
  189. Yager PL, Sherrell RM, Stammerjohn SE, Alderkamp A-C, Schofield O et al. 2012. ASPIRE: the Amundsen Sea Polynya International Research Expedition. Oceanography 25:340–53
    [Google Scholar]
  190. Young EF, Tysklind N, Meredith MP, de Bruyn M, Belchier M et al. 2018. Stepping stones to isolation: Impacts of a changing climate on the connectivity of fragmented fish populations. Evol. Appl. 11:978–94
    [Google Scholar]
  191. Younger JL, Clucas GV, Kooyman G, Wienecke B, Rogers AD et al. 2015. Too much of a good thing: Sea ice extent may have forced emperor penguins into refugia during the last glacial maximum. Glob. Change Biol. 21:2215–26
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-011028
Loading
/content/journals/10.1146/annurev-marine-010419-011028
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error