1932

Abstract

The Gulf Stream carries the warm, poleward return flow of the wind-driven North Atlantic subtropical gyre and the Atlantic Meridional Overturning Circulation. This northward flow drives a significant meridional heat transport. Various lines of evidence suggest that Gulf Stream heat transport profoundly influences the climate of the entire Northern Hemisphere and, thus, Europe's climate on timescales of decades and longer. The Gulf Stream's influence is mediated through feedback processes between the ocean, atmosphere, and cryosphere. This review synthesizes paleoclimate archives, model simulations, and the instrumental record, which collectively suggest that decadal and longer-scale variability of the Gulf Stream's heat transport manifests in changes in European temperature, precipitation, and storminess. Given that anthropogenic climate change is projected to weaken the Atlantic Meridional Overturning Circulation, associated changes in European climate are expected. However, large uncertainty in the magnitude of the anticipated weakening undermines the predictability of the future climate in Europe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015656
2015-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010814-015656.html?itemId=/content/journals/10.1146/annurev-marine-010814-015656&mimeType=html&fmt=ahah

Literature Cited

  1. Arguez A, O'Brien JJ, Smith SR. 2009. Air temperature impacts over eastern North America and Europe associated with low-frequency North Atlantic SST variability. Int. J. Climatol. 29:1–10 [Google Scholar]
  2. Bacon S. 1997. Circulation and fluxes in the North Atlantic between Greenland and Ireland. J. Phys. Oceanogr. 27:1420–35 [Google Scholar]
  3. Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT. et al. 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–48 [Google Scholar]
  4. Berger WH. 1990. The Younger Dryas cold spell—a quest for causes. Glob. Planet. Change 3:219–37 [Google Scholar]
  5. Bjerknes J. 1964. Atlantic air-sea interaction. Adv. Geophys. 10:1–82 [Google Scholar]
  6. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N. 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–32 [Google Scholar]
  7. Boyle EA, Keigwin L. 1987. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330:35–40 [Google Scholar]
  8. Broecker WS. 2006. Was the Younger Dryas triggered by a flood?. Science 312:1146–48 [Google Scholar]
  9. Broecker WS, Bond G, Klas M, Bonani G, Wolfli W. 1990. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5:469–77 [Google Scholar]
  10. Bryden HL, Imawaki S. 2001. Ocean heat transport. Ocean Circulation and Climate: Observing and Modelling the Global Ocean G Siedler, J Church, J Gould 455–74 Int. Geophys 77 San Diego, CA: Academic [Google Scholar]
  11. Bryden HL, Roemmich DH, Church JA. 1991. Ocean heat-transport across 24°N in the Pacific. Deep-Sea Res. 38:297–324 [Google Scholar]
  12. Buckley MW, Ponte RM, Forget G, Heimbach P. 2014. Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Clim. 27:4996–5018 [Google Scholar]
  13. Clarke GKC, Leverington DW, Teller JT, Dyke AS. 2004. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat. Sci. Rev. 23:389–407 [Google Scholar]
  14. Clement A, Seager R. 1999. Climate and the tropical oceans. J. Clim. 12:3383–401 [Google Scholar]
  15. Dansgaard W, Clausen HB, Gundestrup N, Hammer CU, Johnsen SF. et al. 1982. A new Greenland deep ice core. Science 218:1273–77 [Google Scholar]
  16. DelSole T, Tippett MK, Shukla J. 2011. A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Clim. 24:909–26 [Google Scholar]
  17. Delworth TL, Mann ME. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 16:661–76 [Google Scholar]
  18. DiNezio PN, Gramer LJ, Johns WE, Meinen CS, Baringer MO. 2009. Observed interannual variability of the Florida Current: wind forcing and the North Atlantic oscillation. J. Phys. Oceanogr. 39:721–36 [Google Scholar]
  19. Dong S, Hautala SL, Kelly KA. 2007. Interannual variations in upper-ocean heat content and heat transport convergence in the western North Atlantic. J. Phys. Oceanogr. 37:2682–97 [Google Scholar]
  20. Dong S, Kelly KA. 2004. Heat budget in the Gulf Stream region: the importance of heat storage and advection. J. Phys. Oceanogr. 34:1214–31 [Google Scholar]
