1932

Abstract

Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015614
2015-01-03
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010814-015614.html?itemId=/content/journals/10.1146/annurev-marine-010814-015614&mimeType=html&fmt=ahah

Literature Cited

  1. Alben S, Madden PG, Lauder GV. 2007. The mechanics of active fin-shape control in ray-finned fishes. J. R. Soc. Interface 4:243–56 [Google Scholar]
  2. Alben S, Witt C, Baker TV, Anderson EJ, Lauder GV. 2012. Dynamics of freely swimming flexible foils. Phys. Fluids 24:051901 [Google Scholar]
  3. Alexander RM. 1967. Functional Design in Fishes London: Hutchinson
  4. Alexander RM. 1983. The history of fish mechanics. See Webb & Weihs 1983 1–35
  5. Anderson EJ, McGillis W, Grosenbaugh MA. 2001. The boundary layer of swimming fish. J. Exp. Biol. 204:81–102 [Google Scholar]
  6. Blake RW. 1983. Fish Locomotion Cambridge, UK: Cambridge Univ. Press
  7. Blevins EL, Lauder GV. 2012. Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming by the freshwater stingray Potamotrygon orbignyi. J. Exp. Biol. 215:3231–41 [Google Scholar]
  8. Blevins EL, Lauder GV. 2013. Swimming near the substrate: a simple robotic model of stingray locomotion. Bioinspir. Biomim. 8:016005 [Google Scholar]
  9. Borazjani I, Sotiropoulos F. 2009. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 212:576–92 [Google Scholar]
  10. Borazjani I, Sotiropoulos F, Tytell ED, Lauder GV. 2012. On the hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data. J. Exp. Biol. 215:671–84 [Google Scholar]
  11. Borelli GA. 1680. On the Movement of Animals. Transl. 1989 by P Maquet. Berlin: Springer-Verlag
  12. Bozkurttas M, Mittal R, Dong H, Lauder GV, Madden PGA. 2009. Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. J. Fluid Mech. 631:311–42 [Google Scholar]
  13. Brainerd E, Page B, Fish F. 1997. Opercular jetting during fast-starts by flatfishes. J. Exp. Biol. 200:1179–88 [Google Scholar]
  14. Bruet BJF, Song J, Boyce MC, Ortiz C. 2008. Materials design principles of ancient fish armour. Nat. Mater. 7:748–56 [Google Scholar]
  15. Cannas M, Schaefer J, Domenici P, Steffensen JF. 2006. Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz. J. Fish Biol. 69:1612–25 [Google Scholar]
  16. Carlson RL, Lauder GV. 2010. Living on the bottom: kinematics of benthic station-holding in darter fishes (Percidae: Etheostomatinae). J. Morphol. 271:25–35 [Google Scholar]
  17. Carlson RL, Lauder GV. 2011. Escaping the flow: boundary layer use by the darter Etheostoma tetrazonum (Percidae) during benthic station holding. J. Exp. Biol. 214:1181–93 [Google Scholar]
  18. Castro JI. 2011. The Sharks of North America Oxford, UK: Oxford Univ. Press
  19. Curet OM, Patankar NA, Lauder GV, MacIver MA. 2011a. Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy. J. R. Soc. Interface 8:1041–50 [Google Scholar]
  20. Curet OM, Patankar NA, Lauder GV, MacIver MA. 2011b. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir. Biomim. 6:026004 [Google Scholar]
  21. Dewar WK, Bingham R, Iverson R, Nowacek DP, St Laurent LC, Wiebe PH. 2006. Does the marine biosphere mix the ocean?. J. Mar. Res. 64:541–61 [Google Scholar]
  22. Domenici P, Blake RW. 1997. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200:1165–78 [Google Scholar]
  23. Domenici P, Kapoor BG. 2010. Fish Locomotion: An Eco-Ethological Perspective Enfield, NH: Science
  24. Dong H, Bozkurttas M, Mittal R, Madden P, Lauder GV. 2010. Computational modeling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645:345–73 [Google Scholar]
  25. Donley J, Dickson KA. 2000. Swimming kinematics of juvenile Kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus). J. Exp. Biol. 203:3103–16 [Google Scholar]
  26. Donley J, Shadwick R. 2003. Steady swimming muscle dynamics in the leopard shark Triakis semifasciata. J. Exp. Biol. 206:1117–26 [Google Scholar]
