1932

Abstract

Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015717
2016-01-03
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-010814-015717.html?itemId=/content/journals/10.1146/annurev-marine-010814-015717&mimeType=html&fmt=ahah

Literature Cited

  1. Ahlnäs K, Royer TC, George TH. 1987. Multiple dipole eddies in the Alaskan Coastal Current detected with Landsat thematic mapper data. J. Geophys. Res. 92:13041–47 [Google Scholar]
  2. Allen JS. 1980. Models of wind-driven currents on the continental shelf. Annu. Rev. Fluid Mech. 12:389–433 [Google Scholar]
  3. Allen JS, Bane J, Brink KH, Brooks D, Brown W. et al. 1988. Coastal physical oceanography: towards a national plan Report of a meeting of the coastal physical oceanography community held January 23–26, 1988, in Gulf Park, MS, sponsored by the National Science Foundation
  4. Allen JS, Newberger PA. 1996. Downwelling circulation on the Oregon continental shelf. Part I: response to idealized forcing. J. Phys. Oceanogr. 26:2011–35 [Google Scholar]
  5. Allen JS, Newberger PA, Federiuk J. 1995. Upwelling circulation on the Oregon continental shelf. Part I: response to idealized forcing. J. Phys. Oceanogr. 25:1843–66 [Google Scholar]
  6. Allen SE, Durrieu de Madron X. 2009. A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci. 5:607–20 [Google Scholar]
  7. Badan-Dangon A, Brink KH, Smith RL. 1986. On the dynamical structure of the midshelf water column off northwest Africa. Cont. Shelf Res. 5:629–44 [Google Scholar]
  8. Badin G, Williams RG, Holt JT, Fernand LJ. 2009. Are mesoscale eddies in shelf seas formed by baroclinic instability of tidal fronts?. J. Geophys. Res. 114:C10021 [Google Scholar]
  9. Barth JA. 1989a. Stability of a coastal upwelling front. Part 1: model development and stability theorem. J. Geophys. Res. 94:10844–56 [Google Scholar]
  10. Barth JA. 1989b. Stability of a coastal upwelling front. Part 2: model results and comparison with observations. J. Geophys. Res. 94:10857–83 [Google Scholar]
  11. Barth JA. 1994. Short-wavelength instabilities on coastal jets and fronts. J. Geophys. Res. 99:16095–115 [Google Scholar]
  12. Barth JA, Pierce SD, Cowles TJ. 2005. Mesoscale structure and its seasonal evolution in the northern California Current System. Deep-Sea Res. II 52:5–28 [Google Scholar]
  13. Beckmann A, Haidvogel DB. 1997. A numerical simulation of flow at Fieberling Guyot. J. Geophys. Res. 102:5595–614 [Google Scholar]
  14. Brink KH. 1995. Tidal and lower frequency currents above Fieberling Guyot. J. Geophys. Res. 100:10817–32 [Google Scholar]
  15. Brink KH. 1998. Deep-sea forcing and exchange processes. The Sea 10 The Global Coastal Ocean: Processes and Methods KH Brink, AR Robinson 151–67 New York: Wiley & Sons [Google Scholar]
  16. Brink KH. 2011. Topographic rectification in a stratified ocean. J. Mar. Res. 68:337–68 [Google Scholar]
  17. Brink KH. 2012. Buoyancy arrest and cross-isobath transport. J. Phys. Oceanogr. 42:644–58 [Google Scholar]
  18. Brink KH. 2013. Instability of a tidal mixing front in the presence of realistic tides and mixing. J. Mar. Res. 71:227–52 [Google Scholar]
  19. Brink KH. 2016. Continental shelf baroclinic instability 1: relaxation from upwelling or downwelling. J. Phys. Oceanogr. In press
  20. Brink KH, Cherian DA. 2013. Instability of an idealized tidal mixing front: symmetric instabilities and frictional effects. J. Mar. Res. 71:425–50 [Google Scholar]
  21. Brink KH, Lentz SJ. 2010. Buoyancy arrest and bottom Ekman transport. Part I: steady flow. J. Phys. Oceanogr. 40:621–35 [Google Scholar]
  22. Brink KH, Seo H. 2016. Continental shelf baroclinic instability 2: oscillating wind forcing. J. Phys. Oceanogr. In press
  23. Brooks DA, Bane JM. 1983. Gulf Stream meanders off North Carolina during winter and summer 1979. J. Geophys. Res. 88:4633–50 [Google Scholar]
