1932

Abstract

Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types—including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests—that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015805
2015-01-03
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010814-015805.html?itemId=/content/journals/10.1146/annurev-marine-010814-015805&mimeType=html&fmt=ahah

Literature Cited

  1. Allison GW, Lubchenco J, Carr MH. 1998. Marine reserves are necessary but not sufficient for marine conservation.. Ecol. Appl. 8:S79–92 [Google Scholar]
  2. Angelini C, Altieri AH, Silliman BR, Bertness MD. 2011. Interactions among foundation species and their consequences for community organization, biodiversity, and conservation. BioScience 61:782–89 [Google Scholar]
  3. Asmus H, Asmus RM, Prins TC, Dankers N, Frances G. et al. 1992. Benthic-pelagic flux rates on mussel beds: tunnel and tidal flume methodology compared. Helgol. Meeresunters. 46:341–61 [Google Scholar]
  4. Asmus RM, Asmus H. 1991. Mussel beds: limiting or promoting phytoplankton?. J. Exp. Mar. Biol. Ecol. 148:215–32 [Google Scholar]
  5. Baden S, Emanuelsson A, Pihl L, Svensson CJ, Aberg P. 2012. Shift in seagrass food web structure over decades is linked to overfishing. Mar. Ecol. Prog. Ser. 451:61–73 [Google Scholar]
  6. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81:169–93 [Google Scholar]
  7. Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E. et al. 2008. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319:321–23 [Google Scholar]
  8. Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD. et al. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61:107–16 [Google Scholar]
  9. Bellwood DR, Hughes TP, Folke C, Nystrom M. 2004. Confronting the coral reef crisis. Nature 429:827–33 [Google Scholar]
  10. Bergfeld C. 1999. Macrofaunal community pattern in an intertidal sandflat: effects of organic enrichment via biodeposition by mussel beds. First results. Mar. Biodivers. 29:23–27 [Google Scholar]
  11. Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ. 2014. Marine Community Ecology and Conservation Sunderland, MA:: Sinauer [Google Scholar]
  12. Bertness MD, Ewanchuk PJ, Silliman BR. 2002. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl. Acad. Sci. USA 99:1395–98 [Google Scholar]
  13. Bertness MD, Gaines SD, Yeh SM. 1998. Making mountains out of barnacles: the dynamics of acorn barnacle hummocking. Ecology 79:1382–94 [Google Scholar]
  14. Bouma TJ, Friedrichs M, van Wesenbeeck BK, Temmerman S, Graf G, Herman PMJ. 2009. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118:260–68 [Google Scholar]
  15. Bouma TJ, van Duren LA, Temmerman S, Claverie T, Blanco-Garcia A. et al. 2007. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont. Shelf Res. 27:1020–45 [Google Scholar]
  16. Bruno JF. 2000. Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology 81:1179–92 [Google Scholar]
  17. Christianen MJA, Govers LL, Bouma TJ, Kiswara W, Roelofs JGM. et al. 2012. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. J. Ecol. 100:546–60 [Google Scholar]
  18. Christianen MJA, van Belzen J, Herman PMJ, van Katwijk MM, Lamers LPM. et al. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 8:e62413 [Google Scholar]
  19. Connell JH. 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–23 [Google Scholar]
  20. Danielsen F, Sørensen MK, Olwig MF, Selvam V, Parish F. et al. 2005. The Asian tsunami: a protective role for coastal vegetation. Science 310:643 [Google Scholar]
  21. Darwin C. 1859. On the Origin of Species London: Murray [Google Scholar]
  22. de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ. et al. 2013. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342:108–10 [Google Scholar]
  23. Donadi S, van der Heide T, van der Zee EM, Eklof JS, van de Koppel J. et al. 2013a. Cross-habitat interactions among bivalve species control community structure on intertidal flats. Ecology 94:489–98 [Google Scholar]
  24. Donadi S, Westra J, Weerman EJ, van der Heide T, van der Zee EM. et al. 2013b. Non-trophic interactions control benthic producers on intertidal flats. Ecosystems 16:1325–35 [Google Scholar]
  25. Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G. 2005. Indo-Pacific seagrass beds and mangroves contribute to fish density coral and diversity on adjacent reefs. Mar. Ecol. Prog. Ser. 302:63–76 [Google Scholar]
