1932

Abstract

Mesoscale phenomena are ubiquitous and highly energetic features of ocean circulation. Their influence on biological and biogeochemical processes varies widely, stemming not only from advective transport but also from the generation of variations in the environment that affect biological and chemical rates. The ephemeral nature of mesoscale features in the ocean makes it difficult to elucidate the attendant mechanisms of physical-biological-biogeochemical interaction, necessitating the use of multidisciplinary approaches involving in situ observations, remote sensing, and modeling. All three aspects are woven through this review in an attempt to synthesize current understanding of the topic, with particular emphasis on novel developments in recent years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015606
2016-01-03
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-010814-015606.html?itemId=/content/journals/10.1146/annurev-marine-010814-015606&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham ER. 1998. The generation of plankton patchiness by turbulent stirring. Nature 391:577–80 [Google Scholar]
  2. Adams DK, McGillicuddy DJ Jr, Zamudio L, Thurnherr AM, Liang X. et al. 2011. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science 332:580–83 [Google Scholar]
  3. Alemany F, Quintanilla L, Velez-Belchí P, García A, Cortés D. et al. 2010. Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Prog. Oceanogr. 86:21–38 [Google Scholar]
  4. Allen JT, Brown L, Sanders R, Moore CM, Mustard A. et al. 2005. Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature 437:728–32 [Google Scholar]
  5. Altabet MA, Ryabenko E, Stramma L, Wallace DWR, Frank M. et al. 2012. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone. Biogeosciences 9:4897–908 [Google Scholar]
  6. Angel MV, Fasham. 1983. Eddies and biological processes. Eddies in Marine Science AR Robinson 492–524 Berlin: Springer-Verlag [Google Scholar]
  7. Bailleul F, Cotté C, Guinet C. 2010. Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal. Mar. Ecol. Prog. Ser. 408:251–64 [Google Scholar]
  8. Bakun A. 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Sci. Mar. 70S2:105–22 [Google Scholar]
  9. Benitez-Nelson CR, Bidigare RR, Dickey TD, Landry MR, Leonard CL. et al. 2007. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316:1017–21 [Google Scholar]
  10. Bibby TS, Moore CM. 2011. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific. Biogeosciences 8:657–66 [Google Scholar]
  11. Bidigare RR, Benitez-Nelson C, Leonard CL, Quay PD, Parsons ML. et al. 2003. Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii. Geophys. Res. Lett. 30:1318 [Google Scholar]
  12. Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED. et al. 2001. Migratory movements, depth preferences, and thermal biology of Alantic bluefin tuna. Science 293:1310–14 [Google Scholar]
  13. Bourbonnais A, Altabet MA, Charoenpong CN, Larkum J, Hu H. et al. 2015. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment. Glob. Biogeochem. Cycles 29:793–811 [Google Scholar]
  14. Bracco A, Provenzale A, Scheuring I. 2000. Mesoscale vortices and the paradox of the plankton. Proc. R. Soc. Lond. B 267:1795–800 [Google Scholar]
  15. Brentnall SJ, Richards KJ, Brindley J, Murphy E. 2003. Plankton patchiness and its effect on larger-scale productivity. J. Plankton Res. 25:121–40 [Google Scholar]
  16. Broecker WS, Peng TH. 1982. Tracers in the Sea Palisades, NY: Lamont-Doherty Geol. Obs. [Google Scholar]
  17. Brzezinski MA, Villareal TA, Lipschultz F. 1998. Silica production and the contribution of diatoms to new and primary production on the central North Pacific. Mar. Ecol. Prog. Ser. 167:89–104 [Google Scholar]
  18. Campagna C, Piola AR, Rosa Marin M, Lewis M, Fernández T. 2006. Southern elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence. Deep-Sea Res. I 53:1907–24 [Google Scholar]
