We review the physics of near-inertial waves (NIWs) in the ocean and the observations, theory, and models that have provided our present knowledge. NIWs appear nearly everywhere in the ocean as a spectral peak at and just above the local inertial period , and the longest vertical wavelengths can propagate at least hundreds of kilometers toward the equator from their source regions; shorter vertical wavelengths do not travel as far and do not contain as much energy, but lead to turbulent mixing owing to their high shear. NIWs are generated by a variety of mechanisms, including the wind, nonlinear interactions with waves of other frequencies, lee waves over bottom topography, and geostrophic adjustment; the partition among these is not known, although the wind is likely the most important. NIWs likely interact strongly with mesoscale and submesoscale motions, in ways that are just beginning to be understood.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alford MH. 2001. Internal swell generation: the spatial distribution of energy flux from the wind to mixed-layer near-inertial motions. J. Phys. Oceanogr. 31:2359–68 [Google Scholar]
  2. Alford MH. 2003a. Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature 423:159–63 [Google Scholar]
  3. Alford MH. 2003b. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett. 30:1424–27 [Google Scholar]
  4. Alford MH. 2008. Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett. 35:L15602 [Google Scholar]
  5. Alford MH. 2010. Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr. 40:2643–60 [Google Scholar]
  6. Alford MH, Cronin MF, Klymak JM. 2012. Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr. 42:889–909 [Google Scholar]
  7. Alford MH, Gregg MC. 2001. Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res. 106:16947–68 [Google Scholar]
  8. Alford MH, MacKinnon JA, Zhao Z, Pinkel R, Klymak J, Peacock T. 2007. Internal waves across the Pacific. Geophys. Res. Lett. 34:L24601 [Google Scholar]
  9. Alford MH, Peacock T, MacKinnon JA, Nash JD, Buijsman M. et al. 2015. The formation and fate of internal waves in the South China Sea. Nature 521:65–73 [Google Scholar]
  10. Alford MH, Shcherbina AY, Gregg MC. 2013. Observations of near-inertial internal gravity waves radiating from a frontal jet. J. Phys. Oceanogr. 43:1225–39 [Google Scholar]
  11. Alford MH, Whitmont M. 2007. Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr. 37:2022–37 [Google Scholar]
  12. Anderson DLT, Gill AE. 1979. Beta dispersion of inertial waves. J. Geophys. Res. 84:1836–42 [Google Scholar]
  13. Arbic B, Shriver J, Hogan P, Hurlburt H, McClean J. et al. 2009. Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res. 114:C02024 [Google Scholar]
  14. Balmforth NJ, Llewellyn Smith SG, Young WR. 1998. Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res. 56:1–40 [Google Scholar]
  15. Balmforth NJ, Young WR. 1999. Radiative damping of near-inertial oscillations in the mixed layer. J. Mar. Res. 57:561–84 [Google Scholar]
  16. Brown E, Owens WB. 1981. Observations of the horizontal interactions between the internal wave field and the mesoscale flow. J. Phys. Oceanogr. 11:1474–80 [Google Scholar]
  17. Buhler O, McIntyre M. 2005. Wave capture and wave-vortex duality. J. Fluid Mech. 534:67–96 [Google Scholar]
  18. Cairns JL, Williams GO. 1976. Internal wave observations from a midwater float, 2. J. Geophys. Res. 81:1943–50 [Google Scholar]
  19. Carter GS, Gregg MC. 2006. Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr. 36:1136–47 [Google Scholar]
  20. Chaigneau A, Pizarro O, Rojas W. 2008. Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett. 35:L13603 [Google Scholar]
  21. Chinn BS, Alford MH, Girton JB. 2012. Observations of internal waves and parametric subharmonic instability in the Philippines archipelago. J. Geophys. Res. 117:C05019 [Google Scholar]
  22. Danioux E, Klein P, Riviere P. 2008. Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J. Phys. Oceanogr. 38:2224–41 [Google Scholar]