  26. Dorenbosch M, Verberk W, Nagelkerken I, van der Velde G. 2007. Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs. Mar. Ecol. Prog. Ser. 334:103–16 [Google Scholar]
  27. Duggins DO, Simenstad CA, Estes JA. 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–73 [Google Scholar]
  28. Eriksson BK, Ljunggren L, Sandström A, Johansson G, Mattila J. et al. 2009. Declines in predatory fish promote bloom-forming macroalgae. Ecol. Appl. 19:1975–88 [Google Scholar]
  29. Eriksson BK, Sieben K, Eklof J, Ljunggren L, Olsson J. et al. 2011. Effects of altered offshore food webs on coastal ecosystems emphasize the need for cross-ecosystem management. Ambio 40:786–97 [Google Scholar]
  30. Eriksson BK, van der Heide T, van de Koppel J, Piersma T, van der Veer HW, Olff H. 2010. Major changes in the ecology of the Wadden Sea: human impacts, ecosystem engineering and sediment dynamics. Ecosystems 13:752–64 [Google Scholar]
  31. Gaines S, Roughgarden J. 1985. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc. Natl. Acad. Sci. USA 82:3707–11 [Google Scholar]
  32. Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change 106:7–29 [Google Scholar]
  33. Gell FR, Roberts CM. 2003. Benefits beyond boundaries: the fishery effects of marine reserves. Trends Ecol. Evol. 18:448–55 [Google Scholar]
  34. Gillis LG, Bouma TJ, Jones CG, van Katwijk MM, Nagelkerke I. et al. 2014. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 503:289–303 [Google Scholar]
  35. Grabowski JH, Brumbaugh RD, Conrad RF, Keeler AG, Opaluch JJ. et al. 2012. Economic valuation of ecosystem services provided by oyster reefs. BioScience 62:900–9 [Google Scholar]
  36. Graf G, Rosenberg R. 1997. Bioresuspension and biodeposition: a review. J. Mar. Syst. 11:269–78 [Google Scholar]
  37. Guichard F, Levin SA, Hastings A, Siegel D. 2004. Toward a dynamic metacommunity approach to marine reserve theory. BioScience 54:1003–11 [Google Scholar]
  38. Hendriks IE, Bouma TJ, Morris EP, Duarte CM. 2010. Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates. Mar. Biol. 157:473–81 [Google Scholar]
  39. Hensel MJS, Silliman BR. 2013. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc. Natl. Acad. Sci. USA 110:20621–26 [Google Scholar]
  40. Hughes TP. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–51 [Google Scholar]
  41. Kirby MX. 2004. Fishing down the coast: historical expansion and collapse of oyster fisheries along continental margins. Proc. Natl. Acad. Sci. USA 101:13096–99 [Google Scholar]
  42. Klausmeier CA. 1999. Regular and irregular patterns in semiarid vegetation. Science 284:1826–28 [Google Scholar]
  43. Knowlton N. 1992. Thresholds and multiple stable states in coral reef community dynamics. Am. Zool. 33:674–82 [Google Scholar]
  44. Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GME. et al. 2009. Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7:29–37 [Google Scholar]
  45. Lenihan HS. 1999. Physical-biological coupling on oyster reefs: how habitat structure influences individual performance. Ecol. Monogr. 69:251–75 [Google Scholar]
  46. Lenihan HS, Peterson CH, Byers JE, Grabowski JH, Thayer GW, Colby DR. 2001. Cascading of habitat degradation: oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11:764–82 [Google Scholar]
  47. Leslie H, Ruckelshaus M, Ball IR, Andelman S, Possingham HP. 2003. Using siting algorithms in the design of marine reserve networks. Ecol. Appl. 13:S185–98 [Google Scholar]
  48. Lewis DB, Eby LA. 2002. Spatially heterogeneous refugia and predation risk in intertidal salt marshes. Oikos 96:119–29 [Google Scholar]
  49. Lewis JR. 1955. XVII.—the ecology of exposed rocky shores of Caithness. Trans. R. Soc. Edinb. 62:695–723 [Google Scholar]
  50. Lewis JR. 1964. The Ecology of Rocky Shores London: Engl. Univ. Press [Google Scholar]
  51. Liu QX. 2013. Emergent properties of spatial self-organization: a study of patterned mussel beds PhD Thesis, Univ. Groningen, Groningen, Neth. [Google Scholar]
  52. Ljunggren L, Sandström A, Bergström U, Mattila J, Lappalainen A. et al. 2010. Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES J. Mar. Sci. 67:1587–95 [Google Scholar]