  19. Charria G, Mélin F, Dadou I, Radenac M-H, Garçon V. 2003. Rossby wave and ocean color: the cells uplifting hypothesis in the South Atlantic Subtropical Convergence Zone. Geophys. Res. Lett. 30:1125 [Google Scholar]
  20. Chelton DB, Gaube P, Schlax MG, Early JJ, Samelson RM. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334:328–32 [Google Scholar]
  21. Chelton DB, Schlax MG. 1996. Global observations of oceanic Rossby waves. Science 272:234–38 [Google Scholar]
  22. Chelton DB, Schlax MG, Freilich MH, Milliff RF. 2004. Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–83 [Google Scholar]
  23. Chelton DB, Schlax MG, Samelson RM. 2011b. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91:167–216 [Google Scholar]
  24. Chelton DB, Schlax MG, Samelson RM, de Szoeke RA. 2007. Global observations of large oceanic eddies. Geophys. Res. Lett. 34:L15606 [Google Scholar]
  25. Cipollini P, Cromwell D, Challenor PG, Raffaglio S. 2001. Rossby waves detected in global ocean colour data. Geophys. Res. Lett. 28:323–26 [Google Scholar]
  26. Clayton S, Dutkiewicz S, Jahn O, Follows MJ. 2013. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol. Oceanogr. Fluids Environ. 3:182–97 [Google Scholar]
  27. Clayton S, Nagai T, Follows MJ. 2014. Fine scale phytoplankton community structure across the Kuroshio Front. J. Plankton Res. 36:1017–30 [Google Scholar]
  28. Cotté C, d'Ovidio F, Dragon AC, Guinet C, Lévy M. 2015. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. Prog. Oceanogr. 131:46–58 [Google Scholar]
  29. Cotté C, Park Y-H, Guinet C, Bost C-A. 2007. Movements of foraging king penguins through marine mesoscale eddies. Proc. R. Soc. Lond. B 274:2385–91 [Google Scholar]
  30. Crawford WR, Brickley PJ, Thomas AC. 2007. Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska. Prog. Oceanogr. 75:287–303 [Google Scholar]
  31. d'Ovidio F, De Monte S, Alvain S, Danonneau Y, Lévy M. 2010. Fluid dynamical niches of phytoplankton types. PNAS 107:18366–70 [Google Scholar]
  32. d'Ovidio F, De Monte S, Della Penna A, Cotté C, Guinet C. 2013. Ecological implications of eddy retention in the open ocean: a Lagrangian approach. J. Phys. A 46:254023 [Google Scholar]
  33. Dandonneau Y, Vega A, Loisel H, du Penhoat Y, Menkes C. 2003. Oceanic Rossby waves acting as a “hay rake” for ecosystem floating by-products. Science 302:1548–51 [Google Scholar]
  34. Davis CS, Thwaites FT, Gallager SM, Hu Q. 2005. A three-axis fast-tow digital video plankton recorder for rapid surveys of plankton taxa and hydrography. Limnol. Oceanogr. Methods 3:59–74 [Google Scholar]
  35. Davis RW, Ortega-Ortiz JG, Ribic CA, Evans WE, Biggs DC. et al. 2002. Cetacean habitat in the northern oceanic Gulf of Mexico. Deep-Sea Res. I 49:121–42 [Google Scholar]
  36. De Monte S, Cotte C, d'Ovidio F, Lévy M, Le Corre M, Weimerskirch H. 2012. Frigatebird behaviour at the ocean–atmosphere interface: integrating animal behaviour with multi-satellite data. J. R. Soc. Interface 9:3351–58 [Google Scholar]
  37. Del Castillo C. 2012. Pre-Aerosol, Clouds, and Ocean Ecosystem (PACE) mission Science Definition Team report Rep., NASA, Washington, DC [Google Scholar]
  38. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ. et al. 2006. Community genomics among stratified microbial assemblages in the ocean's interior. Science 311:496–503 [Google Scholar]
  39. Dewar WK. 1986. Mixed layers in Gulf Stream rings. Dyn. Atmos. Oceans 10:1–29 [Google Scholar]
  40. Dewar WK, Flierl GR. 1987. Some effects of wind on rings. J. Phys. Oceanogr. 17:1653–67 [Google Scholar]
  41. Dufois F, Hardman-Mountford NJ, Greenwood J, Richardson AJ, Feng M. et al. 2014. Impact of eddies on surface chlorophyll in the South Indian Ocean. J. Geophys. Res. Oceans 119:8061–77 [Google Scholar]
  42. Ebbesmeyer CC, Lindstrom EJ. 1986. Structure and origin of 18C water observed during the POLYMODE Local Dynamics Experiment. J. Phys. Oceanogr. 16:443–53 [Google Scholar]
