Marine scientists have long been interested in the interactions of marine phytoplankton with their chemical environments. Nutrient availability clearly controls carbon fixation on a global scale, but the interactions between phytoplankton and nutrients are complex and include both short-term responses (seconds to minutes) and longer-term evolutionary adaptations. This review outlines how genomics and functional genomics approaches are providing a better understanding of these complex interactions, especially for cyanobacteria and diatoms, for which the genome sequences of multiple model organisms are available. Transporters and related genes are emerging as the most likely candidates for biomarkers in stress-specific studies, but other genes are also possible candidates. One surprise has been the important role of horizontal gene transfer in mediating chemical-biological interactions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aiba H, Nagaya M, Mizuno T. 1993. Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol. Microbiol. 8:81–91 [Google Scholar]
  2. Allen AE, La Roche J, Maheswari U, Lommer M, Schauer N. et al. 2008. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl. Acad. Sci. USA 105:10438–43 [Google Scholar]
  3. Ashworth J, Coesel S, Lee A, Armbrust EV, Orellana MV, Baliga NS. 2013. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc. Natl. Acad. Sci. USA 110:7518–23 [Google Scholar]
  4. Baran R, Ivanova NN, Jose N, Garcia-Pichel F, Kyrpides NC. et al. 2013. Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar. Drugs 11:3617–31 [Google Scholar]
  5. Bertrand EM, Allen AE, Dupont CL, Norden-Krichmar TM, Bai J. et al. 2012. Influence of cobalamin scarcity on diatom molecular physiology and identification of a cobalamin acquisition protein. Proc. Natl. Acad. Sci. USA 109:E1762–71 [Google Scholar]
  6. Bertrand EM, Moran DM, McIlvin MR, Hoffman JM, Allen AE, Saito MA. 2013. Methionine synthase interreplacement in diatom cultures and communities: implications for the persistence of B12 use by eukaryotic phytoplankton. Limnol. Oceanogr. 58:1431–50 [Google Scholar]
  7. Bertrand EM, Saito MA, Jeon YJ, Neilan BA. 2011. Vitamin B12 biosynthesis gene diversity in the Ross Sea: the identification of a new group of putative polar B12 biosynthesizers. Environ. Microbiol. 13:1285–98 [Google Scholar]
  8. Bibby TS, Mary I, Nield J, Partensky F, Barber J. 2003. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–54 [Google Scholar]
  9. Boyd PW. 2013. Diatom traits regulate Southern Ocean silica leakage. Proc. Natl. Acad. Sci. USA 110:20358–59 [Google Scholar]
  10. Bromke MA, Giavalisco P, Willmitzer L, Hesse H. 2013. Metabolic analysis of adaptation to short-term changes in culture conditions of the marine diatom Thalassiosira pseudonana. PLoS ONE 8:e67340 [Google Scholar]
  11. Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F. 2013. Ecological and evolutionary genomics of marine photosynthetic organisms. Mol. Ecol. 22:867–907 [Google Scholar]
  12. Dong H-P, Williams E, Wang D-Z, Xie Z-X, Hsia R-C. et al. 2013. Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol. 162:1110–26 [Google Scholar]
  13. Du C, Liang J-R, Chen D-D, Xu B, Zhuo W-H. et al. 2014. iTRAQ-based proteomic analysis of the metabolism mechanism associated with silicon response in the marine diatom Thalassiosira pseudonana. J. Proteome Res. 13:720–34 [Google Scholar]
  14. Dupont CL, Barbeau K, Palenik B. 2008. Ni uptake and limitation in marine Synechococcus strains. Appl. Environ. Microbiol. 74:23–31 [Google Scholar]
  15. Dupont CL, Buck KN, Palenik B, Barbeau K. 2010. Nickel utilization in phytoplankton assemblages from contrasting oceanic regimes. Deep-Sea Res. I 57:553–66 [Google Scholar]
  16. Durkin CA, Bender SJ, Chan KYK, Gaessner K, Gruenbaum D, Armbrust EV. 2013. Silicic acid supplied to coastal diatom communities influences cellular silicification and the potential export of carbon. Limnol. Oceanogr. 58:1707–26 [Google Scholar]
  17. Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML. et al. 2012. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7:e33768 [Google Scholar]