  21. Drijfhout S, van Oldenborgh GJ, Cimatoribus A. 2012. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns?. J. Clim. 25:8373–79 [Google Scholar]
  22. Eisenman I, Bitz CM, Tziperman E. 2009. Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography 24:PA4209 [Google Scholar]
  23. Fairbanks RG. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–42 [Google Scholar]
  24. Fasullo JT, Trenberth KE. 2008. The annual cycle of the energy budget. Part II: meridional structures and poleward transports. J. Clim. 21:2313–25 [Google Scholar]
  25. Folland CK, Parker DE, Kates FE. 1984. Worldwide marine temperature fluctuations 1856–1981. Nature 310:670–73 [Google Scholar]
  26. Gámiz-Fortis SR, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y. 2011. Variability of the monthly European temperature and its association with the Atlantic sea-surface temperature from interannual to multidecadal scales. Int. J. Climatol. 31:2115–40 [Google Scholar]
  27. Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–57 [Google Scholar]
  28. Ganachaud A, Wunsch C. 2003. Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J. Clim. 16:696–705 [Google Scholar]
  29. Greenwood DR, Wing SL. 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23:1044–48 [Google Scholar]
  30. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP. 2013. North Atlantic ocean control on surface heat flux on multidecadal timescales. Nature 499:464–67 [Google Scholar]
  31. Häkkinen S, Rhines PB, Worthen DL. 2011. Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334:655–59 [Google Scholar]
  32. Hansen B, Østerhus S. 2000. North Atlantic–Nordic Seas exchanges. Prog. Oceanogr. 45:109–208 [Google Scholar]
  33. Hansen J, Lebedeff S. 1987. Global trends of measured surface air temperature. J. Geophys. Res. 92:13345–72 [Google Scholar]
  34. Hasselmann K. 1976. Stochastic climate models: part I. Theory. Tellus 28:473–85 [Google Scholar]
  35. Herweijer C, Seager R, Winton M, Clement A. 2005. Why ocean heat transport warms the global mean climate. Tellus A 57:662–75 [Google Scholar]
  36. Holfort J, Siedler G. 2001. The meridional oceanic transports of heat and nutrients in the South Atlantic. J. Phys. Oceanogr. 31:5–29 [Google Scholar]
  37. Huybers P, Wunsch C. 2010. Paleophysical oceanography with an emphasis on transport rates. Annu. Rev. Mar. Sci. 2:1–34 [Google Scholar]
  38. Junge MM, Stephenson DB. 2003. Mediated and direct effects of the North Atlantic Ocean on winter temperatures in northwest Europe. Int. J. Climatol. 23:245–61 [Google Scholar]
  39. Kaneps AG. 1979. Gulf stream: velocity fluctuations during the late Cenozoic. Science 204:297–301 [Google Scholar]
  40. Kaspi Y, Schneider T. 2011. Winter cold of eastern continental boundaries induced by warm ocean waters. Nature 471:621–24 [Google Scholar]
  41. Kelly KA, Small RJ, Samelson RM, Qiu B, Joyce TM. et al. 2010. Western boundary currents and frontal air-sea interaction: Gulf Stream and Kuroshio Extension. J. Clim. 23:5644–67 [Google Scholar]
  42. Klein B, Molinari RL, Muller TJ, Siedler G. 1995. A transatlantic section at 14.5N: meridional volume and heat fluxes. J. Mar. Res. 53:929–57 [Google Scholar]
  43. Klein SA, Hartmann DL. 1993. The seasonal cycle of low stratiform clouds. J. Clim. 6:1587–1606 [Google Scholar]
  44. Knight JR. 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32:L20708 [Google Scholar]
  45. Kravtsov S, Spannagle C. 2008. Multidecadal climate variability in observed and modeled surface temperatures. J. Clim. 21:1104–21 [Google Scholar]
  46. Kushnir Y. 1994. Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Clim. 7:141–57 [Google Scholar]
  47. Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Nakamura H. et al. 2010. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review. J. Clim. 23:3249–81 [Google Scholar]
  48. Larsen JC, Sanford TB. 1985. Florida Current volume transports from voltage measurements. Science 227:302–4 [Google Scholar]
  49. Latif M, Roeckner E, Botzet M, Esch M, Haak H. et al. 2004. Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Clim. 17:1605–14 [Google Scholar]
  50. Lavin A, Bryden HL, Parrilla G. 1998. Meridional transport and heat flux variations in the subtropical North Atlantic. Glob. Atmos. Ocean Syst. 6:269–93 [Google Scholar]
