1932

Abstract

Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

Keyword(s): abaloneexternalityfishprawnssalmonsea lice
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015646
2015-01-03
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010814-015646.html?itemId=/content/journals/10.1146/annurev-marine-010814-015646&mimeType=html&fmt=ahah

Literature Cited

  1. Abbe GR, McCollough CB, Barker LS, Dungan CF. 2010. Performance of disease-tolerant strains of eastern oysters (Crassostrea virginica) in the Patuxent River, Maryland, 2003 to 2007. J. Shellfish Res. 29:161–75 [Google Scholar]
  2. Alsk. Dep. Fish Game 2014. Sockeye salmon (Oncorhynchus nerka): species profile. http://www.adfg.alaska.gov/index.cfm?adfg=sockeyesalmon.main
  3. Amundsen PA, Kristoffersen R. 1990. Infection of whitefish (Coregonus lavaretus L. s.l.) by Triaenophorus crassus Forel (Cestoda: Pseudophyllidea): a case study in parasite control. Can. J. Zool. 68:1187–92 [Google Scholar]
  4. Asche F, Bjørndal T. 2011. The Economics of Salmon Aquaculture Chichester, UK: Wiley-Blackwell, 2nd ed.. [Google Scholar]
  5. Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD. et al. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61:107–16 [Google Scholar]
  6. Braid B, Moore JD, Robbins TT, Hedrick RP, Tjeerdema RS, Friedman CS. 2005. Health and survival of red abalone, Haliotis rufescens, under varying temperature, food supply and exposure to the agent of withering syndrome. J. Invertbr. Pathol. 89:219–31 [Google Scholar]
  7. Breuil G, Bonamib JR, Pepin JF, Pichot Y. 1991. Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax) larvae and juveniles. Aquaculture 97:109–16 [Google Scholar]
  8. Burreson EM, Stokes NA, Friedman CS. 2000. Increased virulence in an introduced pathogen: Haplosporidium nelsoni (MSX) in the eastern oyster Crassostrea virginica. J. Aquat. Anim. Health 12:1–8 [Google Scholar]
  9. Bushek D, Allen SK, Alcox KA, Gustafson R, Ford SE. 1997. Response of Crassostrea virginica to in vitro cultured Perkinsus marinus: preliminary comparison of three inoculation methods. J. Shellfish Res. 16:479–85 [Google Scholar]
  10. Bushek D, Ford SE, Burt I. 2012. Long-term patterns of an estuarine pathogen along a salinity gradient. J. Mar. Res. 70:225–51 [Google Scholar]
  11. Bushek D, Ford SE, Chintala MM. 2002. Comparison of in vitro-cultured and wild-type Perkinsus marinus. III. Fecal elimination and its role in transmission. Dis. Aquat. Org. 51:217–25 [Google Scholar]
  12. Carlsson J, Carnegie RB, Cordes JF, Hare MP, Leggett AT, Reese KS. 2008. Evaluating recruitment contribution of a selectively bred aquaculture line of the oyster, Crassostrea virginica used in restoration efforts. J. Shellfish Res. 27:1117–24 [Google Scholar]
  13. Chu F-LE. 1996. Laboratory investigations of susceptibility, infectivity, and transmission of Perkinsus marinus in oysters. J. Shellfish Res. 15:57–66 [Google Scholar]
  14. Colorni A, Diamant A, Eldar A, Kvitt H, Zlotkin A. 2002. Streptococcus iniae infections in Red Sea cage-cultured and wild fishes. Dis. Aquat. Org. 49:165–70 [Google Scholar]
  15. Conrad JM, Rondeau D. 2014. Bioeconomics of a marine disease Work. Pap., Dep. Econ., Univ. Victoria, Can. [Google Scholar]
  16. Costanza R, d'Arge R, de Groot R, Farber S, Grasso M. et al. 1998. The value of the world's ecosystem services and natural capital. Ecol. Econ. 25:3–15 [Google Scholar]
  17. Costello MJ. 2009. The global economic cost of sea lice to the salmonid farming industry. J. Fish Dis. 32:115–18 [Google Scholar]
  18. Crosson LM, Wight N, VanBlaricom GR, Kiryu I, Moore JD, Friedman CS. 2014. Abalone withering syndrome: distribution, impacts, current diagnostic methods and new findings. Dis. Aquat. Org. 108:261–70 [Google Scholar]