  43. Eden C, Dietze H. 2009. Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res. 114:C05023 [Google Scholar]
  44. Falkowski PG, Ziemann D, Kolber Z, Bienfang PK. 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature 352:55–58 [Google Scholar]
  45. Flierl GR. 1981. Particle motions in large-amplitude wave fields. Geophys. Astrophys. Fluid Dyn. 18:39–74 [Google Scholar]
  46. Flierl GR, McGillicuddy DJ Jr. 2002. Mesoscale and submesoscale physical-biological interactions. The Sea 12 Biological-Physical Interactions in the Sea AR Robinson, JJ McCarthy, BJ Rothschild 113–85 New York: Wiley & Sons [Google Scholar]
  47. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. 2007. Emergent biogeography of microbial communities in a model ocean. Science 315:1843–46 [Google Scholar]
  48. Franks PJS, Wroblewski JS, Flierl GR. 1986. Prediction of phytoplankton growth in response to the frictional decay of a warm-core ring. J. Geophys. Res. 91:7603–10 [Google Scholar]
  49. Fu L-L, Ubelmann C. 2013. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Ocean. Technol. 31:560–68 [Google Scholar]
  50. Gaspar P, Georges J-Y, Fossette S, Lenoble A, Ferraroli S, Le Maho Y. 2006. Marine animal behaviour: Neglecting ocean currents can lead us up the wrong track. Proc. R. Soc. Lond. B 273:2697–702 [Google Scholar]
  51. Gaube P, Chelton DB, Samelson RM, Schlax MG, O'Neill LW. 2015. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 45:104–32 [Google Scholar]
  52. Gaube P, Chelton DB, Strutton PG, Behrenfeld MJ. 2013. Satellite observations of chlorophyll, phytoplankton biomass and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. 118:6349–70 [Google Scholar]
  53. Gaube P, McGillicuddy DJ Jr, Chelton DB, Behrenfeld MJ, Strutton PG. 2014. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 119:8195–220 [Google Scholar]
  54. Genin A, Jaffe JS, Reef R, Richter C, Franks PJS. 2005. Swimming against the flow: a mechanism of zooplankton aggregation. Science 308:860–62 [Google Scholar]
  55. Gent PR, Willebrand J, McDougall TJ, McWilliams JC. 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr. 25:463–74 [Google Scholar]
  56. Godø OR, Samuelsen A, Macaulay GJ, Patel R, Hjøllo SS. et al. 2012. Mesoscale eddies are oases for higher trophic marine life. PLOS ONE 7:e30161 [Google Scholar]
  57. Goldman JC. 1988. Spatial and temporal discontinuities of biological processes in pelagic surface waters. Toward a Theory on Biological-Physical Interactions in the World Ocean BJ Rothschild 273–96 Dordrecht, Neth: D. Reidel [Google Scholar]
  58. Goldman JC, McGillicuddy DJ Jr. 2003. Impact of large marine diatoms growing at low light on episodic new production. Limnol. Oceanogr. 48:1176–82 [Google Scholar]
  59. Goodman L. 2011. Application of the Robinson biodynamical theory to turbulence. Dyn. Atmos. Oceans 52:8–19 [Google Scholar]
  60. Goodman L, Robinson AR. 2008. On the theory of advective effects on biological dynamics in the sea. III. The role of turbulence in biological–physical interactions. Proc. R. Soc. Lond. A 464:555–72 [Google Scholar]
  61. Gower JFR, Denman KL, Holyer RJ. 1980. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288:157–59 [Google Scholar]
  62. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Munnich M. et al. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4:787–92 [Google Scholar]
  63. Hecht MW, Hasumi H. 2008. Ocean Modeling in an Eddying Regime Geophys. Monogr. Ser. 177 Washington, DC: Am. Geophys. Union [Google Scholar]
  64. Hernández-Carrasco I, Rossi V, Hernández-García E, Garçon V, López C. 2014. The reduction of plankton biomass induced by mesoscale stirring: a modeling study in the Benguela upwelling. Deep-Sea Res. I 83:65–80 [Google Scholar]
  65. Hutchinson GE. 1961. The paradox of the plankton. Am. Nat. 95:137–45 [Google Scholar]
  66. Hyrenbach KD, Veit RR, Weimerskirch H, Hunt GL Jr. 2006. Seabird associations with mesoscale eddies: the subtropical Indian Ocean. Mar. Ecol. Prog. Ser. 324:271–79 [Google Scholar]