  27. Drucker EG. 1996. The use of gait transition speed in comparative studies of fish locomotion. Am. Zool. 36:555–66 [Google Scholar]
  28. Drucker EG, Jensen J. 1996. Pectoral fin locomotion in the striped surfperch. I. Kinematic effects of swimming speed and body size. J. Exp. Biol. 199:2235–42 [Google Scholar]
  29. Drucker EG, Lauder GV. 1999. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol. 202:2393–412 [Google Scholar]
  30. Drucker EG, Lauder GV. 2000. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. J. Exp. Biol. 203:2379–93 [Google Scholar]
  31. Drucker EG, Lauder GV. 2002. Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Integr. Comp. Biol. 42:243–57 [Google Scholar]
  32. Drucker EG, Lauder GV. 2005. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J. Exp. Biol. 208:4479–94 [Google Scholar]
  33. Drucker EG, Walker JA, Westneat MW. 2006. Mechanics of pectoral fin swimming in fishes. See Shadwick & Lauder 2006 369–423
  34. Eaton RC, Bombardieri RA, Meyer D. 1977. The Mauthner initiated startle response in teleost fish. J. Exp. Biol. 66:65–81 [Google Scholar]
  35. Eaton RC, DiDomenico R. 1986. Role of the teleost escape response during development. Trans. Am. Fish. Soc. 115:128–42 [Google Scholar]
  36. Ellerby DJ, Gerry SP. 2011. Sympatric divergence and performance trade-offs of bluegill ecomorphs. Evol. Biol. 38:422–33 [Google Scholar]
  37. Esposito C, Tangorra JL, Flammang BE, Lauder GV. 2012. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. J. Exp. Biol. 215:56–67 [Google Scholar]
  38. Ferry LA, Lauder GV. 1996. Heterocercal tail function in leopard sharks: a three-dimensional kinematic analysis of two models. J. Exp. Biol. 199:2253–68 [Google Scholar]
  39. Fish F, Lauder GV. 2006. Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38:193–224 [Google Scholar]
  40. Fish F, Lauder GV. 2013. Not just going with the flow. Am. Sci. 101:114–23 [Google Scholar]
  41. Flammang BE, Alben S, Madden PGA, Lauder GV. 2013. Functional morphology of the fin rays of teleost fishes. J. Morphol. 274:1044–59 [Google Scholar]
  42. Flammang BE, Lauder GV. 2013. Pectoral fins aid in navigation of a complex environment by bluegill sunfish under sensory deprivation conditions. J. Exp. Biol. 216:3084–89 [Google Scholar]
  43. Flammang BE, Lauder GV, Troolin DR, Strand T. 2011a. Volumetric imaging of fish locomotion. Biol. Lett. 7:695–98 [Google Scholar]
  44. Flammang BE, Lauder GV, Troolin DR, Strand T. 2011b. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. Proc. R. Soc. B 278:3670–78 [Google Scholar]
  45. Gerstner CL. 1998. Use of substratum ripples for flow refuging by Atlantic cod, Gadus morhua. Environ. Biol. Fishes 51:455–60 [Google Scholar]
  46. Gerstner CL, Webb PW. 1998. The station-holding performance of the plaice Pleuronectes platessa on artificial substratum ripples. Can. J. Zool. 76:260–68 [Google Scholar]
  47. Gibb A, Jayne BC, Lauder GV. 1994. Kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis macrochirus. J. Exp. Biol. 189:133–61 [Google Scholar]
  48. Gillis GB. 1996. Undulatory locomotion in elongate aquatic vertebrates: anguilliform swimming since Sir James Gray. Am. Zool. 36:656–65 [Google Scholar]
  49. Gillis GB. 1997. Anguilliform locomotion in an elongate salamander (Siren intermedia): effects of speed on axial undulatory movements. J. Exp. Biol. 200:767–84 [Google Scholar]
  50. Goodrich ES. 1930. Studies on the Structure and Development of Vertebrates London: Macmillan
  51. Gray J. 1933a. Studies in animal locomotion. I. The movement of fish with special reference to the eel. J. Exp. Biol. 10:88–104 [Google Scholar]
  52. Gray J. 1933b. Studies in animal locomotion. II. The relationship between waves of muscular contraction and the propulsive mechanism of the eel. J. Exp. Biol. 10:386–90 [Google Scholar]