  19. Cuéllar-Anjel J, White-Noble B, Schofield P, Chamorro R, Lightner DV. 2012. Report of significant WSSV-resistance in the Pacific white shrimp, Litopenaeus vannamei, from a Panamanian breeding program. Aquaculture 368:36–39 [Google Scholar]
  20. Culver CS, Kuris AM. 2000. The apparent eradication of a locally established introduced marine pest. Biol. Invasions 2:245–53 [Google Scholar]
  21. Culver CS, Kuris AM. 2004. Susceptibility of California gastropods to an introduced South African sabellid polychaete, Terebrasabella heterouncinata. Invertebr. Biol. 123:316–23 [Google Scholar]
  22. Diana JS. 2009. Aquaculture production and biodiversity conservation. BioScience 59:27–38 [Google Scholar]
  23. Dierberg FE, Kiattisimkul W. 1996. Issues, impacts, and implications of shrimp aquaculture in Thailand. Environ. Manag. 20:649–66 [Google Scholar]
  24. Dixon B. 2012. Vaccines for finfish aquaculture: What do we need to know to make them work?. Electron. J. Biotechnol. 15:18 [Google Scholar]
  25. Dobson AP, May RM. 1987. The effects of parasites on fish populations—theoretical aspects. Int. J. Parasitol. 17:363–70 [Google Scholar]
  26. Dodd Q. 2001. Kudoa losses spur new research on west coast. North. Aquac. May 1–2 [Google Scholar]
  27. Dutta S, Chakrabarty U, Mallik A, Mandal N. 2013. Experimental evidence for white spot syndrome virus (WSSV) susceptibility linked to a microsatellite DNA marker in giant black tiger shrimp, Penaeus monodon (Fabricius). J. Fish Dis. 36:593–97 [Google Scholar]
  28. Dyck AJ, Sumaila UR. 2010. Economic impact of ocean fish populations in the global fishery. J. Bioecon. 12:227–43 [Google Scholar]
  29. Egusa S. 1983. Disease problems in Japanese yellowtail, Seriola quinqueradiata, culture: a review. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer 182:10–18 [Google Scholar]
  30. FAO (Food Agric. Organ. UN) 2012. The state of world fisheries and aquaculture Rep., FAO, Rome [Google Scholar]
  31. Finstad B, Bjørn PA. 2011. Present status and implications of salmon lice on wild salmonids in Norwegian coastal zones. Salmon Lice: An Integrated Approach to Understanding Parasite Abundance and Distribution S Jones, R Beamish 279–305 Chichester, UK: Wiley- Blackwell [Google Scholar]
  32. Flegel TW. 2006. Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 258:1–33 [Google Scholar]
  33. Flegel TW, Lightner DV, Lo CF, Owens L. 2008. Shrimp disease control: past, present and future. Diseases in Asian Aquaculture VI MG Bondad-Reantaso, CV Mohan, M Crumlish, RP Subasinghe 355–78 Manila, Philipp: Fish Health Sect., Asian Fish. Soc. [Google Scholar]
  34. Ford SE, Chintala MM. 2006. Northward expansion of a marine parasite: testing the role of temperature adaptation. J. Exp. Mar. Biol. Ecol. 339:226–35 [Google Scholar]
  35. Ford SE, Scarpa E, Bushek D. 2012. Spatial and temporal variability of disease refuges in an estuary: implications for the development of resistance. J. Mar. Res. 70:253–77 [Google Scholar]
  36. Friedman CS, Finley CA. 2003. Anthropogenic introduction of the etiological agent of withering syndrome into northern California abalone populations via conservation efforts. Can. J. Fish. Aquat. Sci. 60:1424–31 [Google Scholar]
  37. Friedman CS, McDowell T, Groff JM, Hollibaugh JT, Manzer D, Hedrick RP. 1989. Presence of Bonamia ostreae among populations of the European flat oyster, Ostrea edulis Linn, in California, USA. J. Shellfish Res. 8:133–37 [Google Scholar]