  67. Jenkins WJ. 1988a. Nitrate flux into the euphotic zone near Bermuda. Nature 331:521–23 [Google Scholar]
  68. Jenkins WJ. 1988b. The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Philos. Trans. R. Soc. 325:43–61 [Google Scholar]
  69. Jenkins WJ, Goldman J. 1985. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43:465–91 [Google Scholar]
  70. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H. et al. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography 22:3216–25 [Google Scholar]
  71. José YS, Aumont O, Machu E, Penven P, Moloney CL, Maury O. 2014. Influence of mesoscale eddies on biological production in the Mozambique Channel: several contrasted examples from a coupled ocean-biogeochemistry model. Deep-Sea Res. II 100:79–93 [Google Scholar]
  72. Kahru M, Mitchell BG, Gille ST, Hewes CD, Holm-Hansen O. 2007. Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean. Geophys. Res. Lett. 34:L14603 [Google Scholar]
  73. Killworth PD, Cipollini P, Uz BM, Blundell JR. 2004. Physical and biological mechanisms for planetary waves observed in satellite-derived chlorophyll. J. Geophys. Res. 109:C07002 [Google Scholar]
  74. Klein P, Hua BL. 1988. Mesoscale heterogeneity of the wind-driven mixed layer: influence of a quasigeostrophic flow. J. Mar. Res. 46:495–525 [Google Scholar]
  75. Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 1:351–75 [Google Scholar]
  76. Knauss JA. 1978. Introduction to Physical Oceanography Englewood Cliffs, NJ: Prentice Hall [Google Scholar]
  77. Kobayashi DR, Cheng I-J, Parker DM, Polovina JJ, Kamezaki N, Balazs GH. 2011. Loggerhead turtle (Caretta caretta) movement off the coast of Taiwan: characterization of a hotspot in the East China Sea and investigation of mesoscale eddies. ICES J. Mar. Sci. 68:707–18 [Google Scholar]
  78. Kouketsu S, Tomita H, Oka E, Hosoda S, Kobayashi T, Sato K. 2012. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J. Oceanogr. 68:63–77 [Google Scholar]
  79. Krause JW, Lomas MW, Nelson DM. 2009. Biogenic silica at the Bermuda Atlantic Time-series Study site in the Sargasso Sea: temporal changes and their inferred controls based on a 15-year record. Glob. Biogeochem. Cycles 23:GB3004 [Google Scholar]
  80. Krause JW, Nelson DM, Lomas MW. 2010. Production, dissolution, accumulation, and potential export of biogenic silica in a Sargasso Sea mode-water eddy. Limnol. Oceanogr. 55:569–79 [Google Scholar]
  81. Kunze E. 1985. Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15:544–656 [Google Scholar]
  82. Lapeyre G, Klein P. 2006. Impact of the small-scale elongated filaments on the oceanic vertical pump. J. Mar. Res. 64:835–51 [Google Scholar]
  83. Lathuilière C, Echevin V, Lévy M, Madec G. 2010. On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem. J. Geophys. Res. 115:C09018 [Google Scholar]
  84. Lathuilière C, Lévy M, Echevin V. 2011. Impact of eddy-driven vertical fluxes on phytoplankton abundance in the euphotic layer. J. Plankton Res. 33:827–31 [Google Scholar]
  85. Lee MM, Williams RG. 2000. The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res. 58:895–917 [Google Scholar]
  86. Legendre L, Demers S. 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish. Aquat. Sci. 41:2–19 [Google Scholar]
  87. Lehahn Y, d'Ovidio F, Lévy M, Amitai Y, Heifetz E. 2011. Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring. Geophys. Res. Lett. 38:L16610 [Google Scholar]
  88. Lehahn Y, d'Ovidio F, Lévy M, Heifetz E. 2007. Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J. Geophys. Res. 112:C08005 [Google Scholar]
  89. Letelier RM, Karl DM, Abbott MR, Flament PJ, Freilich MH, Lukas R. 2000. Role of late winter mesoscale events in the biogeochemical variability of the upper water column of the North Pacific Subtropical Gyre. J. Geophys. Res. 105:28723–39 [Google Scholar]