  24. Chapman DC. 2000. A numerical study of the adjustment of a narrow stratified current over a sloping bottom. J. Phys. Oceanogr. 30:2927–40 [Google Scholar]
  25. Chapman DC. 2002. Deceleration of a finite-width, stratified current over a sloping bottom: frictional spindown or buoyancy shutdown?. J. Phys. Oceanogr. 32:336–52 [Google Scholar]
  26. Chapman DC, Gawarkiewicz G. 1995. Offshore transport of dense shelf water in the presence of a submarine canyon. J. Geophys. Res. 100:13373–87 [Google Scholar]
  27. Chapman DC, Gawarkiewicz G. 1997. Shallow convection and buoyancy equilibration in an idealized coastal polynya. J. Phys. Oceanogr. 27:555–66 [Google Scholar]
  28. Chapman DC, Lentz SJ. 1997. Adjustment of stratified flow over a sloping bottom. J. Phys. Oceanogr. 27:340–56 [Google Scholar]
  29. Chaudhuri AH, Bisagni JJ, Gangopadhyay A. 2009. Shelf water entrainment by Gulf Stream warm-core rings between 75°W and 50°W during 1978–1999. Cont. Shelf Res. 29:393–406 [Google Scholar]
  30. Chen C, Beardsley RC. 1995. A numerical study of stratified tidal rectification over finite-amplitude banks. Part I: symmetric banks. J. Phys. Oceanogr. 25:2090–110 [Google Scholar]
  31. Chern C-S, Wang J, Wang D-P. 1990. The exchange of Kuroshio and East China Sea shelf water. J. Geophys. Res. 95:16017–23 [Google Scholar]
  32. Clarke AJ. 1977. Observational and numerical evidence for wind-forced coastal-trapped waves. J. Phys. Oceanogr. 7:231–47 [Google Scholar]
  33. Clarke AJ. 1991. The dynamics of barotropic tides over the continental shelf and slope (review). Tidal Hydrodynamics BB Parker 79–108 New York: Wiley & Sons [Google Scholar]
  34. Clarke AJ. 2008. An Introduction to the Dynamics of El Niño and the Southern Oscillation London: Academic
  35. Clarke AJ, Van Gorder S. 1994. On ENSO coastal currents and sea levels. J. Phys. Oceanogr. 24:661–80 [Google Scholar]
  36. Cornejo-Rodriguez M, Enfield DB. 1987. Propagation and forcing of high-frequency sea-level variability along the west coast of South America. J. Geophys. Res. 92:14323–34 [Google Scholar]
  37. Cowles T, Delaney J, Orcutt J, Weller R. 2010. The Ocean Observatories Initiative: sustained ocean observing across a range of spatial scales. Mar. Technol. Soc. J. 44:54–64 [Google Scholar]
  38. Csanady GT. 1978. The arrested topographic wave. J. Phys. Oceanogr. 8:47–62 [Google Scholar]
  39. Dalrymple RA, MacMahan JH, Reniers AJHM, Nelko V. 2011. Rip currents. Annu. Rev. Fluid Mech. 43:551–81 [Google Scholar]
  40. Davis CS, Thwaites FT, Gallager SM, Hu Q. 2005. A three-axis fast-tow digital plankton recorder for rapid surveys of plankton taxa and hydrography. Limnol. Oceanogr. Methods 3:59–74 [Google Scholar]
  41. Dever EP. 1997. Subtidal velocity correlation scales on the northern California shelf. J. Geophys. Res. 102:8555–72 [Google Scholar]
  42. Durski SM, Allen JS. 2005. Finite-amplitude evolution of instabilities associated with the coastal upwelling front. J. Phys. Oceanogr. 35:1606–28 [Google Scholar]
  43. Ekman VW. 1905. On the influence of the Earth's rotation on ocean currents. Arch. Math. Astron. Phys. 2:1–52 [Google Scholar]
  44. Fewings M, Lentz SJ, Fredericks J. 2008. Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr. 38:2358–78 [Google Scholar]
  45. Flagg CN, Beardsley RC. 1978. On the stability of the shelf water/slope water front south of New England. J. Geophys. Res. 83:4623–31 [Google Scholar]
  46. Ford WL, Longard JR, Banks RE. 1952. On the nature, occurrence and origin of cold, low-salinity water along the edge of the Gulf Stream. J. Mar. Res. 11:281–93 [Google Scholar]
  47. Franks PJS, Chen C. 1996. Plankton production in tidal fronts: a model of Georges Bank in summer. J. Mar. Res. 54:631–51 [Google Scholar]