  38. Friedman CS, Scott BB, Strenge RE, Vadopalas B, McCormick TB. 2007. Oxytetracycline as a tool to manage and prevent losses of the endangered white abalone, Haliotis sorenseni, caused by withering syndrome. J. Shellfish Res. 26:877–85 [Google Scholar]
  39. Friedman CS, Trevelyan G, Robbins TT, Mulder EP, Fields R. 2003. Development of an oral administration of oxytetracycline to control losses due to withering in cultured red abalone Haliotis rufescens. Aquaculture 224:1–23 [Google Scholar]
  40. Friedman CS, Wight N, Crosson LM, VanBlaricom GR, Lafferty KD. 2014. Reduced disease in black abalone following mass mortality: phage therapy and natural selection. Aquat. Microbiol. 5:78 [Google Scholar]
  41. He Y, Yu HW, Bao ZM, Zhang QQ, Guo X. 2012. Mutation in promoter region of a serine protease inhibitor confers Perkinsus marinus resistance in the eastern oyster (Crassostrea virginica). Fish Shellfish Immunol. 33:411–17 [Google Scholar]
  42. Hooper C, Hardy-Smith P, Handlinger J. 2007. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust. Vet. J. 85:188–93 [Google Scholar]
  43. Hostnik P, Barlic-Maganja D, Strancar M, Jencic V, Toplak I, Grom J. 2002. Influence of storage temperature on infectious hematopoietic necrosis virus detection by cell culture isolation and RT-PCR methods. Dis. Aquat. Org. 52:179–84 [Google Scholar]
  44. Huang YC, Yin ZX, Ai HS, Huang XD, Li SD, Weng SP, Hei JG. 2011. Characterization of WSSV resistance in selected families of Litopenaeus vannamei. Aquaculture 311:54–60 [Google Scholar]
  45. Iwamoto T, Mise K, Taked A, Okinaka Y, Mori F. et al. 2005. Characterization of striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J. Gen. Virol. 86:2807–16 [Google Scholar]
  46. Jackson D, Cotter D, Newell J, McEvoy S, O'Donohoe P. et al. 2013. Impact of Lepeophtheirus salmonis infestations on migrating Atlantic salmon, Salmo salar L., smolts at eight locations in Ireland with an analysis of lice-induced marine mortality. J. Fish Dis. 36:273–81 [Google Scholar]
  47. Jiravanichpaisal P, Soderhall K, Soderhall I. 2004. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol. 17:265–75 [Google Scholar]
  48. Johansen L-H, Jensen I, Mikkelsen H, Bjørn P-A, Jansen PA, Bergh O. 2011. Disease interaction and pathogens exchange between wild and farmed fish populations with special reference to Norway. Aquaculture 315:167–86 [Google Scholar]
  49. Johnsen BO, Jensen AJ. 1991. The Gyrodactylus story in Norway. Aquaculture 98:289–302 [Google Scholar]
  50. Jones JB, Fletcher WJ. 2012. Assessment of the risks associated with the release of abalone sourced from abalone hatcheries for enhancement of marine grow-out in the open ocean areas of WA. Fish. Rep. 227:1–24 [Google Scholar]
  51. Kabata Z, Whitaker DJ. 1981. Two species of Kudoa (Myxosporea: Multivalvulida) parasitic in the flesh of Merluccius productus (Ayres, 1855) (Pisces: Teleostei) in the Canadian Pacific. Can. J. Zool. 59:2085–91 [Google Scholar]
  52. Kara HM, Chaoui L, Derbal F, Zaidi R, de Boisséson C. et al. 2014. Betanodavirus-associated mortalities of adult wild groupers Epinephelus marginatus (Lowe) and Epinephelus costae (Steindachner) in Algeria. J. Fish Dis. 37:273–78 [Google Scholar]
  53. Karpov K, Haaker P, Taniguchi I, Rogers-Bennett L. 2000. Serial depletion and the collapse of the California abalone (Haliotis spp.) fishery. Workshop on Rebuilding Abalone Stocks in British Columbia A Campbell 11–12 Ottawa, Can: NRC Res. [Google Scholar]
  54. Kennedy CR, Hartvigsen R, Halvorsen O. 1991. The importance of fish stocking in the dissemination of parasites throughout a group of reservoirs. J. Fish Biol. 38:541–52 [Google Scholar]
  55. Kent ML. 2000. Marine netpen farming and infections with some unusual parasites. Int. J. Parasitol. 30:321–26 [Google Scholar]