  23. D'Asaro EA. 1985. The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr. 15:1043–59 [Google Scholar]
  24. D'Asaro EA. 1989. The decay of wind-forced mixed layer inertial oscillations due to the β effect. J. Geophys. Res 94:2045–56 [Google Scholar]
  25. D'Asaro EA. 1995a. Upper-ocean inertial currents forced by a strong storm. Part II: modeling. J. Phys. Oceanogr. 25:2937–52 [Google Scholar]
  26. D'Asaro EA. 1995b. Upper-ocean inertial currents forced by a strong storm. Part III: interaction of inertial currents and mesoscale eddies. J. Phys. Oceanogr. 25:2953–58 [Google Scholar]
  27. D'Asaro EA, Eriksen CE, Levine MD, Niiler P, Paulson CA, Meurs PV. 1995. Upper-ocean inertial currents forced by a strong storm. Part I: data and comparisons with linear theory. J. Phys. Oceanogr. 25:2909–36 [Google Scholar]
  28. D'Asaro EA, Lee C, Rainville L, Harcourt R, Thomas L. 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science 332:318–22 [Google Scholar]
  29. Dohan K, Davis RE. 2011. Mixing in the transition layer during two storm events. J. Phys. Oceanogr. 41:42–46 [Google Scholar]
  30. Doherty K, Frye D, Liberatore S, Toole J. 1999. A moored profiling instrument. J. Atmos. Ocean. Technol. 16:1816–29 [Google Scholar]
  31. Eden C, Olbers D. 2014. An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr. 44:2093–106 [Google Scholar]
  32. Egbert GD, Ray RD. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–78 [Google Scholar]
  33. Ekman VW. 1953. Studies on Ocean Currents: Results of a Cruise On Board the “Armauer Hansen” in 1930 Under the Leadership of Bjørn Helland-Hansen Geofys. Publ. Vol. 19 Bergen, Nor: J. Griegs [Google Scholar]
  34. Elipot S, Lumpkin R, Prieto G. 2010. Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res. 115:C09010 [Google Scholar]
  35. Emanuel K. 2001. Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res. 106:14771–81 [Google Scholar]
  36. Fer I. 2014. Near-inertial mixing in the central Arctic Ocean. J. Phys. Oceanogr. 44:2031–49 [Google Scholar]
  37. Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41:253–82 [Google Scholar]
  38. Firing E, Lien RC, Müller P. 1997. Observations of strong inertial oscillations after the passage of Tropical Cyclone Ofa. J. Geophys. Res. 102:3317–22 [Google Scholar]
  39. Ford R. 1994. Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 281:81–118 [Google Scholar]
  40. Fu LL. 1981. Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys. 19:141–70 [Google Scholar]
  41. Furuichi N, Hibiya T, Niwa Y. 2008. Model predicted distribution of wind-induced internal wave energy in the world's oceans. J. Geophys. Res. 113:C09034 [Google Scholar]
  42. Garrett C. 2001. What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum?. J. Phys. Oceanogr 31:962–71 [Google Scholar]
  43. Garrett C, Munk WH. 1975. Space-time scales of internal waves: a progress report. J. Geophys. Res. 80:291–97 [Google Scholar]
  44. Gerkema T, Shrira VI. 2005. Near-inertial waves on the “nontraditional” β plane. J. Geophys. Res. 110:C01003 [Google Scholar]
  45. Gill AE. 1982. Atmosphere-Ocean Dynamics San Diego, CA: Academic [Google Scholar]
  46. Gill AE. 1984. On the behavior of internal waves in the wake of a storm. J. Phys. Oceanogr. 14:1129–51 [Google Scholar]
  47. Gregg M, D'Asaro E, Shay T, Larson N. 1986. Observations of persistent mixing and near-inertial internal waves. J. Phys. Oceanogr. 16:856–85 [Google Scholar]
  48. Halle C. 2003. Internal wave variability in the Beaufort Sea during the winter of 1993/1994. J. Geophys. Res. 108:3210 [Google Scholar]
  49. Hazewinkel J, Winters KB. 2011. PSI of the internal tide on a β plane: flux divergence and near-inertial wave propagation. J. Phys. Oceanogr 41:1673–82 [Google Scholar]
  50. Hebert H, Moum J. 1994. Decay of a near-inertial wave. J. Phys. Oceanogr. 24:2334–51 [Google Scholar]
  51. Hoskins BJ, Bretherton FP. 1972. Atmospheric frontogenesis models: mathematical formulation and solutions. J. Atmos. Sci. 29:11–37 [Google Scholar]
  52. Howard LN. 1961. Note on a paper of John W. Miles.. J. Fluid Mech. 10:509–12 [Google Scholar]