  53. Gray J. 1933c. Studies in animal locomotion. III. The propulsive mechanism of the whiting (Gadus merlangus). J. Exp. Biol. 10:391–400 [Google Scholar]
  54. Gray J. 1953. The locomotion of fishes. Essays in Marine Biology SM Marshall, AP Orr 1–16 Edinburgh, Scotl: Oliver & Boyd [Google Scholar]
  55. Gray J. 1968. Animal Locomotion London: Weidenfeld & Nicolson
  56. Hale ME, Day RD, Thorsen DH, Westneat MW. 2006. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes. J. Exp. Biol. 209:3708–18 [Google Scholar]
  57. Hale ME, Long JH Jr, McHenry MJ, Westneat MW. 2002. Evolution of behavior and neural control of the fast-start escape response. Evolution 56:993–1007 [Google Scholar]
  58. Hess F, Videler JJ. 1984. Fast continuous swimming of saithe (Pollachius virens): a dynamic analysis of bending moments and muscle power. J. Exp. Biol. 109:229–51 [Google Scholar]
  59. Jagnandan K, Sanford CP. 2013. Kinematics of ribbon-fin locomotion in the bowfin, Amia calva. J. Exp. Zool. A 319:569–83 [Google Scholar]
  60. Katija K. 2012. Biogenic inputs to ocean mixing. J. Exp. Biol. 215:1040–49 [Google Scholar]
  61. Katija K, Dabiri JO. 2009. A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460:624–26 [Google Scholar]
  62. Kendall JL, Lucey KS, Jones EA, Wang J, Ellerby DJ. 2007. Mechanical and energetic factors underlying gait transitions in bluegill sunfish (Lepomis macrochirus). J. Exp. Biol. 210:4265–71 [Google Scholar]
  63. Kern S, Koumoutsakos P. 2006. Simulations of optimized anguilliform swimming. J. Exp. Biol. 209:4841–57 [Google Scholar]
  64. Korsmeyer K, Steffensen J, Herskin J. 2002. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus). J. Exp. Biol. 205:1253–63 [Google Scholar]
  65. Lauder GV. 2006. Locomotion. The Physiology of Fishes DH Evans, JB Claiborne 3–46 Boca Raton, FL: CRC, 3rd ed.. [Google Scholar]
  66. Lauder GV, Anderson EJ, Tangorra JL, Madden PGA. 2007. Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Exp. Biol. 210:2767–80 [Google Scholar]
  67. Lauder GV, Drucker EG. 2002. Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. News Physiol. Sci. 17:235–40 [Google Scholar]
  68. Lauder GV, Flammang BE, Alben S. 2012. Passive robotic models of propulsion by the bodies and caudal fins of fish. Integr. Comp. Biol. 52:576–87 [Google Scholar]
  69. Lauder GV, Lim J, Shelton R, Witt C, Anderson EJ, Tangorra JL. 2011a. Robotic models for studying undulatory locomotion in fishes. Mar. Technol. Soc. J. 45:41–55 [Google Scholar]
  70. Lauder GV, Madden PGA. 2006. Learning from fish: kinematics and experimental hydrodynamics for roboticists. Int. J. Autom. Comput. 4:325–35 [Google Scholar]
  71. Lauder GV, Madden PGA. 2008. Advances in comparative physiology from high-speed imaging of animal and fluid motion. Annu. Rev. Physiol. 70:143–63 [Google Scholar]
  72. Lauder GV, Madden PGA, Mittal R, Dong H, Bozkurttas M. 2006. Locomotion with flexible propulsors I: experimental analysis of pectoral fin swimming in sunfish. Bioinspir. Biomim. 1:S25–34 [Google Scholar]
  73. Lauder GV, Madden PGA, Tangorra JL, Anderson E, Baker TV. 2011b. Bioinspiration from fish for smart material design and function. Smart Mater. Struct. 20:094014 [Google Scholar]
  74. Lauder GV, Tytell ED. 2006. Hydrodynamics of undulatory propulsion. See Shadwick & Lauder 2006 425–68
  75. Liao JC. 2007. A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. Lond. B 362:1973–93 [Google Scholar]
  76. Liao JC, Beal DN, Lauder GV, Triantafyllou MS. 2003a. Fish exploiting vortices decrease muscle activity. Science 302:1566–69 [Google Scholar]
  77. Liao JC, Beal DN, Lauder GV, Triantafyllou MS. 2003b. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Exp. Biol. 206:1059–73 [Google Scholar]
