The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through April 2014, with an emphasis on general trends, thought-provoking consequences, and new questions to address.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aller RC. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. J. Geol. 90:79–95 [Google Scholar]
  2. Aller RC, Rude PD. 1988. Complete oxidation of solid-phase sulfides by manganese and bacteria in anoxic marine-sediments. Geochim. Cosmochim. Acta 52:751–65 [Google Scholar]
  3. Arora T, Linde N, Revil A, Castermant J. 2007. Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data. J. Contam. Hydrol. 92:274–92 [Google Scholar]
  4. Baas Becking LGM. 1934. Geobiologie of inleiding tot de milieukunde The Hague, Neth: Van Stockum & Zoon [Google Scholar]
  5. Behrendt A, de Beer D, Stief P. 2013. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences 10:7509–23 [Google Scholar]
  6. Bockris JO, Reddy AKN. 1998. Modern Electrochemistry 1: Ionics New York: Plenum, 2nd ed.. [Google Scholar]
  7. Canfield DE, Thamdrup B, Hansen JW. 1993. The anaerobic degradation of organic-matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57:3867–83 [Google Scholar]
  8. Damgaard RL, Risgaard-Petersen N, Nielsen LP. 2014. Electric potential microelectrode for studies of electrobiogeophysics.. J. Geophys. Res. Biogeosci. 1191906–17 [Google Scholar]
  9. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. 2007. The Prokaryotes 7 Proteobacteria: Delta, Epsilon Subclass New York: Springer-Verlag [Google Scholar]
  10. Fenchel T, King GM, Blackburn H. 2012. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling Amsterdam: Elsevier, 3rd ed.. [Google Scholar]
  11. Glud RN. 2008. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4:243–89 [Google Scholar]
  12. Jørgensen BB, Kasten S. 2006. Sulfur cycling and methane oxidation. Marine Geochemistry HD Schulz, M Zabel 271–309 Berlin: Springer-Verlag [Google Scholar]
  13. Jørgensen BB, Postgate JR. 1982. Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Philos. Trans. R. Soc. Lond. B 298:543–61 [Google Scholar]
  14. Kelts K, McKenzie JA. 1982. Diagenetic dolomite formation in quaternary anoxic diatomaceous muds of Deep Sea Drilling Project Leg 64, Gulf of California. Initial Rep. Deep Sea Drill. Proj. 64:553–69 [Google Scholar]
  15. Larsen S, Nielsen LP, Schramm A. 2014. Cable bacteria associated with long distance electron transport in New England salt marsh sediment. Environ. Microbiol. Rep. In press. doi: 10.1111/1758-2229.12216 [Google Scholar]
  16. Malkin SY, Rao AMF, Seitaj D, Vasquez-Cardenas D, Zetsche E-M. et al. 2014. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J. 8:1843–54 [Google Scholar]
  17. Marzocchi U, Trojan D, Larsen S, Meyer LR, Revsbech NP. et al. 2014. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J 8:1682–90 [Google Scholar]
  18. Meister P, Gutjahr M, Frank M, Bernasconi SM, Vasconcelos C, McKenzie JA. 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology 39:563–66 [Google Scholar]
  19. Meister P, McKenzie JA, Vasconcelos C, Bernasconi S, Frank M. et al. 2007. Dolomite formation in the dynamic deep biosphere: results from the Peru Margin. Sedimentology 54:1007–31 [Google Scholar]
  20. Mussmann M, Schulz HN, Strotmann B, Kjaer T, Nielsen LP. et al. 2003. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ. Microbiol. 5:523–33 [Google Scholar]
  21. Naudet V, Revil A, Bottero JY, Begassat P. 2003. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys. Res. Lett. 30:2091 [Google Scholar]
  22. Naudet V, Revil A, Rizzo E, Bottero JY, Begassat P. 2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrol. Earth Syst. Sci. 8:8–22 [Google Scholar]
  23. Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M. 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–74 [Google Scholar]
  24. Pfeffer C, Larsen S, Song J, Dong MD, Besenbacher F. et al. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–21 [Google Scholar]
  25. Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB. 2007. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J. 1:341–53 [Google Scholar]
  26. Reguera G. 2012. Bacterial power cords. Nature 491:201–2 [Google Scholar]
  27. Revil A. 2010. Comment on “Review of self-potential methods in hydrogeophysics” by L. Jouniaux et al. [C. R. Geoscience 341 2009 928–936]. C. R. Geosci. 342:807–9 [Google Scholar]
  28. Revil A, Karaoulis M, Johnson T, Kemna A. 2012. Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol. J. 20:617–58 [Google Scholar]
  29. Revil A, Mendonca CA, Atekwana EA, Kulessa B, Hubbard SS, Bohlen KJ. 2010. Understanding biogeobatteries: where geophysics meets microbiology. J. Geophys. Res. 115:G00G02 [Google Scholar]
  30. Risgaard-Petersen N, Damgaard LR, Revil A, Nielsen LP. 2014. Mapping electron sources and sinks in a marine biogeobattery. J. Geophys. Res. Biogeosci. 119:1475–86 [Google Scholar]
  31. Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. 2012. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim. Cosmochim. Acta 92:1–13 [Google Scholar]
  32. Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D'Hondt S. 2012. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336:922–25 [Google Scholar]
  33. Sato M, Mooney HM. 1960. The electrochemical mechanism of sulfide self-potentials. Geophysics 1:226–49 [Google Scholar]
  34. Sayama M. 2011. Seasonal dynamics of sulfide oxidation processes in Tokyo Bay dead zone sediment Presented at Goldschmidt 2011: Earth, Life, and Fire, Prague, Aug 14–19 [Google Scholar]
  35. Sayama M, Risgaard-Petersen N, Nielsen LP, Fossing H, Christensen PB. 2005. Impact of bacterial NO3 transport on sediment biogeochemistry.. Appl. Environ. Microbiol. 71:7575–77 [Google Scholar]
  36. Schauer R, Risgaard-Petersen N, Kasper U, Kjeldsen KU, Tataru Bjerg JJ. et al. 2014. Succession of cable bacteria and electric currents in marine sediment. ISME J 8:1314–22 [Google Scholar]
  37. Schippers A, Jørgensen BB. 2002. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim. Cosmochim. Acta 66:85–92 [Google Scholar]
  38. Schneider RR, Schultz HD, Hensen C. 2006. Marine carbonates: their formation and destruction. Marine Geochemistry HD Schulz, M Zabel 311–37 Berlin: Springer-Verlag [Google Scholar]
  39. Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemotropic anaerobic bacteria. Bacteriol. Rev 41:100–80 [Google Scholar]
  40. Ullman WJ, Aller RC. 1982. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr 27:552–56 [Google Scholar]
  41. Walter LM, Bischof SA, Patterson WP, Lyons TW, O'Nions RK. et al. 1993. Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. Philos. Trans. R. Soc. Lond. A 344:27–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error