  90. Lévy M. 2008. The modulation of biological production by oceanic mesoscale turbulence. Transport and Mixing in Geophysical Flows J Weiss, A Provenzale 219–61 Berlin: Springer [Google Scholar]
  91. Lévy M, Ferrari R, Franks PJS, Martin AP, Rivière P. 2012a. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 39:L14602 [Google Scholar]
  92. Lévy M, Iovino D, Resplandy L, Klein P, Madec G. et al. 2012b. Large-scale impacts of submesoscale dynamics on phytoplankton: local and remote effects. Ocean Model. 43–44:77–93 [Google Scholar]
  93. Lévy M, Jahn O, Dutkiewicz S, Follows MJ. 2014. Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence. Limnol. Oceanogr. Fluids Environ. 4:67–84 [Google Scholar]
  94. Lévy M, Klein P. 2004. Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral variability?. Proc. R. Soc. Lond. A 460:1673–87 [Google Scholar]
  95. Lévy M, Klein P, Treguier A-M. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res. 59:535–65 [Google Scholar]
  96. Lévy M, Martin AP. 2013. The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions. Glob. Biogeochem. Cycles 27:1139–50 [Google Scholar]
  97. Lévy M, Mémery L, Madec G. 1998. The onset of a bloom after deep winter convection in the northwestern Mediterranean sea: mesoscale process study with a primitive equation model. J. Mar. Syst. 16:7–21 [Google Scholar]
  98. Lévy M, Mémery L, Madec G. 1999. The onset of the Spring Bloom in the MEDOC area: mesoscale spatial variability. Deep-Sea Res. I 46:1137–60 [Google Scholar]
  99. Lewis MR. 2002. Variability of plankton and plankton processes on the mesoscale. Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems PJLB Williams, DN Thomas, CS Reynolds 141–55 Oxford, UK: Blackwell Sci. [Google Scholar]
  100. Li J, Qi Y, Jing Z, Wang J. 2014. Enhancement of eddy-Ekman pumping inside anticyclonic eddies with wind-parallel extension: satellite observations and numerical studies in the South China Sea. J. Mar. Syst. 132:150–61 [Google Scholar]
  101. Lima ID, Olson DB, Doney SC. 2002. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: biological production and community structure. J. Geophys. Res. Oceans 107:25–121 [Google Scholar]
  102. Lindo-Atichati D, Bringas F, Goni G, Muhling B, Muller-Karger FE, Habtes S. 2012. Varying mesoscale structures influence larval fish distribution in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 463:245–57 [Google Scholar]
  103. Lobel PS, Robinson AR. 1986. Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep-Sea Res. A 33:483–500 [Google Scholar]
  104. Mackas DL, Denman KL, Abbott MR. 1985. Plankton patchiness: biology in the physical vernacular. Bull. Mar. Sci. 37:652–74 [Google Scholar]
  105. Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8:161–84 [Google Scholar]
  106. Mahadevan A, D'Asaro E, Lee C, Perry MJ. 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337:54–58 [Google Scholar]
  107. Mahadevan A, Thomas LN, Tandon A. 2008. Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.”. Science 320:448 [Google Scholar]
  108. Marshall D. 1997. Subduction of water masses in an eddying ocean. J. Mar. Res. 55:201–22 [Google Scholar]
  109. Martin AP. 2003. Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr. 57:125–74 [Google Scholar]
  110. Martin AP, Lévy M, van Gennip S, Pardo S, Srokosz M. et al. 2015. An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions. Glob. Biogeochem. Cycles 291421–38 [Google Scholar]
  111. Martin AP, Pondaven P. 2003. On estimates for the vertical nitrate flux due to eddy pumping. J. Geophys. Res. Oceans 108:3359 [Google Scholar]
  112. Martin AP, Richards KJ. 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II 48:757–73 [Google Scholar]
  113. Martin AP, Richards KJ, Law CS, Liddicoat M. 2001. Horizontal dispersion within an anticyclonic mesoscale eddy. Deep-Sea Res. II 48:739–55 [Google Scholar]
  114. McGillicuddy DJ. 2011. Eddies masquerade as planetary waves. Science 334:318–19 [Google Scholar]