  53. Loreau M, Mouquet N, Holt RD. 2003. Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 6:673–79 [Google Scholar]
  54. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG. et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–9 [Google Scholar]
  55. Lubchenco J. 1978. Plant species-diversity in a marine inter-tidal community: importance of herbivore food preference and algal competitive abilities. Am. Nat. 112:23–39 [Google Scholar]
  56. Meyer DL, Townsend EC, Thayer GW. 1997. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restor. Ecol. 5:93–99 [Google Scholar]
  57. Meyer JL, Schultz ET, Helfman GS. 1983. Fish schools: an asset to corals. Science 220:1047–49 [Google Scholar]
  58. Micheli F, Peterson CH. 1999. Estuarine vegetated habitats as corridors for predator movements. Conserv. Biol. 13:869–81 [Google Scholar]
  59. Minello TJ, Webb JW. 1997. Use of natural and created Spartina alterniflora salt marshes by fishery species and other aquatic fauna in Galveston Bay, Texas, USA. Mar. Ecol. Prog. Ser. 151:165–79 [Google Scholar]
  60. Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29:215–33 [Google Scholar]
  61. Moksnes PO, Gullstrom M, Tryman K, Baden S. 2008. Trophic cascades in a temperate seagrass community. Oikos 117:763–77 [Google Scholar]
  62. Möller I, Spencer T. 2002. Wave dissipation over macro-tidal saltmarshes: effects of marsh edge typology and vegetation change. J. Coast. Res. 36:506–21 [Google Scholar]
  63. Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG. et al. 2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–36 [Google Scholar]
  64. Nagelkerken I. 2009. Ecological Connectivity Among Tropical Coastal Ecosystems Dordrecht, Neth: Springer [Google Scholar]
  65. Nagelkerken I, van der Velde G. 2002. Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curaçao (Netherlands Antilles)?. Mar. Ecol. Prog. Ser. 245:191–204 [Google Scholar]
  66. Newell RIE, Cornwell JC, Owens MS. 2002. Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: a laboratory study. Limnol. Oceanogr. 47:1367–79 [Google Scholar]
  67. Newell RIE, Koch EW. 2004. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27:793–806 [Google Scholar]
  68. Odum WE, Heald EJ. 1975. The detritus-based food web of an estuarine mangrove community. Estuarine Research 1 Chemistry, Biology, and the Estuarine System LE Cronin 265–86 New York: Academic [Google Scholar]
  69. Paine RT. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75 [Google Scholar]
  70. Peterson BJ, Heck KL. 2001. Positive interactions between suspension-feeding bivalves and seagrass: a facultative mutualism. Mar. Ecol. Prog. Ser. 213:143–55 [Google Scholar]
  71. Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28:289–316 [Google Scholar]
  72. Polis GA, Hurd SD. 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc. Natl. Acad. Sci. USA 92:4382–86 [Google Scholar]
  73. Redfield AC. 1972. Development of a New England salt marsh. Ecol. Monogr. 42:201–37 [Google Scholar]
  74. Reusch TBH, Chapman ARO, Gröger JP. 1994. Blue mussels Mytilus edulis do not interfere with eelgrass Zostera marina but fertilize shoot growth through biodeposition. Mar. Ecol. Prog. Ser. 108:265–82 [Google Scholar]
  75. Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R, van de Koppel J. et al. 2002. Self-organization of vegetation in arid ecosystems. Am. Nat. 160:524–30 [Google Scholar]
  76. Rietkerk M, van de Koppel J. 2008. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23:169–75 [Google Scholar]
  77. Rogers CS. 1990. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62:185–202 [Google Scholar]
  78. Schiel DR, Foster MS. 1986. The structure of subtidal algal stands in temperate waters. Oceanogr. Mar. Biol. 24:265–307 [Google Scholar]
  79. Shepard CC, Crain CM, Beck MW. 2011. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS ONE 6:e27374 [Google Scholar]
  80. Silliman BR, Bertness MD. 2002. A trophic cascade regulates salt marsh primary production. Proc. Natl. Acad. Sci. USA 99:10500–5 [Google Scholar]
  81. Silliman BR, Layman CA, Geyer K, Zieman JC. 2004. Predation by the black-clawed mud crab, Panopeus herbstii, in Mid-Atlantic salt marshes: further evidence for top-down control of marsh grass production. Estuaries 27:188–96 [Google Scholar]