  56. Kent ML, Kieser D. 2003. Avoidance of introduction of exotic pathogens with atlantic salmon reared in British Columbia. Biosecurity in Aquaculture Production Systems: Exclusion of Pathogens and Other Undesirables, ed. CS Lee, PJ O'Bryen 43–50 Baton Rouge, LA: World Aquac. Soc. [Google Scholar]
  57. Kent ML, Traxler GS, Kieser D, Richard J, Dawe SC. et al. 1998. Survey of salmonid pathogens in ocean-caught fishes in British Columbia, Canada. J. Aquat. Anim. Health 10:211–19 [Google Scholar]
  58. Kim Y, Powell EN. 2007. Distribution of parasites and pathologies in sentinel bivalves: NOAA status and trends “Mussel Watch” program. J. Shellfish Res. 26:1115–51 [Google Scholar]
  59. Krkošek M, Connors BM, Morton A, Lewis MA, Dill LM, Hilborn R. 2011. Effects of parasites from salmon farms on productivity of wild salmon. Proc. Natl. Acad. Sci. USA 108:14700–704 [Google Scholar]
  60. Krkošek M, Ford JS, Morton A, Lele S, Myers RA, Lewis MA. 2007. Declining wild salmon populations in relation to parasites from farm salmon. Science 318:1772–75 [Google Scholar]
  61. Kurath G, Winton J. 2011. Complex dynamics at the interface between wild and domestic viruses of finfish. Curr. Opin. Virol. 1:73–80 [Google Scholar]
  62. Kuris AM, Culver CS. 1999. An introduced sabellid polychaete pest infesting cultured abalones and its potential spread to other California gastropods. Invertebr. Biol. 118:391–403 [Google Scholar]
  63. Kuris AM, Lafferty KD. 1992. Modelling crustacean fisheries: effects of parasites on management strategies. Can. J. Fish. Aquat. Sci. 49:327–36 [Google Scholar]
  64. Lafferty KD. 2004. Fishing for lobsters indirectly increases epidemics in sea urchins. Ecol. Appl. 14:1566–73 [Google Scholar]
  65. Lafferty KD, Ben-Horin T. 2013. Abalone farm discharges the withering syndrome pathogen into the wild. Front. Microbiol. 4:373 [Google Scholar]
  66. Le Breton A, Grisez L, Sweetman J, Ollevier F. 1997. Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass, Dicentrarchus labrax (L.). J. Fish Dis. 20:145–51 [Google Scholar]
  67. Lightner DV. 2011. Virus diseases of farmed shrimp in the western hemisphere: a review. J. Invertebr. Pathol. 106:110–30 [Google Scholar]
  68. Lillehaug A, Lunestad BT, Grave K. 2003. Epidemiology of bacterial diseases in Norwegian aquaculture—a description based on antibiotic prescription data for the ten-year period 1991 to 2000. Dis. Aquat. Org. 53:115–25 [Google Scholar]
  69. Liu Y, Sumaila UR, Volpe JP. 2011. Potential ecological and economic impacts of sea lice from farmed salmon on wild salmon fisheries. Ecol. Econ. 70:1746–55 [Google Scholar]
  70. Lotz JM, Soto MA. 2002. Model of white spot syndrome virus (WSSV) epidemics in Litopenaeus vannamei. Dis. Aquat. Org. 50:199–209 [Google Scholar]
  71. Mackin JG. 1951. Histopathology of infection of Crassostrea virginica (Gmelin) by Dermocystidium marinum Mackin, Owen, and Collier. Bull. Mar. Sci. Gulf Caribb. 1:72–87 [Google Scholar]
  72. Mann R, Powell EN. 2007. Why oyster restoration goals in the Chesapeake Bay are not and probably cannot be achieved. J. Shellfish Res. 26:905–17 [Google Scholar]
  73. Mar. Harvest 2011. Annual report. Rep., Mar. Harvest, Bergen, Nor. http://hugin.info/209/R/1608160/510268.pdf
  74. Marino G, Azzuro E. 2001. Nodavirus in dusky grouper (Epinephelus marginatus Lowe 1834) of the natural marine reserve of Ustica, South Thyrrenian Sea. Biol. Mar. Mediterr. 8:837–41 [Google Scholar]
  75. Marty GD, Saksida SM, Quinn TJ. 2010. Relationship of farm salmon, sea lice, and wild salmon populations. Proc. Natl. Acad. Sci. USA 107:22599–604 [Google Scholar]