  53. Jayne SR, St. Laurent LC. 2001. Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett. 28:811–14 [Google Scholar]
  54. Jiang J, Lu Y, Perrie W. 2005. Estimating the energy flux from the wind to ocean inertial motions: the sensitivity to surface wind fields. Geophys. Res. Lett. 32:L15610 [Google Scholar]
  55. Jochum M, Briegleb BP, Danabasoglu G, Large WG, Jayne SR. et al. 2012. On the impact of oceanic near-inertial waves on climate. J. Clim. 26:2833–44 [Google Scholar]
  56. Johnston TMS, Rudnick DL. 2009. Observations of the transition layer. J. Phys. Oceanogr. 39:780–97 [Google Scholar]
  57. Klein P, Lapeyre G, Large WG. 2004a. Wind ringing of the ocean in presence of mesoscale eddies. Geophys. Res. Lett. 31:L15306 [Google Scholar]
  58. Klein P, Llewellyn-Smith S, Lapeyre G. 2004b. Organization of near-inertial energy by an eddy field. Q. J. R. Meteorol. Soc. 130:1153–66 [Google Scholar]
  59. Klein P, Treguier AM. 1995. Dispersion of wind-induced inertial waves by a barotropic jet. J. Mar. Res. 53:1–22 [Google Scholar]
  60. Komori N, Taguchi B, Ohfuchi W, Sasaki H, Klein P. 2008. Deep ocean inertia-gravity waves simulated in a high-resolution global coupled atmosphere-ocean GCM. Geophys. Res. Lett. 35:13–17 [Google Scholar]
  61. Kroll J. 1975. The propagation of wind-generated inertial oscillations from the surface to the deep ocean. J. Mar. Res. 33:15–51 [Google Scholar]
  62. Kunze E. 1985. Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15:544–65 [Google Scholar]
  63. Kunze E. 1986. The mean and near-inertial velocity fields in a warm-core ring. J. Phys. Oceanogr. 16:1444–61 [Google Scholar]
  64. Leaman KD, Sanford TB. 1975. Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J. Geophys. Res. 80:1975–78 [Google Scholar]
  65. Lee D, Niiler P. 1998. The inertial chimney: the near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res. 103:7579–91 [Google Scholar]
  66. Lerczak JA, Winant CD, Hendershott MC. 2001. Observations and modeling of coastal internal waves driven by a diurnal sea breeze. J. Geophys. Res. 106:19715–29 [Google Scholar]
  67. Lucas AJ, Pitcher GC, Probyn TA, Kudela RM. 2014. The influence of diurnal winds on phytoplankton dynamics in a coastal upwelling system off southwestern Africa. Deep-Sea Res. II 101:50–62 [Google Scholar]
  68. Lvov YV, Polzin KL, Yokoyama N. 2012. Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr. 42:669–91 [Google Scholar]
  69. MacKinnon JA, Alford MH, Sun O, Pinkel R, Zhao Z, Klymak J. 2013. Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr. 43:17–28 [Google Scholar]
  70. MacKinnon JA, Gregg MC. 2005. Near-inertial waves on the New England Shelf: the role of evolving stratification, turbulent dissipation, and bottom drag. J. Phys. Oceanogr. 35:2408–24 [Google Scholar]
  71. MacKinnon JA, Winters KB. 2005. Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett. 32:L15605 [Google Scholar]
  72. Martini KI, Simmons HL, Stoudt CA, Hutchings JK. 2014. Near-inertial internal waves and sea ice in the Beaufort Sea. J. Phys. Oceanogr. 44:2212–34 [Google Scholar]
  73. McComas CH, Müller P. 1981. The dynamic balance of internal waves. J. Phys. Oceanogr. 11:970–86 [Google Scholar]
  74. Melet A, Hallberg R, Legg S, Polzin KL. 2013. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr. 43:602–15 [Google Scholar]
  75. Merrifield MA, Pinkel R. 1996. Inertial currents in the Beaufort Sea: observations of response to wind and shear. J. Geophys. Res. 101:6577–90 [Google Scholar]
  76. Mickett JB, Serra YL, Cronin MF, Alford MH. 2010. Resonant forcing of mixed layer inertial motions by atmospheric easterly waves in the northeast tropical Pacific. J. Phys. Oceanogr. 40:401–16 [Google Scholar]
  77. Miles JW. 1961. On the stability of heterogeneous shear flows. J. Fluid Mech. 10:496–508 [Google Scholar]
  78. Müller P. 1976. On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech. 77:789–823 [Google Scholar]