  18. Ellwood MJ, Law CS, Hall J, Woodward EMS, Strzepek R. et al. 2013. Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea. Deep-Sea Res. I 72:102–20 [Google Scholar]
  19. Fernie AR, Obata T, Allen AE, Araujo WL, Bowler C. 2012. Leveraging metabolomics for functional investigations in sequenced marine diatoms. Trends Plant Sci. 17:395–403 [Google Scholar]
  20. Flores E, Herrero A. 2005. Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans. 33:164–67 [Google Scholar]
  21. Gobler CJ, Lobanov AV, Tang Y-Z, Turanov AA, Zhang Y. et al. 2013. The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens. ISME J. 7:1333–43 [Google Scholar]
  22. Hastings JW, Sweeney BM. 1957. On the mechanism of temperature independence in a biological clock. Proc. Natl. Acad. Sci. USA 43:804–11 [Google Scholar]
  23. Hildebrand M, Dahlin K. 2000a. Cloning and characterization of nitrate transporter genes from the diatom Cylindrotheca fusiformis. J. Phycol. 36:Suppl. S330 [Google Scholar]
  24. Hildebrand M, Dahlin K. 2000b. Nitrate transporter genes from the diatom Cylindrotheca fusiformis (Bacillariophyceae): mRNA levels controlled by nitrogen source and by the cell cycle. J. Phycol. 36:702–13 [Google Scholar]
  25. Hildebrand M, Dahlin K, Volcani BE. 1998. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260:480–86 [Google Scholar]
  26. Hildebrand M, Volcani BE, Gassmann W, Schroeder JI. 1997. A gene family of silicon transporters. Nature 385:688–89 [Google Scholar]
  27. Ho T-Y. 2013. Nickel limitation of nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 58:112–20 [Google Scholar]
  28. Ho T-Y, Quigg A, Finkel ZV, Milligan AJ, Wyman K. et al. 2003. The elemental composition of some marine phytoplankton. J. Phycol. 39:1145–59 [Google Scholar]
  29. Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. 2012. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 158:299–312 [Google Scholar]
  30. La Roche J, Boyd PW, McKay RML, Geider RJ. 1996. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382:802–5 [Google Scholar]
  31. La Roche J, Geider RJ, Graziano LM, Murray H, Lewis K. 1993. Induction of specific proteins in eukaryotic algae grown under iron-deficient, phosphorus-deficient, or nitrogen-deficient conditions. J. Phycol. 29:767–77 [Google Scholar]
  32. La Roche J, Murray H, Orellana M, Newton J. 1995. Flavodoxin expression as an indicator of iron limitation in marine diatoms. J. Phycol. 31:520–30 [Google Scholar]
  33. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM. 2005. A cadmium enzyme from a marine diatom. Nature 435:42 [Google Scholar]
  34. Lelong A, Bucciarelli E, Hégaret H, Soudant P. 2013. Iron and copper limitations differently affect growth rates and photosynthetic and physiological parameters of the marine diatom Pseudo-nitzschia delicatissima. Limnol. Oceanogr. 58:613–23 [Google Scholar]
  35. Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. 2007. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 8:R198 [Google Scholar]
  36. Lommer M, Specht M, Roy A-S, Kraemer L, Andreson R. et al. 2012. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol. 13:R66 [Google Scholar]
  37. Mann EL, Ahlgren N, Moffett JW, Chisholm SW. 2002. Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol. Oceanogr. 47:976–88 [Google Scholar]
  38. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB. et al. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl. Acad. Sci. USA 109:E317–25 [Google Scholar]
  39. Martiny AC, Coleman ML, Chisholm SW. 2006. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl. Acad. Sci. USA 103:12552–57 [Google Scholar]
  40. Martiny AC, Huang Y, Li W. 2009. Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ. Microbiol. 11:1340–47 [Google Scholar]
  41. Merchant S, Hill K, Howe G. 1991. Dynamic interplay between two copper-titrating components in the transcriptional regulation of cyt c6. EMBO J. 10:1383–89 [Google Scholar]
  42. Mills E. 1989. Biological Oceanography: An Early History, 1870–1960 Ithaca, NY: Cornell Univ. Press [Google Scholar]
  43. Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M. et al. 2008. Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc. Natl. Acad. Sci. USA 105:1579–84 [Google Scholar]