  48. Garrett C, MacCready P, Rhines PB. 1993. Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping bottom. Annu. Rev. Fluid Mech. 25:291–324 [Google Scholar]
  49. Garvine RC, Wong K-C, Gawarkiewicz G. 1989. Quantitative properties of shelfbreak eddies. J. Geophys. Res. 94:14475–83 [Google Scholar]
  50. Gawarkiewicz G, Bahr F, Brink KH, Beardsley RC, Caruso M. et al. 2004. A large-amplitude meander of the shelfbreak front during summer south of New England: observations from the shelfbreak PRIMER experiment. J. Geophys. Res. 109:C03006 [Google Scholar]
  51. Gill AE, Clarke AJ. 1974. Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res. 21:325–45 [Google Scholar]
  52. Gill AE, Schumann EH. 1974. The generation of long shelf waves by the wind. J. Phys. Oceanogr. 4:83–90 [Google Scholar]
  53. Glenn SM, Ebbesmeyer CC. 1994. The structure and propagation of a Gulf Stream frontal eddy along the North Carolina shelf break. J. Geophys. Res. 99:5029–46 [Google Scholar]
  54. Guerrero RA, Piola AR, Fenco H, Matano RP, Combes V. et al. 2014. The salinity signature of the cross-shelf exchanges in the southwestern Atlantic Ocean: satellite observations. J. Geophys. Res. 119:7794–810 [Google Scholar]
  55. Gula J, Molemaker MJ, McWilliams JC. 2015. Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr. 45:690–715 [Google Scholar]
  56. Hasselmann K. 1970. Wave-driven inertial oscillations. Geophys. Fluid Dyn. 1:463–502 [Google Scholar]
  57. Holloway G. 2009. Entropic forces in geophysical fluid dynamics. Entropy 11:360–83 [Google Scholar]
  58. Hong BG, Sturgis W, Clarke AJ. 2000. Sea level on the U.S. east coast: decadal variability caused by open ocean wind-curl forcing. J. Phys. Oceanogr. 30:2088–98 [Google Scholar]
  59. Hsueh Y, Lie H-J, Ichikawa H. 1996. On the branching of the Kuroshio west of Kyushu. J. Geophys. Res. 101:3851–58 [Google Scholar]
  60. Hsueh Y, O'Brien JJ. 1971. Steady coastal upwelling induced by and along-shore current. J. Phys. Oceanogr. 1:180–86 [Google Scholar]
  61. Huthnance JM. 1973. Tidal current asymmetries over the Norfolk Sandbanks. Estuar. Coast. Mar. Sci. 1:89–99 [Google Scholar]
  62. Huthnance JM. 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Prog. Oceanogr. 35:353–431 [Google Scholar]
  63. Huyer A, Smith RL, Fleischbein J. 2002. The coastal ocean off Oregon and Northern California during the 1997–1998 El Niño. Prog. Oceanogr. 54:311–41 [Google Scholar]
  64. Joyce TM, Bishop KB, Brown OB. 1992. Observations of offshore shelf water transport induced by a warm-core ring. Deep-Sea Res. 39:S97–113 [Google Scholar]
  65. Kim SY, Terrill EJ, Cornuelle BD, Jones B, Washburn L. et al. 2011. Mapping the U.S. west coastal surface circulation: a multiyear analysis of high-frequency radar observations. J. Geophys. Res. 116:C03011 [Google Scholar]
  66. Kirincich AR, dePaolo R, Terrill E. 2012. Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Ocean. Technol. 29:1377–90 [Google Scholar]
  67. Kundu PK, Allen JS. 1976. Some three-dimensional characteristics of low-frequency current fluctuations near the Oregon coast. J. Phys. Oceanogr. 6:181–99 [Google Scholar]
  68. Lee C, Brink KH. 2010. Shelf edge variability over Georges Bank: winter and summer. 1997. J. Geophys. Res. 115:C08008 [Google Scholar]
  69. Lee TN, Yoder JA, Atkinson LP. 1991. Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. J. Geophys. Res. 96:22191–205 [Google Scholar]
  70. Lentz SJ. 1987. A heat budget for the northern California shelf during CODE-2. J. Geophys. Res. 92:14491–509 [Google Scholar]
  71. Lentz SJ. 2004. The response of buoyant coastal plumes to upwelling-favorable winds. J. Phys. Oceanogr. 34:2458–69 [Google Scholar]
  72. Lentz SJ. 2008. Observations and a model of the mean circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 38:1203–21 [Google Scholar]