  51. Levermann A, Bamber JL, Drijfhout S, Ganopolski A, Haeberli W. et al. 2011. Potential climatic transitions with profound impact on Europe. Clim. Change 110:845–78 [Google Scholar]
  52. Lozier MS, Roussenov V, Reed MSC, Williams RG. 2010. Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat. Geosci. 3:728–34 [Google Scholar]
  53. Lynch-Stieglitz J, Schmidt MW, Henry LG, Curry WB, Skinner LC. et al. 2014. Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nat. Geosci. 7:144–50 [Google Scholar]
  54. Macdonald AM. 1998. The global ocean circulation: a hydrographic estimate and regional analysis. Prog. Oceanogr. 41:281–382 [Google Scholar]
  55. Mann ME, Steinman BA, Miller SK. 2014. On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett. 41:3211–19 [Google Scholar]
  56. Marshall J, Andersson A, Bates N, Dewar W, Doney S. et al. 2009. The Climode field campaign: observing the cycle of convection and restratification over the Gulf Stream. Bull. Am. Meteorol. Soc. 90:1337–50 [Google Scholar]
  57. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A. et al. 2013. Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al. 383–464 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  58. McManus JF, Francois R, Gherardi J-M, Keigwin LD, Brown-Leger S. 2004. Collapse and rapid resumption of Atlantic Meridional Circulation linked to deglacial climate changes. Nature 428:834–37 [Google Scholar]
  59. Natl. Oceanogr. Cent., Univ. Miami, Atl. Oceanogr. Meteorol. Lab 2013. RAPID-MOC Updated Aug. 13, 2013, accessed April 13, 2014. http://www.rapid.ac.uk/rapidmoc
  60. Pinet PR, Popenoe P, Nelligan DF. 1981. Gulf Stream: reconstruction of Cenozoic flow patterns over the Blake Plateau. Geology 9:266–70 [Google Scholar]
  61. Rach O, Brauer A, Wilkes H, Sachse D. 2014. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7:109–12 [Google Scholar]
  62. Rahmstorf S. 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12:799–811 [Google Scholar]
  63. Rahmstorf S. 2002. Ocean circulation and climate during the past 120,000 years. Nature 419:207–14 [Google Scholar]
  64. Rayner D, Hirschi JJ-M, Kanzow T, Johns WE, Wright PG. et al. 2011. Monitoring the Atlantic meridional overturning circulation. Deep Sea Res. II 58:1744–53 [Google Scholar]
  65. Rhines PB, Hakkinen S, Josey SA. 2008. Is oceanic heat transport significant in the climate system?. Arctic–Subarctic Ocean Fluxes RR Dickson, J Meincke, PB Rhines 87–109 Dordrecht, Neth.: Springer-Verlag [Google Scholar]
  66. Rose BEJ, Ferreira D. 2012. Ocean heat transport and water vapor greenhouse in a warm equable climate: a new look at the low gradient paradox. J. Clim. 26:2117–36 [Google Scholar]
  67. Rossby T, Flagg CN, Donohue K, Sanchez-Franks A, Lillibridge J. 2014. On the long-term stability of Gulf Stream transport based on 20 years of direct measurements. Geophys. Res. Lett. 41:114–20 [Google Scholar]
  68. Rugenstein MAA, Winton M, Stouffer RJ, Griffies SM, Hallberg R. 2012. Northern high-latitude heat budget decomposition and transient warming. J. Clim. 26:609–21 [Google Scholar]
  69. Saha S, Moorthi S, Pan H-L, Wu X, Wang J. et al. 2010. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91:1015–57 [Google Scholar]
  70. Sato OT, Rossby T. 2000. Seasonal and low-frequency variability of the meridional heat flux at 36°N in the North Atlantic. J. Phys. Oceanogr. 30:606–21 [Google Scholar]
  71. Saunders PM, King BA. 1995. Oceanic fluxes on the WOCE A11 section. J. Phys. Oceanogr. 25:1942–58 [Google Scholar]
  72. Schlesinger ME, Ramankutty N. 1994. An oscillation in the global climate system of period 65–70 years. Nature 367:723–26 [Google Scholar]
  73. Schmitz WJ, McCartney MS. 1993. On the North Atlantic circulation. Rev. Geophys. 31:29–49 [Google Scholar]
  74. Seager R. 2006. The source of Europe's mild climate. Am. Sci. 94:334–41 [Google Scholar]
  75. Seager R, Battisti DS, Yin J, Gordon N, Naik N. et al. 2002. Is the Gulf Stream responsible for Europe's mild winters?. Q. J. R. Meteorol. Soc. 128:2563–86 [Google Scholar]
  76. Shakun JD, Carlson AE. 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev. 29:1801–16 [Google Scholar]