  44. Moffett JW, Brand LE, Croot PL, Barbeau KA. 1997. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol. Oceanogr. 42:789–99 [Google Scholar]
  45. Montsant A, Jabbari K, Maheswari U, Bowler C. 2005. Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol. 137:500–13 [Google Scholar]
  46. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L. et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10 [Google Scholar]
  47. Moore LR, Post AF, Rocap G, Chisholm SW. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47:989–96 [Google Scholar]
  48. Morel FMM, Milligan AJ, Saito MA. 2003. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. Treatise on Geochemistry 6 The Oceans and Marine Geochemistry H Elderfield 113–43 Amsterdam: Elsevier [Google Scholar]
  49. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y. et al. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–15 [Google Scholar]
  50. Nunn BL, Faux JF, Hippmann AA, Maldonado MT, Harvey HR. et al. 2013. Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation. PLoS ONE 8:e75653 [Google Scholar]
  51. Ostrowski M, Mazard S, Tetu SG, Phillippy K, Johnson A. et al. 2010. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISME J. 4:908–21 [Google Scholar]
  52. Palenik B. 2011. Recent functional genomics studies in marine Synechococcus. Functional Genomics and Evolution of Photosynthetic Systems RL Burnap, WFJ Vermaas 103–18 Amsterdam: Springer [Google Scholar]
  53. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L. et al. 2003. The genome of a motile marine Synechococcus. Nature 424:1037–42 [Google Scholar]
  54. Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A. et al. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. USA 104:7705–10 [Google Scholar]
  55. Palenik B, Ren QH, Dupont CL, Myers GS, Heidelberg JF. et al. 2006. Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc. Natl. Acad. Sci. USA 103:13555–59 [Google Scholar]
  56. Paulsen IT. 2013. TransportDB. Updated July 8, 2013, accessed June 2014. http://www.membranetransport.org
  57. Peers G, Price NM. 2006. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–44 [Google Scholar]
  58. Rahman MM, Rahman MA, Maki T, Nishiuchi T, Asano T, Hasegawa H. 2014. A marine phytoplankton (Prymnesium parvum) up-regulates ABC transporters and several other proteins to acclimatize with Fe-limitation. Chemosphere 95:213–19 [Google Scholar]
  59. Ray JM, Bhaya D, Block MA, Grossman AR. 1991. Isolation, transcription, and inactivation of the gene for an atypical alkaline-phosphatase of Synechococcus sp. strain PCC 7942. J. Bacteriol. 173:4297–309 [Google Scholar]
  60. Ren Q, Paulsen IT. 2007. Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J. Mol. Microbiol. Biotechnol. 12:165–79 [Google Scholar]
  61. Rosenwasser S, van Creveld SG, Schatz D, Malitsky S, Tzfadia O. et al. 2014. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc. Natl. Acad. Sci. USA 111:2740–45 [Google Scholar]
  62. Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC. 2010. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl. Acad. Sci. USA 107:16184–89 [Google Scholar]
  63. Ryan-Keogh TJ, Macey AI, Nielsdottir MC, Lucas MI, Steigenberger SS. et al. 2013. Spatial and temporal development of phytoplankton iron stress in relation to bloom dynamics in the high-latitude North Atlantic Ocean. Limnol. Oceanogr. 58:533–45 [Google Scholar]
  64. Rynearson TA, Palenik B. 2011. Learning to read the oceans: genomics of marine phytoplankton. Advances in Marine Biology 60 M Lesser 1–40 San Diego, CA: Academic [Google Scholar]
  65. Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. 2014. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6:339–67 [Google Scholar]
  66. Scanlan DJ, West NJ. 2002. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol 40:1–12 [Google Scholar]
  67. Shi X, Gao WM, Chao SH, Zhang WW, Meldrum DR. 2013. Monitoring the single-cell stress response of the diatom Thalassiosira pseudonana by quantitative real-time reverse transcription-PCR. Appl. Environ. Microbiol. 79:1850–58 [Google Scholar]