  73. Lentz SJ. 2010. The mean along-isobath heat and salt balances over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 40:934–48 [Google Scholar]
  74. Lentz SJ, Butman B, Harris C. 2014. The vertical structure of the circulation and dynamics in Hudson Shelf Valley. J. Geophys. Res. 119:3694–713 [Google Scholar]
  75. Lentz SJ, Chapman DC. 2004. The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr. 34:2444–57 [Google Scholar]
  76. Lentz SJ, Fewings M. 2012. The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci. 4:317–44 [Google Scholar]
  77. Lentz SJ, Fewings M, Howd P, Fredericks J, Hathaway K. 2008. Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr. 38:2341–57 [Google Scholar]
  78. Lentz SJ, Guza RT, Elgar S, Fedderson F, Herbers THC. 1999. Momentum balances on the North Carolina inner shelf. J. Geophys. Res. 104:18205–26 [Google Scholar]
  79. Lentz SJ, Trowbridge JH. 1991. The bottom boundary layer over the northern California shelf. J. Phys. Oceanogr. 21:1186–201 [Google Scholar]
  80. Loder JW. 1980. Topographic rectification on the sides of Georges Bank. J. Phys. Oceanogr. 10:1399–416 [Google Scholar]
  81. Loder JW, Drinkwater KF, Oakey NS, Horne EPW. 1993. Circulation, hydrographic structure and mixing at tidal fronts: the view from Georges Bank. Philos. Trans. R. Soc. Lond. A 343:447–60 [Google Scholar]
  82. Loder JW, Wright DG. 1985. Tidal rectification and frontal circulation on the sides of Georges Bank. J. Mar. Res. 43:581–604 [Google Scholar]
  83. Lozier MS, Reed MSC. 2005. The influence of topography on the stability of shelfbreak fronts. J. Phys. Oceanogr. 35:1023–36 [Google Scholar]
  84. Luther ME, Bane JM Jr. 1985. Mixed instabilities in the Gulf Stream over the continental slope. J. Phys. Oceanogr. 15:3–23 [Google Scholar]
  85. Maas LRM, Zimmerman JTF. 1989. Tide-topography interactions in a stratified shelf sea II. Bottom trapped internal tides and baroclinic residual currents. Geophys. Astrophys. Fluid Dyn. 45:37–69 [Google Scholar]
  86. Mackas DL, Strub PT, Thomas A, Montecino V. 2006. Eastern ocean boundaries pan-regional overview. The Sea 14A The Global Coastal Ocean AR Robinson, KH Brink 21–25 Cambridge, MA: Harvard Univ. Press [Google Scholar]
  87. Malone TC, Cole M. 2000. Toward a global scale coastal ocean observing system. Oceanography 13:17–11 [Google Scholar]
  88. Merryfield WJ, Holloway G. 1999. Eddy fluxes and topography in stratified quasi-geostrophic models. J. Fluid Mech. 380:59–80 [Google Scholar]
  89. Mertz G, El-Sabh MI, Proulx D, Condal AR. 1988. Instability of a buoyancy-driven coastal jet: the Gaspé Current and its St. Lawrence precursor. J. Geophys. Res. 93:6885–93 [Google Scholar]
  90. Middleton JF, Ramsden D. 1996. The evolution of the bottom boundary layer on the sloping continental shelf: a numerical study. J. Geophys. Res. 101:18061–77 [Google Scholar]
  91. Mitchum GT, Clarke AJ. 1986. The frictional nearshore response to forcing by synoptic scale winds. J. Phys. Oceanogr. 16:934–46 [Google Scholar]
  92. Moline MA, Blackwell SM, von Alt C, Allen B, Austin T. et al. 2005. Remote environmental monitoring units: an autonomous vehicle for characterizing coastal environments. J. Atmos. Ocean. Technol. 22:1797–808 [Google Scholar]
  93. Moore TS, Mullagh KM, Holyoke RR, Madison AS, Yücel M, Luther GW III. 2009. Marine chemical technology and sensors for marine waters: potentials and limits. Annu. Rev. Mar. Sci. 1:91–115 [Google Scholar]
  94. Paduan JD, Washburn L. 2013. High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci. 5:115–36 [Google Scholar]
  95. Pedlosky J. 1974. Longshore currents, upwelling and bottom topography. J. Phys. Oceanogr. 4:214–26 [Google Scholar]
  96. Pedlosky J. 1979. Geophysical Fluid Dynamics New York: Springer-Verlag