  79. Müller P, Holloway G, Henyey F, Pomphrey N. 1986. Nonlinear interactions among internal gravity waves. Rev. Geophys. 24:493–536 [Google Scholar]
  80. Munk W, Phillips N. 1968. Coherence and band structure of inertial motion in the sea. Rev. Geophys. 6:447–72 [Google Scholar]
  81. Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45:1977–2010 [Google Scholar]
  82. Nagai T, Tandon A, Kunze E, Mahadevan A. 2015. Spontaneous generation of near-inertial waves from the Kuroshio Front. J. Phys. Oceanogr. 452381–406 [Google Scholar]
  83. Nagasawa M, Niwa Y, Hibiya T. 2000. Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res. 105:13933–43 [Google Scholar]
  84. Nam S, Send U. 2013. Resonant diurnal oscillations and mean alongshore flows driven by sea/land breeze forcing in the coastal Southern California Bight. J. Phys. Oceanogr. 43:616–30 [Google Scholar]
  85. Nikurashin M, Ferrari R. 2010a. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the Southern Ocean. J. Phys. Oceanogr. 40:2025–42 [Google Scholar]
  86. Nikurashin M, Ferrari R. 2010b. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanogr. 40:1055–74 [Google Scholar]
  87. Nikurashin M, Ferrari R. 2011. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett. 38:L08610 [Google Scholar]
  88. Nikurashin M, Vallis GK, Adcroft A. 2013. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci. 6:48–51 [Google Scholar]
  89. Niwa Y, Hibiya T. 1997. Nonlinear processes of energy transfer from travelling hurricanes to the deep ocean internal wave field. J. Geophys. Res. 102:12469–77 [Google Scholar]
  90. Nowlin W Jr, Bottero J, Pillsbury R. 1986. Observations of internal and near-inertial oscillations at Drake Passage. J. Phys. Oceanogr. 16:87–108 [Google Scholar]
  91. Pinkel R. 1985. A wavenumber-frequency spectrum of upper ocean shear. J. Phys. Oceanogr. 15:1453–69 [Google Scholar]
  92. Plueddemann AJ, Farrar JT. 2006. Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II 53:5–30 [Google Scholar]
  93. Pollard RT, Millard RC. 1970. Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. 17:153–75 [Google Scholar]
  94. Polzin KL. 2008. Mesoscale eddy-internal wave coupling. Part I: symmetry, wave capture, and results from the mid-ocean dynamics experiment. J. Phys. Oceanogr. 38:2556–74 [Google Scholar]
  95. Polzin KL. 2010. Mesoscale eddy-internal wave coupling. Part II: energetics and results from PolyMode. J. Phys. Oceanogr. 40:789–801 [Google Scholar]
  96. Polzin KL, Lvov YV. 2011. Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys. 49RG4003 [Google Scholar]
  97. Price JF, Sanford TB, Forristall GZ. 1994. Forced stage response to a moving hurricane. J. Phys. Oceanogr. 24:233–60 [Google Scholar]
  98. Rainville L, Pinkel R. 2004. Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr. 34:1495–505 [Google Scholar]
  99. Rainville L, Pinkel R. 2006. Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr. 36:1220–36 [Google Scholar]
  100. Rainville L, Winsor P. 2008. Mixing across the arctic ocean: microstructure observations during the Beringia 2005 expedition. Geophys. Res. Lett. 35:L08606 [Google Scholar]
  101. Rainville L, Woodgate R. 2009. Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett. 36:L23604 [Google Scholar]
  102. Ray RD, Mitchum GT. 1996. Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett. 23:2101–4 [Google Scholar]
  103. Rimac A, von Storch JS, Eden C, Haak H. 2013. The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett. 40:4882–86 [Google Scholar]
  104. Rossby C-G. 1938. On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Mar. Res. 1:239–63 [Google Scholar]
  105. Rudnick DL, Boyd TJ, Brainard RE, Carter GS, Egbert GD. et al. 2003. From tides to mixing along the Hawaiian Ridge. Science 301:355–57 [Google Scholar]
  106. Sanford TB, Price JF, Girton JB. 2011. Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr. 41:1041–56 [Google Scholar]
  107. Scott R, Goff J, Garabato A, Nurser A. 2011. Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res. 116:C09029 [Google Scholar]