  68. Shrestha RP, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen AE. 2012. Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13:499 [Google Scholar]
  69. Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB. 2010. Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Syst. Biol. 4:105 [Google Scholar]
  70. Snyder DS, Brahamsha B, Azadi P, Palenik B. 2009. Structure of compositionally simple lipopolysaccharide from marine Synechococcus. J. Bacteriol. 191:5499–509 [Google Scholar]
  71. Stuart RK, Brahamsha B, Busbya K, Palenik B. 2013. Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and methyl viologen stress. ISME J. 7:1139–49 [Google Scholar]
  72. Stuart RK, Dupont CL, Johnson DA, Paulsen IT, Palenik B. 2009. Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl. Environ. Microbiol. 75:5047–57 [Google Scholar]
  73. Su ZC, Mao FL, Dam P, Wu HW, Olman V. et al. 2006. Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102. Nucleic Acids Res. 34:1050–65 [Google Scholar]
  74. Suzuki S, Ferjani A, Suzuki I, Murata N. 2004. The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J. Biol. Chem. 279:13234–40 [Google Scholar]
  75. Tetu SG, Brahamsha B, Johnson DA, Tai V, Phillippy K. et al. 2009. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J. 3:835–49 [Google Scholar]
  76. Tetu SG, Johnson DA, Varkey DR, Phillippy K, Stuart RK. et al. 2013. Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species. Front. Microbiol. 4:232 [Google Scholar]
  77. Thamatrakoln K, Bailleul B, Brown CM, Gorbunov MY, Kustka AB. et al. 2013. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Proc. Natl. Acad. Sci. USA 110:20123–28 [Google Scholar]
  78. Thomas EV, Phillippy KH, Brahamsha B, Haaland DM, Timlin JA. et al. 2009. Statistical analysis of microarray data with replicated spots: a case study with Synechococcus WH8102. Comp. Funct. Genomics 2009:950171 [Google Scholar]
  79. Thompson AW, Huang K, Saito MA, Chisholm SW. 2011. Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME J. 5:1580–94 [Google Scholar]
  80. Tolonen AC, Aach J, Lindell D, Johnson ZI, Rector T. et al. 2006. Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Mol. Syst. Biol. 2:53 [Google Scholar]
  81. Traller JC, Hildebrand M. 2013. High throughput imaging to the diatom Cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation. Algal Res. 2:244–52 [Google Scholar]
  82. Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC. et al. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. USA 110:19748–53 [Google Scholar]
  83. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM. et al. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72 [Google Scholar]
  84. Ward BA, Dutkiewicz S, Moore CM, Follows MJ. 2013. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58:2059–75 [Google Scholar]
  85. Ward BB. 2008. Phytoplankton community composition and gene expression of functional genes involved in carbon and nitrogen assimilation. J. Phycol. 44:1490–503 [Google Scholar]
  86. Wood PM. 1978. Interchangeable copper and iron proteins in algal photosynthesis: studies on plastocyanin and cytochrome c-552 in Chlamydomonas. Eur. J. Biochem. 87:9–19 [Google Scholar]
  87. Wurch LL, Bertrand EM, Saito MA, Van Mooy BAS, Dyhrman ST. 2011. Proteome changes driven by phosphorus deficiency and recovery in the brown tide-forming alga Aureococcus anophagefferens. PLoS ONE 6:e28949 [Google Scholar]
  88. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C. et al. 2009. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS ONE 4:e5135 [Google Scholar]

Data & Media loading...

    Time-lapse image series of light production from two strains that carry a gene encoding the firefly luciferase reporter enzyme. The strains were inoculated onto agar plates in the shape of a moon and sun, and their luciferase genes are driven by different regulatory DNA elements that cause gene activity to peak with opposite phases approximately 12 h apart. Video created by Shannon Mackey, Mark Zoran, and Susan Golden at the Department of Biology, Texas A&M University, and provided courtesy of Susan Golden, Center for Chronobiology, University of California, San Diego.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error