  97. Pringle JM. 2001. Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling. J. Geophys. Res. 106:2589–604 [Google Scholar]
  98. Pringle JM, Dever EP. 2009. Dynamics of wind-driven upwelling and relaxation between Monterey Bay and Point Arena: local-, regional-, and gyre-scale controls. J. Geophys. Res. 114:C07003 [Google Scholar]
  99. Rivas D, Samelson RM. 2011. A numerical modeling study of the upwelling source waters along the Oregon coast during 2005. J. Phys. Oceanogr. 41:88–112 [Google Scholar]
  100. Robinson IS. 1981. Tidal vorticity and residual circulation. Deep-Sea Res. A 28:195–212 [Google Scholar]
  101. Roughan M, Garfield N, Largier J, Dever EP, Dorman C. et al. 2006. Transport and retention in an upwelling region: the role of across-shelf structure. Deep-Sea Res. II 53:2931–55 [Google Scholar]
  102. Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ. 2004. Underwater gliders for ocean research. Mar. Technol. Soc. J. 38:73–84 [Google Scholar]
  103. Salmon R, Holloway G, Hendershott MC. 1976. The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech. 75:691–703 [Google Scholar]
  104. Sandstrom H, Oakey NS. 1995. Dissipation in internal tides and solitary waves. J. Phys. Oceanogr. 25:604–14 [Google Scholar]
  105. Savidge DK, Savidge WB. 2014. Seasonal export of South Atlantic and Mid-Atlantic Bight shelf waters at Cape Hatteras. Cont. Shelf Res. 74:50–59 [Google Scholar]
  106. Simpson JH, James ID. 1986. Coastal and estuarine fronts. Baroclinic Processes on Continental Shelves CNK Mooers 63–94 Washington, DC: Am. Geophys. Union [Google Scholar]
  107. Smith RL. 1981. A comparison of the structure and variability of the flow field in three coastal upwelling regions: Oregon, northwest Africa and Peru. Coastal Upwelling FA Richards 107–118 Washington, DC: Am. Geophys. Union [Google Scholar]
  108. Smith RL. 1983. Peru coastal currents during El Niño: 1976 and 1982. Science 221:1397–99 [Google Scholar]
  109. Spall MA. 2013. Dense water formation around islands. J. Geophys. Res. 118:2507–19 [Google Scholar]
  110. St. Maurice JP, Veronis G. 1975. A multi-scaling analysis of the spin-up problem. J. Fluid Mech. 68:417–45 [Google Scholar]
  111. Steele JH, Ruzicka JJ. 2011. Constructing end-to-end models using ECOPATH data. J. Mar. Syst. 87:227–38 [Google Scholar]
  112. Stern ME, Shen CY. 1976. Displacement and rectification of planetary fluids. Geophys. Fluid Dyn. 7:81–118 [Google Scholar]
  113. Thorade H. 1909. Über die Kalifornische Meeresströmungen, Oberflächentemperaturen und Strömungen an der Westküste Nordamerikas. Ann. Hydrogr. Marit. Meteorol. 37:17–34, 63–77 [Google Scholar]
  114. Tilburg CE. 2003. Across-shelf transport on a continental shelf: Do across-shelf winds matter?. J. Phys. Oceanogr. 16:1165–78 [Google Scholar]
  115. Trowbridge JH, Lentz SJ. 1991. Asymmetric behavior of an oceanic boundary layer above a sloping bottom. J. Phys. Oceanogr. 21:1171–85 [Google Scholar]
  116. Trowbridge JH, Lentz SJ. 1998. Dynamics of the bottom boundary layer on the northern California shelf. J. Phys. Oceanogr. 28:2075–93 [Google Scholar]
  117. Vélez-Belchí P, Centurioni LR, Lee D-K, Jan S, Niiler PP. 2013. Eddy induced Kuroshio intrusions onto the continental shelf of the East China Sea. J. Mar. Res. 71:83–108 [Google Scholar]
  118. Winant CD. 1983. Longshore coherence of currents on the southern California shelf during the summer. J. Phys. Oceanogr. 13:54–64 [Google Scholar]
  119. Young WR, Rhines PB, Garrett CJR. 1982. Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr. 12:515–27 [Google Scholar]
  120. Zimmermann JTF. 1980. Vorticity transfer by tidal currents over irregular topography. J. Mar. Res. 38:601–30 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015717
Loading
/content/journals/10.1146/annurev-marine-010814-015717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error