  115. McGillicuddy DJ. 2015. Formation of intra-thermocline lenses by eddy-wind interaction. J. Phys. Oceanogr. 45:606–12 [Google Scholar]
  116. McGillicuddy DJ Jr, Anderson LA, Bates NR, Bibby T, Buesseler KO. et al. 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316:1021–26 [Google Scholar]
  117. McGillicuddy DJ Jr, Anderson LA, Doney SC, Maltrud ME. 2003. Eddy-driven sources and sinks of nutrients in the upper ocean: results from a 0.1° resolution model of the North Atlantic. Glob. Biogeochem. Cycles 17:1035 [Google Scholar]
  118. McGillicuddy DJ Jr, Robinson AR. 1997. Eddy induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I 44:1427–49 [Google Scholar]
  119. McGillicuddy DJ Jr, Robinson AR, McCarthy JJ. 1995. Coupled physical and biological modeling of the spring bloom in the North Atlantic (II): three dimensional bloom and post-bloom effects. Deep-Sea Res. I 42:1359–98 [Google Scholar]
  120. McGillicuddy DJ Jr, Robinson AR, Siegel DA, Jannasch HW, Johnson R. et al. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–65 [Google Scholar]
  121. McNeil JD, Jannasch HW, Dickey TD, McGillicuddy DJ Jr, Brzezinski M, Sakamoto CM. 1999. New chemical, bio-optical and physical observations of upper ocean response to the passage of a mesoscale eddy off Bermuda. J. Geophys. Res. 104:15537–48 [Google Scholar]
  122. McWilliams JC. 2008. The nature and consequences of oceanic eddies. See Hecht & Hasumi 2008, pp. 5–15
  123. Menkes CE, Kennan SC, Flament P, Dandonneau Y, Masson S. et al. 2002. A whirling ecosystem in the equatorial Atlantic. Geophys. Res. Lett. 29:48–14 [Google Scholar]
  124. Mitarai S, Siegel DA, Watson JR, Dong C, McWilliams JC. 2009. Quantifying connectivity in the coastal ocean with application to the Southern California Bight. J. Geophys. Res. Oceans 114:C10026 [Google Scholar]
  125. Mizobata K, Saitoh SI, Shiomoto A, Miyamura T, Shiga N. et al. 2002. Bering Sea cyclonic and anticyclonic eddies observed during summer 2000 and 2001. Prog. Oceanogr. 55:65–75 [Google Scholar]
  126. Moore TS, Matear RJ, Marra J, Clementson L. 2007. Phytoplankton variability off the Western Australian Coast: mesoscale eddies and their role in cross-shelf exchange. Deep-Sea Res. II 54:943–60 [Google Scholar]
  127. Nel DC, Lutjeharms JRE, Pakhomov EA, Ansorge IJ, Ryan PG, Klages NTW. 2001. Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Mar. Ecol. Prog. Ser. 217:15–26 [Google Scholar]
  128. Nelson DM, McCarthy JJ, Joyce TM, Ducklow HW. 1989. Enhanced near-surface nutrient availability and new production resulting from the frictional decay of a Gulf Stream warm-core ring. Deep-Sea Res. A 36:705–14 [Google Scholar]
  129. Niiler PP. 1969. On the Ekman divergence in an oceanic jet. J. Geophys. Res. 74:7048–52 [Google Scholar]
  130. NOAA (Natl. Ocean. Atmos. Admin.) 2009. World Ocean Atlas 2009 https://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html [Google Scholar]
  131. Nurser AJG, Zhang JW. 2000. Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res. Oceans 105:21851–68 [Google Scholar]
  132. Olaizola M, Ziemann DA, Bienfang PK, Walsh WA, Conquest LD. 1993. Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific. Mar. Biol. 116:533–42 [Google Scholar]
  133. Olson DB, Backus RH. 1985. The concentrating of organisms at fronts: a cold-water fish and a warm-core Gulf Stream ring. J. Mar. Res. 43:113–37 [Google Scholar]
  134. Oschlies A. 2002. Can eddies make ocean deserts bloom?. Glob. Biogeochem. Cycles 16:1106 [Google Scholar]
  135. Oschlies A. 2008. Eddies and upper-ocean nutrient supply. See Hecht & Hasumi 2008 115–30
  136. Oschlies A, Garçon V. 1998. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394:266–69 [Google Scholar]
  137. Pascual A, Faugère Y, Larnicol G, LeTraon PY. 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett. 33:L02611 [Google Scholar]
  138. Pasquero C, Bracco A, Provenzale A. 2005. Impact of the spatiotemporal variability of the nutrient flux on primary productivity in the ocean. J. Geophys. Res. Oceans 110:C07005 [Google Scholar]