  108. Shearman RK. 2005. Observations of near-inertial current variability on the New England shelf. J. Geophys. Res. 110:C02012 [Google Scholar]
  109. Sherman JT. 1989. Observations of fine scale vertical shear and strain in the upper ocean PhD Thesis, Univ. Calif., San Diego [Google Scholar]
  110. Silverthorne KE, Toole JM. 2009. Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr. 39:1035–49 [Google Scholar]
  111. Simmons HL. 2008. Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Model. 21:126–38 [Google Scholar]
  112. Simmons HL, Alford MH. 2012. Simulating the long range swell of internal waves generated by ocean storms. Oceanography 25:230–41 [Google Scholar]
  113. St. Laurent LC, Garabato ACN, Ledwell JR, Thurnherr AM, Toole JM, Watson AJ. 2012. Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr. 42:2143–52 [Google Scholar]
  114. Sun OM, Pinkel R. 2013. Subharmonic energy transfer from the semidiurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaii. J. Phys. Oceanogr. 43:766–89 [Google Scholar]
  115. Thomas LN. 2012. On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech. 711:620–40 [Google Scholar]
  116. Thurnherr AM, St. Laurent LC, Speer KG, Toole JM, Ledwell JR. 2005. Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr. 35:1370–81 [Google Scholar]
  117. Tian J, Zhou L, Zhang X. 2006. Latitudinal distribution of mixing rate caused by the M2 internal tide.. J. Phys. Oceanogr. 36:35–42 [Google Scholar]
  118. Toole JM. 2007. Temporal characteristics of abyssal finescale motions above rough bathymetry. J. Phys. Oceanogr. 37:409–27 [Google Scholar]
  119. van Haren H. 2005. Tidal and near-inertial peak variations around the diurnal critical latitude. Geophys. Res. Lett. 32:L23611 [Google Scholar]
  120. Vanneste J. 2012. Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45:147–72 [Google Scholar]
  121. Watanabe M, Hibiya T. 2002. Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett. 29:64–13 [Google Scholar]
  122. Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E. et al. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44:1854–72 [Google Scholar]
  123. Webster F. 1968. Observations of inertial-period motions in the deep sea. Rev. Geophys. 6:473–90 [Google Scholar]
  124. Weller RA. 1982. The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr. 12:1122–36 [Google Scholar]
  125. Whalen CB, MacKinnon JA, Talley LD, Waterhouse AF. 2015. Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr. 45:1174–88 [Google Scholar]
  126. Whalen CB, Talley LD, MacKinnon JA. 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett. 39:L18612 [Google Scholar]
  127. Whitt DB, Thomas LN. 2013. Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr. 43:706–25 [Google Scholar]
  128. Winters KB, Bouruet-Aubertot P, Gerkema T. 2011. Critical reflection and abyssal trapping of near-inertial waves on a β-plane. J. Fluid Mech 684:111–36 [Google Scholar]
  129. Wunsch C. 1998. The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr. 28:2332–40 [Google Scholar]
  130. Yang B, Hou Y. 2014. Near-inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea. Acta Oceanol. Sin. 33:102–11 [Google Scholar]
  131. Young W, Ben Jelloul M. 1997. Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 55:735–66 [Google Scholar]
  132. Zervakis V, Levine M. 1995. Near-inertial energy propagation from the mixed layer: theoretical considerations. J. Phys. Oceanogr. 25:2872–89 [Google Scholar]
  133. Zhai X, Greatbatch RJ, Eden C. 2007. Spreading of near-inertial energy in a 1/12° model of the North Atlantic Ocean. Geophys. Res. Lett. 34:L10609 [Google Scholar]
  134. Zhai X, Greatbatch RJ, Zhao J. 2005. Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel. Geophys. Res. Lett. 32:L18602 [Google Scholar]
  135. Zhao Z, Alford MH. 2009. New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr. 39:1669–84 [Google Scholar]
  136. Zhao Z, Alford MH, Girton JB. 2012. Mapping low-mode internal tides from multisatellite altimetry. Oceanography 25:242–51 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error