  76. Mayfield S, McGarvey R, Gorfine HK, Peeters H, Burch P, Sharma S. 2011. Survey estimates of fishable biomass following a mass mortality in an Australian molluscan fishery. J. Fish Dis. 34:287–302 [Google Scholar]
  77. McClelland G. 2002. The trouble with sealworms (Pseudoterranova decipiens species complex, Nematoda): a review. Parasitology 124:S183–203 [Google Scholar]
  78. McClennon C. 2004. The economic, environmental and technical implications on the development of Latin American shrimp farming MS Thesis, Tufts Univ., Medford, MA [Google Scholar]
  79. McVicar AH. 1997. Disease and parasite implications of the coexistence of wild and cultured Atlantic salmon populations. ICES J. Mar. Sci. 54:1093–103 [Google Scholar]
  80. Meyers TR, Korn D, Burton TM, Glass K, Follett JE. et al. 2003. Infectious hematopoietic necrosis virus (IHNV) in Alaskan sockeye salmon culture from 1973 to 2000: annual virus prevalences and titers in broodstocks compared with juvenile losses. J. Aquat. Anim. Health 15:21–30 [Google Scholar]
  81. Moore JD, Marshman BC, Chun CSY. 2011. Health and survival of red abalone Haliotis rufescens from San Miguel Island, California, USA, in a laboratory simulation of La Niña and El Niño conditions. J. Aquat. Anim. Health 23:78–84 [Google Scholar]
  82. Morales-Covarrubias MS, Nunan LM, Lightner DV, Mota-Urbina JC, Garza-Aguirre MC, Chávez-Sánchez MC. 1999. Prevalence of IHHNV in wild broodstock of Penaeus stylirostris from the upper Gulf of California, Mexico. J. Aquat. Anim. Health 11:296–301 [Google Scholar]
  83. Moran JDW, Whitaker DJ, Kent ML. 1999. A review of the myxosporean genus Kudoa Meglitsch, 1947, and its impact on the international aquaculture industry and commercial fisheries. Aquaculture 172:163–96 [Google Scholar]
  84. Morrison DB, Saksida S. 2013. Trends in antimicrobial use in marine harvest Canada salmon production in British Columbia (2003–2011). Can. Vet. J. 54:1160–63 [Google Scholar]
  85. Munday BL, Kwang J, Moody N. 2002. Betanodavirus infections of teleost fish: a review. J. Fish Dis. 25:127–42 [Google Scholar]
  86. Munroe DM, Hofmann EE, Powell EN, Klinck JM. 2013. How do shellfisheries influence genetic connectivity in metapopulations? A modeling study examining the role of lower size limits in oyster fisheries. Can. J. Fish. Aquat. Sci. 70:1813–28 [Google Scholar]
  87. Munroe DM, Klinck JM, Hofmann EE, Powell EN. 2012. The role of larval dispersal in metapopulation gene flow: local population dynamics matter. J. Mar. Res. 70:441–67 [Google Scholar]
  88. Panichareon B, Khawsak P, Deesukon W, Sukhumsirichart W. 2011. Multiplex real-time PCR and high-resolution melting analysis for detection of white spot syndrome virus, yellow-head virus, and Penaeus monodon densovirus in penaeid shrimp. J. Virol. Methods 178:16–21 [Google Scholar]
  89. Panzarin V, Fusaro A, Monne I, Cappellozza E, Patarnello P. et al. 2012. Molecular epidemiology and evolutionary dynamics of betanodavirus in southern Europe. Infect. Genet. Evol. 12:63–70 [Google Scholar]
  90. Paynter KT, Politano V, Lane HA, Allen SM, Meritt D. 2010. Growth rates and prevalence of Perkinsus marinus in restored oyster populations in Maryland. J. Shellfish Res. 29:309–17 [Google Scholar]
  91. Perkins FO. 1988. Structure of protistan parasites found in bivalve molluscs. Disease Processes in Marine Bivalve Molluscs WS Fisher 93–111 Bethesda, MD: Am. Fish. Soc. [Google Scholar]
  92. Perkins SE, Zwerner D, Dias R. 1975. The hyperparasite, Urosporidium spisuli sp. n. (Haplosporea), and its effects on the surf clam industry. J. Parasitol. 61:944–49 [Google Scholar]