  78. Lighthill J. 1975. Mathematical Biofluiddynamics Philadelphia: Soc. Ind. Appl. Math.
  79. Long J. 2012. Darwin's Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology New York: Basic
  80. Macesic LJ, Mulvaney D, Blevins EL. 2013. Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by the freshwater stingray Potamotrygon orbignyi. Zoology 116:144–50 [Google Scholar]
  81. Maddock L, Bone Q, Rayner JMV. 1994. Mechanics and Physiology of Animal Swimming Cambridge, UK: Cambridge Univ. Press
  82. Maia A, Wilga C. 2013a. Anatomy and muscle activity of the dorsal fins in bamboo sharks and spiny dogfish during turning maneuvers. J. Morphol. 274:1288–98 [Google Scholar]
  83. Maia A, Wilga C. 2013b. Function of dorsal fins in bamboo shark during steady swimming. Zoology 116:224–31 [Google Scholar]
  84. Maia A, Wilga C, Lauder GV. 2012. Biomechanics of locomotion in sharks, rays and chimeras. Biology of Sharks and Their Relatives JC Carrier, JA Musick, MR Heithaus 125–51 Boca Raton, FL: CRC, 2nd ed.. [Google Scholar]
  85. Motta P, Habegger ML, Lang A, Hueter R, Davis J. 2012. Scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. J. Morphol. 273:1096–110 [Google Scholar]
  86. Müller UK, Stamhuis E, Videler J. 2002. Riding the waves: the role of the body wave in undulatory fish swimming. Integr. Comp. Biol. 42:981–87 [Google Scholar]
  87. Müller UK, van den Boogaart JGM, van Leeuwen JL. 2008. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime. J. Exp. Biol. 211:196–205 [Google Scholar]
  88. Nauen JC, Lauder GV. 2002. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). J. Exp. Biol. 205:1709–24 [Google Scholar]
  89. Oeffner J, Lauder GV. 2012. The hydrodynamic function of shark skin and two biomimetic applications. J. Exp. Biol. 215:785–95 [Google Scholar]
  90. Peng J, Dabiri JO, Madden PG, Lauder GV. 2007. Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin. J. Exp. Biol. 210:685–98 [Google Scholar]
  91. Phelan C, Tangorra JL, Lauder GV, Hale ME. 2010. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control. Bioinspir. Biomim. 5:035003 [Google Scholar]
  92. Quinn DB, Lauder GV, Smits AJ. 2014a. Flexible propulsors in ground effect. Bioinspir. Biomim. 9:036008 [Google Scholar]
  93. Quinn DB, Lauder GV, Smits AJ. 2014b. Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738:250–67 [Google Scholar]
  94. Quinn DB, Moored KW, Dewey PA, Smits AJ. 2014c. Unsteady propulsion near a solid boundary. J. Fluid Mech. 742:152–70 [Google Scholar]
  95. Roche DG, Taylor MK, Binning SA, Johansen JL, Domenici P, Steffensen JF. 2014. Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata). J. Exp. Biol. 217:414–22 [Google Scholar]
  96. Rosenberger L. 2001. Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J. Exp. Biol. 204:379–94 [Google Scholar]
  97. Rosenberger L, Westneat MW. 1999. Functional morphology of undulatory pectoral fin locomotion in the stingray Taeniura lymma (Chondrichthyes: Dasyatidae). J. Exp. Biol. 202:3523–39 [Google Scholar]
  98. Ruiz-Torres R, Curet OM, Lauder GV, MacIver MA. 2013. Kinematics of the ribbon fin in hovering and swimming of the electric ghost knifefish. J. Exp. Biol. 216:823–34 [Google Scholar]
  99. Sepulveda C, Dickson KA. 2000. Maximum sustainable speeds and cost of swimming in juvenile Kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus). J. Exp. Biol. 203:3089–101 [Google Scholar]
  100. Sepulveda C, Dickson KA, Graham JB. 2003. Swimming performance studies on the eastern Pacific bonito Sarda chiliensis, a close relative of the tunas (family Scombridae) II. Energetics. J. Exp. Biol. 206:2739–48 [Google Scholar]