  82. Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN. et al. 2012. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 109:11234–39 [Google Scholar]
  83. Stiven AE, Gardner SA. 1992. Population processes in the ribbed mussel Geukensia demissa (Dillwyn) in a North Carolina salt marsh tidal gradient: spatial pattern, predation, growth and mortality. J. Exp. Mar. Biol. Ecol. 160:81–102 [Google Scholar]
  84. Storlazzi CD, Elias E, Field ME, Presto MK. 2011. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs 30:83–96 [Google Scholar]
  85. Swap R, Garstang M, Greco S, Talbot R, Kållberg P. 1992. Saharan dust in the Amazon basin. Tellus 44B:133–49 [Google Scholar]
  86. Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ. 2013. Ecosystem-based coastal defence in the face of global change. Nature 504:79–83 [Google Scholar]
  87. Ulanowicz RE, Tuttle JH. 1992. The trophic consequences of oyster stock rehabilitation in Chesapeake Bay. Estuaries 15:298–306 [Google Scholar]
  88. US Geol. Surv 2002. U.S. coral reefs—imperiled national treasures. Fact Sheet 025-02, US Geol. Surv. Pac. Sci. Cent., Santa Cruz, CA. http://pubs.usgs.gov/fs/2002/fs025-02 [Google Scholar]
  89. Valiela I, Bowen JL, York JK. 2001. Mangrove forests: one of the world's threatened major tropical environments. BioScience 51:807–15 [Google Scholar]
  90. de Koppel J, Altieri AH, Silliman BS, Bruno JF, Bertness MD. van 2006. Scale-dependent interactions and community structure on cobble beaches. Ecol. Lett. 9:45–50 [Google Scholar]
  91. de Koppel J, Crain CM. van 2006. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh. Am. Nat. 168:E136–47 [Google Scholar]
  92. van de Koppel J, Rietkerk M, Dankers N, Herman PMJ. 2005a. Scale-dependent feedback and regular spatial patterns in young mussel beds. Am. Nat. 165:E66–77 [Google Scholar]
  93. van de Koppel J, van der Wal D, Bakker JP, Herman PMJ. 2005b. Self-organization and vegetation collapse in salt-marsh ecosystems. Am. Nat. 165:E1–12 [Google Scholar]
  94. van der Heide T, Bouma TJ, van Nes EH, van de Koppel J, Scheffer M. 2010. Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91:362–69 [Google Scholar]
  95. van der Zee EM, van der Heide T, Donadi S, Eklof JS, Eriksson BK. et al. 2012. Spatially extended habitat modification by intertidal reef-building bivalves has implications for consumer-resource interactions. Ecosystems 15:664–73 [Google Scholar]
  96. van Wesenbeeck BK, Crain CM, Altieri AH, Bertness MD. 2007. Distinct habitat types arise along a continuous hydrodynamic stress gradient due to interplay of competition and facilitation. Mar. Ecol. Prog. Ser. 349:63–71 [Google Scholar]
  97. van Wesenbeeck BK, van de Koppel J, Herman PMJ, Bouma TJ. 2008. Does scale-dependent feedback explain spatial complexity in salt-marsh ecosystems?. Oikos 117:152–59 [Google Scholar]
  98. Vinther HF, Holmer M. 2008. Experimental test of biodeposition and ammonium excretion from blue mussels (Mytilus edulis) on eelgrass (Zostera marina) performance. J. Exp. Mar. Biol. Ecol. 364:72–79 [Google Scholar]
  99. Vinther HF, Laursen JS, Holmer M. 2008. Negative effects of blue mussel (Mytilus edulis) presence in eelgrass (Zostera marina) beds in Flensborg fjord, Denmark. Estuar. Coast. Shelf Sci. 77:91–103 [Google Scholar]
  100. Wall CC, Peterson BJ, Gobler CJ. 2008. Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves. Mar. Ecol. Prog. Ser. 357:165–74 [Google Scholar]
  101. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC. et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106:12377–81 [Google Scholar]
  102. Widdows J, Brinsley M. 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J. Sea Res. 48:143–56 [Google Scholar]
  103. Widdows J, Lucas JS, Brinsley MD, Salkeld PN, Staff FJ. 2002. Investigation of the effects of current velocity on mussel feeding and mussel bed stability using an annular flume. Helgol. Mar. Res. 56:3–12 [Google Scholar]
  104. Willows RI, Widdows J, Wood RG. 1998. Influence of an infaunal bivalve on the erosion of an intertidal cohesive sediment: a flume and modeling study. Limnol. Oceanogr. 43:1332–43 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015805
Loading
/content/journals/10.1146/annurev-marine-010814-015805
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error