  139. Pearce AF, Griffiths RW. 1991. The mesoscale structure of the Leeuwin Current: a comparison of laboratory models and satellite imagery. J. Geophys. Res. Oceans 96:16739–57 [Google Scholar]
  140. Perruche C, Rivière P, Lapeyre G, Carton X, Pondaven P. 2011. Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence. J. Mar. Res. 69:105–35 [Google Scholar]
  141. Pingree RD, Holligan PM, Mardell GT. 1979. Phytoplankton growth and cyclonic eddies. Nature 278:245–47 [Google Scholar]
  142. Polovina JJ, Balazs GH, Howell EA, Parker DM, Seki MP, Dutton PH. 2004. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr. 13:36–51 [Google Scholar]
  143. Prasanna Kumar S, Nuncio M, Ramaiah N, Sardesai S, Narvekar J. et al. 2007. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons. Deep-Sea Res. I 54:1619–40 [Google Scholar]
  144. Provenzale A. 1999. Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech. 31:55–93 [Google Scholar]
  145. Radchenko LA. 1983. Quantitative distribution of seston in the region. Experimental Investigations Under the International POLYMODE Program BA Nelepo 129–35 New Delhi, India: Oxonian [Google Scholar]
  146. Resplandy L, Lévy M, Madec G, Pous S, Aumont O, Kumar D. 2011. Contribution of mesoscale processes to nutrient budgets in the Arabian Sea. J. Geophys. Res. Oceans 116:C11007 [Google Scholar]
  147. Richardson DE, Llopiz JK, Guigand CM, Cowen RK. 2010. Larval assemblages of large and medium-sized pelagic species in the Straits of Florida. Prog. Oceanogr. 86:8–20 [Google Scholar]
  148. Ring Group 1981. Gulf Stream cold-core rings: their physics, chemistry and biology. Science 212:1091–100 [Google Scholar]
  149. Rodriguez J, Tintore J, Allen JT, Blanco JM, Gomis D. et al. 2001. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature 410:360–63 [Google Scholar]
  150. Rossi V, López C, Sudre J, Hernández-García E, Garçon V. 2008. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. Geophys. Res. Lett. 35:L11602 [Google Scholar]
  151. Roukhiyainen MI, Yunev OA. 1983. Phytoplankton and primary productin in the wester Sargasso Sea in summer 1977. Experimental Investigations Under the International POLYMODE Program BA Nelepo 120–28 New Delhi, India: Oxonian [Google Scholar]
  152. Seki MP, Lumpkin R, Flament P. 2002. Hawaii cyclonic eddies and blue marlin catches: the case study of the 1995 Hawaiian International Billfish Tournament. J. Oceanogr. 58:739–45 [Google Scholar]
  153. Seki MP, Polovina JJ, Brainard RE, Bidigare RR, Leonard CL, Foley DG. 2001. Biological enhancement at cyclonic eddies tracked with GOES thermal imagery in Hawaiian waters. Geophys. Res. Lett. 28:1583–86 [Google Scholar]
  154. Shulenberger E, Reid JL. 1981. The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered. Deep-Sea Res. A 28:901–19 [Google Scholar]
  155. Siegel DA, Court DB, Menzies DW, Peterson P, Maritorena S, Nelson NB. 2008. Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea. Deep-Sea Res. II 55:1218–30 [Google Scholar]
  156. Siegel DA, Peterson P, McGillicuddy DJ Jr, Maritorena S, Nelson NB. 2011. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophys. Res. Lett. 38:L13608 [Google Scholar]
  157. Srokosz MA, Martin AP, Fasham MJR. 2003. On the role of biological dynamics in plankton patchiness at the mesoscale: an example from the eastern North Atlantic Ocean. J. Mar. Res. 61:517–37 [Google Scholar]
  158. Stern ME. 1965. Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res. Oceanogr. Abstr. 12:355–67 [Google Scholar]
  159. Stramma L, Bange HW, Czeschel R, Lorenzo A, Frank M. 2013. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru. Biogeosciences 10:7293–306 [Google Scholar]
  160. Strass VH. 1992. Chlorophyll patchiness caused by mesoscale upwelling at fronts. Deep-Sea Res. A 39:75–96 [Google Scholar]