  101. Sfakiotakis M, Lane D, Davies JB. 1999. Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24:237–52 [Google Scholar]
  102. Shadwick RE, Gemballa S. 2006. Structure, kinematics, and muscle dynamics in undulatory swimming. See Shadwick & Lauder 2006 241–80
  103. Shadwick RE, Goldbogen JA. 2012. Muscle function and swimming in sharks. J. Fish Biol. 80:1904–39 [Google Scholar]
  104. Shadwick RE, Lauder GV. 2006. Fish Biomechanics Fish Physiol 23 San Diego, CA: Academic
  105. Shelton RM, Thornycroft P, Lauder GV. 2014. Undulatory locomotion by flexible foils as biomimetic models for understanding fish propulsion. J. Exp. Biol. 217:2110–20 [Google Scholar]
  106. Standen EM. 2008. Pelvic fin locomotor function in fishes: three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 211:2931–42 [Google Scholar]
  107. Standen EM. 2010. Muscle activity and hydrodynamic function of pelvic fins in trout (Oncorhynchus mykiss). J. Exp. Biol. 213:831–41 [Google Scholar]
  108. Standen EM, Lauder GV. 2005. Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. J. Exp. Biol. 208:2753–63 [Google Scholar]
  109. Standen EM, Lauder GV. 2007. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). J. Exp. Biol. 210:325–39 [Google Scholar]
  110. Taft NK, Taft BN. 2012. Functional implications of morphological specializations among the pectoral fin rays of the benthic longhorn sculpin. J. Exp. Biol. 215:2703–10 [Google Scholar]
  111. Taguchi M, Liao JC. 2011. Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J. Exp. Biol. 214:1428–36 [Google Scholar]
  112. Tangorra JL, Gericke T, Lauder GV. 2011a. Learning from the fins of ray-finned fishes for the propulsors of unmanned undersea vehicles. Mar. Technol. Soc. J. 45:65–73 [Google Scholar]
  113. Tangorra JL, Lauder GV, Hunter I, Mittal R, Madden PG, Bozkurttas M. 2010. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. J. Exp. Biol. 213:4043–54 [Google Scholar]
  114. Tangorra JL, Phelan C, Esposito C, Lauder GV. 2011b. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes. Integr. Comp. Biol. 51:176–89 [Google Scholar]
  115. Triantafyllou MS, Triantafyllou GS, Yue DKP. 2000. Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32:33–53 [Google Scholar]
  116. Tytell ED. 2004. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata. Proc. R. Soc. B 271:2535–40 [Google Scholar]
  117. Tytell ED. 2006. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming. J. Exp. Biol. 209:1516–34 [Google Scholar]
  118. Tytell ED, Lauder GV. 2004. The hydrodynamics of eel swimming. I. Wake structure. J. Exp. Biol. 207:1825–41 [Google Scholar]
  119. Tytell ED, Lauder GV. 2008. Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus. J. Exp. Biol. 211:3359–69 [Google Scholar]
  120. Tytell ED, Standen EM, Lauder GV. 2008. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. J. Exp. Biol. 211:187–95 [Google Scholar]
  121. van Ginneken VJT, Antonissen E, Müller UK, Booms R, Eding E. et al. 2005. Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs. J. Exp. Biol. 208:1329–35 [Google Scholar]
  122. van Ginneken VJT, van den Thillart GEEJM. 2000. Eel fat stores are enough to reach the Sargasso. Nature 403:156–57 [Google Scholar]
  123. Videler JJ. 1993. Fish Swimming New York: Chapman & Hall
  124. Walker JA, Westneat MW. 1997. Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae). J. Exp. Biol. 200:1549–69 [Google Scholar]
  125. Wardle CS, Videler JJ, Altringham JD. 1995. Tuning in to fish swimming waves: body form, swimming mode and muscle function. J. Exp. Biol. 198:1629–36 [Google Scholar]
  126. Webb PW. 1975. Hydrodynamics and Energetics of Fish Propulsion Bull. Fish. Res. Board Can. 190 Ottawa, Can: Dep. Environ. Fish. Mar. Serv.