  93. Peterson CH, Grabowski JH, Powers SP. 2003. Estimated enhancement of fish production resulting from restoring oyster reef habitat: quantitative valuation. Mar. Ecol. Prog. Ser. 264:249–64 [Google Scholar]
  94. Pike AW, Wadsworth SL. 2000. Sealice on salmonids: their biology and control. Adv. Parasitol. 44:233–337 [Google Scholar]
  95. Powell EN, Klinck JM, Ashton-Alcox KA, Hofmann EE, Morson J. 2012a. The rise and fall of Crassostrea virginica oyster reefs: the role of disease and fishing in their demise and a vignette on their management. J. Mar. Res. 70:505–58 [Google Scholar]
  96. Powell EN, Klinck JM, Ashton-Alcox KA, Kraeuter JN. 2009. Multiple stable reference points in oyster populations: implications for reference point-based management. Fish. Bull. 107:133–47 [Google Scholar]
  97. Powell EN, Klinck JM, Guo X, Ford SE, Bushek D. 2011. The potential for oysters, Crassostrea virginica, to develop resistance to Dermo disease in the field: evaluation using a gene-based population dynamics model. J. Shellfish Res. 30:685–712 [Google Scholar]
  98. Powell EN, Klinck JM, Guo X, Hofmann EE, Ford SE, Busheck D. 2012b. Can oysters Crassostrea virginica develop resistance to Dermo disease in the field: the impediment posed by climate cycles. J. Mar. Res. 70:309–55 [Google Scholar]
  99. Powell EN, Klinck JM, Hofmann EE. 1996. Modeling diseased oyster populations. II. Triggering mechanisms for Perkinsus marinus epizootics. J. Shellfish Res. 15:141–65 [Google Scholar]
  100. Rae GH. 2002. Sea louse control in Scotland, past and present. Pest Manag. Sci. 58:515–20 [Google Scholar]
  101. Ray SM, Chandler AC. 1955. Dermocystidium marinum, a parasite of oysters. Exp. Parasitol. 4:172–200 [Google Scholar]
  102. Raynard R, Wahli T, Vatsos I, Mortensen S. 2007. Review of disease interactions and pathogen exchange between farmed and wild finfish and shellfish in Europe Rep. 1655, VESO, Oslo, Nor. [Google Scholar]
  103. Revie CW, Gettinby G, Treasurer JW, Rae GH, Clark N. 2002. Temporal, environmental and management factors influencing the epidemiological patterns of sea lice (Lepeophtheirus salmonis) infestations on farmed Atlantic salmon (Salmo salar) in Scotland. Pest Manag. Sci. 58:576–84 [Google Scholar]
  104. Saksida SM. 2006. Infectious haematopoietic necrosis epidemic (2001 to 2003) in farmed Atlantic salmon Salmo salar in British Columbia. Dis. Aquat. Org. 72:213–23 [Google Scholar]
  105. Saksida SM, Gardner I, Kent ML. 2014. Transmission of infectious agents between wild and farmed fish. Diseases and Disorders of Finfish in Cage Culture PTK Woo, DW Bruno, LHS Lim Wallingford, UK: CABI [Google Scholar]
  106. Saksida SM, Morrison D, Sheppard M, Keith I. 2011. Sea lice management on salmon farms in British Columbia, Canada. Salmon Lice: An Integrated Approach to Understanding Parasite Abundance and Distribution S Jones, R Beamish 235–78 Chichester, UK: Wiley-Blackwell [Google Scholar]
  107. Salehi H. 2010. The economic impacts of WSSV on shrimp farming production and export in Iran. Aquat. Anim. Health 5:29–31 [Google Scholar]
  108. Sánchez-Mártinez JG, Aguirre-Guzmán G, Meíja-Ruíz H. 2007. White Spot Syndrome Virus in cultured shrimp: a review. Aquac. Res. 38:1339–54 [Google Scholar]
  109. Scholz T. 1999. Parasites in cultured and feral fish. Vet. Parasitol. 84:317–35 [Google Scholar]
  110. Seng LT. 1998. Grouper culture. Tropical Mariculture SS De Silva 423–48 San Diego, CA: Academic [Google Scholar]
  111. Sinderman CJ. 1984. Disease in marine aquaculture. Helgol. Meeresunters. 37:505–32 [Google Scholar]
  112. Sinnott R. 1998. Sea lice—watch out for the hidden costs. Fish Farmer 21:45–46 [Google Scholar]