  161. Sweeney EN, McGillicuddy DJ Jr, Buesseler KO. 2003. Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series (BATS) site. Deep-Sea Res. II 50:3017–39 [Google Scholar]
  162. Teo SLH, Block BA. 2010. Comparative influence of ocean conditions on yellowfin and Atlantic bluefin tuna catch from longlines in the Gulf of Mexico. PLOS ONE 5:e10756 [Google Scholar]
  163. Tew Kai E, Marsac F. 2010. Influence of mesoscale eddies on spatial structuring of top predators' communities in the Mozambique Channel. Prog. Oceanogr. 86:214–23 [Google Scholar]
  164. Uz BM, Yoder JA, Osychny V. 2001. Pumping of nutrients to ocean surface waters by the action of propagating planetary waves. Nature 409:597–600 [Google Scholar]
  165. Vaillancourt RD, Marra J, Seki MP, Parsons ML, Bidigare RR. 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep-Sea Res. I 50:829–47 [Google Scholar]
  166. Venrick EL. 1990. Mesoscale patterns of chlorophyll a in the central North Pacific. Deep-Sea Res. A 37:1017–31 [Google Scholar]
  167. Waite AM, Thompson PA, Pesant S, Feng M, Beckley LE. et al. 2007. The Leeuwin Current and its eddies: an introductory overview. Deep-Sea Res. II 54:789–96 [Google Scholar]
  168. Wallhead PJ, Garçon VC, Martin AP. 2013. Efficient upscaling of ocean biogeochemistry. Ocean Model. 63:40–55 [Google Scholar]
  169. Wallhead PJ, Martin AP, Srokosz MA. 2008. Spatially implicit plankton population models: transient spatial variability. J. Theor. Biol. 253:405–23 [Google Scholar]
  170. Warm Core Rings Exec. Comm 1982. Multidisciplinary program to study warm core rings. Eos Trans. AGU 63:834–35 [Google Scholar]
  171. Weimerskirch H, Corre ML, Jaquemet S, Potier M, Marsac F. 2004. Foraging strategy of a top predator in tropical waters: great frigatebirds in the Mozambique Channel. Mar. Ecol. Prog. Ser. 275:297–308 [Google Scholar]
  172. Wiebe PH, Flierl GR. 1983. Euphausiid invasion/dispersal in Gulf Stream cold-core rings. Aust. J. Mar. Freshw. Res. 34:625–52 [Google Scholar]
  173. Wiebe PH, Joyce TM. 1992. Introduction to interdisciplinary studies of Kuroshio and Gulf Stream rings. Deep-Sea Res. A 39:Suppl. 1v–vi [Google Scholar]
  174. Williams RG. 1988. Modification of ocean eddies by air-sea interaction. J. Geophys. Res. Oceans 93:15523–33 [Google Scholar]
  175. Williams RG, Follows MJ. 1998. The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep-Sea Res. I 45:461–89 [Google Scholar]
  176. Williams RG, Follows MJ. 2003. Physical transport of nutrients and the maintenance of biological production. Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change MJR Fasham 19–51 Berlin: Springer-Verlag [Google Scholar]
  177. Williams RG, Follows MJ. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  178. Woods JD. 1988. Mesoscale upwelling and primary production. Toward a Theory on Biological-Physical Interactions in the World Ocean BJ Rothschild 7–23 Dordrecht, Neth: D. Reidel [Google Scholar]
  179. Xiu P, Chai F. 2011. Modeled biogeochemical responses to mesoscale eddies in the South China Sea. J. Geophys. Res. Oceans 116:C10006 [Google Scholar]
  180. Xiu P, Palacz AP, Chai F, Roy EG, Wells ML. 2011. Iron flux induced by Haida eddies in the Gulf of Alaska. Geophys. Res. Lett. 38:L13607 [Google Scholar]
  181. Yoda K, Shiomi K, Sato K. 2014. Foraging spots of streaked shearwaters in relation to ocean surface currents as identified using their drift movements. Prog. Oceanogr. 122:54–64 [Google Scholar]
  182. Yoshimori A, Kishi MJ. 1994. Effects of interaction between two warm-core rings on phytoplankton distribution. Deep-Sea Res. I 41:1039–52 [Google Scholar]
  183. Zhou K, Dai M, Kao S-J, Wang L, Xiu P. et al. 2013. Apparent enhancement of 234Th-based particle export associated with anticyclonic eddies. Earth Planet. Sci. Lett. 381:198–209 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015606
Loading
/content/journals/10.1146/annurev-marine-010814-015606
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error