  77. Smethie WM, Fine RA. 2001. Rates of North Atlantic deep water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I 48:189–215 [Google Scholar]
  78. Speer KG, Holfort J, Reynard T, Siedler G. 1996. South Atlantic heat transport at 11°S. The South Atlantic: Present and Past Circulation G Wefer, WH Berger, G Siedler, DJ Webb 105–20 Berlin: Springer-Verlag [Google Scholar]
  79. Stocker TF, Qin D, Plattner G-K, Alexander LV, Allen SK. et al. 2013. Technical summary. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al. 33–115 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  80. Stommel H. 1958. The Gulf Stream: A Physical and Dynamical Description Berkeley: Univ. Calif. Press
  81. Stommel H. 1961. Thermohaline convection with two stable regimes of flow. Tellus 13:224–30 [Google Scholar]
  82. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ. et al. 2006. Investigating the cause of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19:1365–87 [Google Scholar]
  83. Sutton RT, Dong B. 2012. Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci. 5:788–92 [Google Scholar]
  84. Sutton RT, Hodson DLR. 2005. Atlantic Ocean forcing of North American and European summer climate. Science 309:115–18 [Google Scholar]
  85. Talley LD. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr. 33:530–60 [Google Scholar]
  86. Terray L. 2012. Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett. 39:L19712 [Google Scholar]
  87. Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ. et al. 2007. The 8.2 ka event from Greenland ice cores. Quat. Sci. Rev. 26:70–81 [Google Scholar]
  88. Ting M, Kushnir Y, Li C. 2014. North Atlantic multidecadal SST oscillation: external forcing versus internal variability. J. Mar. Syst. 133:27–38 [Google Scholar]
  89. Ting M, Kushnir Y, Seager R, Li C. 2009. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 22:1469–81 [Google Scholar]
  90. Trenberth KE, Caron JM. 2001. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 14:3433–43 [Google Scholar]
  91. Trenberth KE, Fasullo JT. 2008. An observational estimate of inferred ocean energy divergence. J. Phys. Oceanogr. 38:984–99 [Google Scholar]
  92. van der Swaluw E, Drijfhout SS, Hazeleger W. 2007. Bjerknes compensation at high northern latitudes: the ocean forcing the atmosphere. J. Clim. 20:6023–32 [Google Scholar]
  93. Vellinga M, Wood RA. 2007. Impacts of thermohaline circulation shutdown in the twenty-first century. Clim. Change 91:43–63 [Google Scholar]
  94. Williams RG, Roussenov V, Smith D, Lozier MS. 2014. Decadal evolution of ocean thermal anomalies in the North Atlantic: the effects of Ekman, overturning, and horizontal transport. J. Clim. 27:698–719 [Google Scholar]
  95. Winton M. 2003. On the climatic impact of ocean circulation. J. Clim. 16:2875–89 [Google Scholar]
  96. Winton M, Griffies SM, Samuels BL, Sarmiento JL, Frölicher TL. 2013. Connecting changing ocean circulation with changing climate. J. Clim. 26:2268–78 [Google Scholar]
  97. Winton M, Takahashi K, Held IM. 2009. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23:2333–44 [Google Scholar]
  98. Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ. 2012. Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat. Geosci. 5:313–17 [Google Scholar]
  99. Worthington LV. 1976. On the North Atlantic Circulation Baltimore, MD: Johns Hopkins Univ. Press
  100. Wunsch C. 2006. Abrupt climate change: an alternative view. Quat. Res. 65:191–203 [Google Scholar]
  101. Yulaeva E, Schneider N, Pierce DW, Barnett TP. 2001. Modeling of North Pacific climate variability forced by oceanic heat flux anomalies. J. Clim. 14:4027–46 [Google Scholar]
  102. Zelinka MD, Hartmann DL. 2012. Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Clim. 25:608–24 [Google Scholar]
  103. Zhang R. 2008. Coherent surface-subsurface fingerprint of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 35:L20705 [Google Scholar]
  104. Zhang R, Delworth TL, Sutton R, Hodson DLR, Dixon KW. et al. 2013. Have aerosols caused the observed Atlantic multidecadal variability?. J. Atmos. Sci. 70:1135–44 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015656
Loading
/content/journals/10.1146/annurev-marine-010814-015656
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error