  127. Webb PW, Blake RW. 1985. Swimming. Functional Vertebrate Morphology M Hildebrand, DM Bramble, KF Liem, DB Wake 110–28 Cambridge, MA: Harvard Univ. Press [Google Scholar]
  128. Webb PW, Gerstner CL, Minton S. 1996. Station-holding by the mottled sculpin, Cottus bairdi (Teleostei: Cottidae), and other fishes. Copeia 1996:488–93 [Google Scholar]
  129. Webb PW, Keyes RS. 1982. Swimming kinematics of sharks. Fish. Bull. 80:803–12 [Google Scholar]
  130. Webb PW, Kostecki PT, Stevens ED. 1984. The effect of size and swimming speed on the locomotor kinematics of rainbow trout. J. Exp. Biol. 109:77–95 [Google Scholar]
  131. Webb PW, Weihs D. 1983. Fish Biomechanics New York: Praeger
  132. Wen L, Lauder GV. 2013. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device. Bioinspir. Biomim. 8:046013 [Google Scholar]
  133. Wen L, Weaver JC, Lauder GV. 2014. Biomimetic shark skin: design, fabrication, and hydrodynamic function. J. Exp. Biol. 217:1656–66 [Google Scholar]
  134. Westneat MW. 1996. Functional morphology of aquatic flight in fishes: kinematics, electromyography, and mechanical modeling of labriform locomotion. Am. Zool. 36:582–98 [Google Scholar]
  135. Westneat MW, Hale ME, McHenry MJ, Long JH Jr. 1998. Mechanics of the fast-start: muscle function and the role of intramuscular pressure in the escape behavior of Amia calva and Polypterus palmas. J. Exp. Biol. 210:3041–55 [Google Scholar]
  136. Wilga C, Lauder GV. 2000. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. J. Exp. Biol. 203:2261–78 [Google Scholar]
  137. Wilga C, Lauder GV. 2001. Functional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic versus pelagic station holding. J. Morphol. 249:195–209 [Google Scholar]
  138. Wilga C, Lauder GV. 2002. Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J. Exp. Biol. 205:2365–74 [Google Scholar]
  139. Wilga C, Maia A, Nauwelaerts S, Lauder GV. 2012. Prey handling using whole body fluid dynamics in batoids. Zoology 115:47–57 [Google Scholar]
  140. Williams R, Neubarth N, Hale ME. 2013. The function of fin rays as proprioceptive sensors in fish. Nat. Commun. 4:1729 [Google Scholar]
  141. Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC. 2010. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. J. Exp. Biol. 213:3832–42 [Google Scholar]
  142. Windsor SP, Tan D, Montgomery JC. 2008. Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). J. Exp. Biol. 211:2950–59 [Google Scholar]
  143. Wu G, Yang Y, Zeng L. 2007. Routine turning maneuvers of koi carp Cyprinus carpio koi: effects of turning rate on kinematics and hydrodynamics. J. Exp. Biol. 210:4379–89 [Google Scholar]
  144. Wu T, Brokaw CJ, Brennen C. 1975. Swimming and Flying in Nature New York: Plenum
  145. Xiong G, Lauder GV. 2014. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion. Zoology 117:269–81 [Google Scholar]
  146. Youngerman ED, Flammang BE, Lauder GV. 2014. Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors. Zoology 117337–48
  147. Zhu D, Ortega CF, Motamedi R, Szewciw L, Vernerey F, Barthelat F. 2012. Structure and mechanical performance of a “modern” fish scale. Adv. Eng. Mater. 14:B185–94 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015614
Loading
/content/journals/10.1146/annurev-marine-010814-015614
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error