  113. Smith VJ, Brown JH, Hauton C. 2003. Immunostimulation in crustaceans: Does it really protect against infection?. Fish Shellfish Immunol. 15:71–90 [Google Scholar]
  114. Soniat TM, Hofmann EE, Klinck JM, Powell EN. 2009. Differential modulation of eastern oyster (Crassostrea virginica) disease parasites by the El Niño-Southern Oscillation and the North Atlantic Oscillation. Int. J. Earth Sci. 98:99–114 [Google Scholar]
  115. Soniat TM, Klinck JM, Powell EN, Cooper N, Abdelguerfi M. et al. 2012. A shell-neutral modeling approach yields sustainable oyster harvest estimates: a retrospective analysis of the Louisiana state primary seed grounds. J. Shellfish Res. 31:1103–12 [Google Scholar]
  116. St-Hilaire S, Ribble CS, Stephen C, Anderson E, Kurath G, Kent ML. 2002. Epidemiological investigation of infectious hematopoietic necrosis virus in salt water net-pen reared Atlantic salmon in British Columbia, Canada. Aquaculture 212:49–67 [Google Scholar]
  117. St-Hilaire S, Ribble CS, Traxler GS, Davies T, Kent ML. 2001. Evidence for a carrier state of infectious hematopoietic necrosis virus in chinook salmon (Oncorhynchus tshawytscha). Dis. Aquat. Org. 46:173–79 [Google Scholar]
  118. Stiglitz JE. 1988. Economics of the Public Sector New York: Norton, 2nd ed.. [Google Scholar]
  119. Taylor D, Kahn R. 1995. Observations on the occurrence of Hematodinium sp. (Dinoflagellata: Syndinidae), the causative agent of bitter crab disease in Newfoundland snow crab (Chionecetes opilio). J. Invertebr. Pathol. 65:283–88 [Google Scholar]
  120. Traxler GS, Roome JR, Kent ML. 1993. Transmission of infectious hematopoietic necrosis virus in seawater. Dis. Aquat. Org. 16:111–14 [Google Scholar]
  121. Traxler GS, Roome JR, Lauda KA, LaPatra S. 1997. Appearance of infectious hematopoietic necrosis virus (IHNV) and neutralizing antibodies in sockeye salmon Onchorynchus nerka during their migration and maturation period. Dis. Aquat. Org. 28:31–38 [Google Scholar]
  122. Vendramin N, Patarnello P, Toffan A, Panzarin V, Cappellozza E. et al. 2013. Viral encephalopathy and retinopathy in groupers (Epinephelus spp.) in southern Italy: a threat for wild endangered species?. BMC Vet. Res. 9:20 [Google Scholar]
  123. Ward JR, Lafferty KD. 2004. The elusive baseline of marine disease: Are diseases in ocean ecosystems increasing?. PLoS Biol. 2:542–47 [Google Scholar]
  124. Whitaker DJ, Kent ML. 1991. Myxosporean Kudoa thyrsites: a cause of soft flesh in farm-reared Atlantic salmon. J. Aquat. Anim. Health 3:291–94 [Google Scholar]
  125. White VC, Morado JF, Crosson LM, Vadopalas B, Friedman CS. 2013. Development and validation of a quantitative PCR assay for Ichthyophonus spp. Dis. Aquat. Org. 104:69–81 [Google Scholar]
  126. Whittington RJ, Jones JB, Hine PM, Hyatt AD. 1997. Epizootic mortality in the pilchard Sardinops sagax neopilchardus in Australia and New Zealand in 1995. I. Pathology and epizootiology. Dis. Aquat. Org. 28:1–16 [Google Scholar]
  127. Willman Rolf, Kieran Kelleher, Arnason R, Franz N. 2009. The Sunken Billions: The Economic Justification for Fisheries Reform Washington, DC: World Bank and FAO (Food Agric. Organ. UN) [Google Scholar]
  128. Wood CL, Lafferty KD, Micheli F. 2010. Fishing out marine parasites? Impacts of fishing on rates of parasitism in the ocean. Ecol. Lett. 13:761–75 [Google Scholar]
  129. Zhiqin Y, Weiji W, Jie K, Jixun D. 2005. Isolation, cloning and sequencing of AFLP markers related to disease resistance trait in Fenneropenaeus chinensis. Chin. J. Oceanol. Limnol. 23:442–47 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015646
Loading
/content/journals/10.1146/annurev-marine-010814-015646
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error