Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Andersson AJ, Gledhill D. 2013. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu. Rev. Mar. Sci. 5:321–48 [Google Scholar]
  2. Andréfouët S, Ouillon S, Brinkman R, Falter JL, Douillet P. et al. 2006. Review of solutions for 3D hydrodynamic modeling applied to aquaculture in South Pacific atoll lagoons. Mar. Pollut. Bull. 52:1138–55 [Google Scholar]
  3. Andréfouët S, Pagès J, Tartinville B. 2001. Water renewal time for classification of atoll lagoons in the Tuamotu Archipelago (French Polynesia). Coral Reefs 20:399–408 [Google Scholar]
  4. Andrews JC, Gentien P. 1982. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin's question?. Mar. Ecol. Prog. Ser. 8:257–69 [Google Scholar]
  5. Atkinson MJ, Bilger RW. 1992. Effect of water velocity on phosphate uptake in coral reef-flat communities. Limnol. Oceanogr. 37:273–79 [Google Scholar]
  6. Atkinson MJ, Falter JL. 2003. Coral reefs. Biogeochemistry of Marine Systems KP Black, GB Shimmield 40–64 Boca Raton, FL: CRC [Google Scholar]
  7. Atkinson MJ, Smith S, Stroup E. 1981. Circulation in Enewetak atoll lagoon. Limnol. Oceanogr. 26:1074–83 [Google Scholar]
  8. Ayukai T. 1995. Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14:141–47 [Google Scholar]
  9. Baird ME, Atkinson MJ. 1997. Measurement and prediction of mass transfer to experimental coral reef communities. Limnol. Oceanogr. 42:1685–93 [Google Scholar]
  10. Barnes D, Devereux M. 1984. Productivity and calcification on a coral reef: a survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol. 79:213–31 [Google Scholar]
  11. Becker J, Merrifield M, Ford M. 2014. Water level effects on breaking wave setup for Pacific Island fringing reefs. J. Geophys. Res. 119:914–32 [Google Scholar]
  12. Bilger RW, Atkinson MJ. 1992. Anomalous mass transfer of phosphate on coral reef flats. Limnol. Oceanogr. 37:261–72 [Google Scholar]
  13. Birkeland C. 1997. Life and Death of Coral Reefs New York: Springer
  14. Brinkman R, Wolanski E, Deleersnijder E, McAllister F, Skirving W. 2002. Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuar. Coast. Shelf Sci. 54:655–68 [Google Scholar]
  15. Bruno JF, Siddon CE, Witman JD, Colin PL, Toscano MA. 2001. El Niño related coral bleaching in Palau, Western Caroline Islands. Coral Reefs 20:127–36 [Google Scholar]
  16. Buckley M, Lowe RJ, Hansen J. 2014. Evaluation of nearshore wave models in steep reef environments. Ocean Dyn. 64:847–62 [Google Scholar]
  17. Callaghan DP, Nielsen P, Cartwright N, Gourlay MR, Baldock TE. 2006. Atoll lagoon flushing forced by waves. Coast. Eng. 53:691–704 [Google Scholar]
  18. Chang S, Elkins C, Alley M, Eaton J, Monismith SG. 2009. Flow inside a coral colony measured using magnetic resonance velocimetry. Limnol. Oceanogr. 54:1819 [Google Scholar]
  19. Charpy L, Blanchot J. 1999. Picophytoplankton biomass, community structure and productivity in the Great Astrolabe Lagoon, Fiji. Coral Reefs 18:255–62 [Google Scholar]
  20. Chindapol N, Kaandorp JA, Cronemberger C, Mass T, Genin A. 2013. Modelling growth and form of the scleractinian coral Pocillopora verrucosa and the influence of hydrodynamics. PLoS Comput. Biol. 9:e1002849 [Google Scholar]
  21. Chollett I, Mumby PJ. 2013. Reefs of last resort: locating and assessing thermal refugia in the wider Caribbean. Biol. Conserv. 167:179–86 [Google Scholar]
  22. Cyronak T, Santos I, McMahon A, Eyre B. 2013. Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: Implications for ocean acidification. Limnol. Oceanogr. 58:131–43 [Google Scholar]
  23. Darwin C. 1842. The Structure and Distribution of Coral Reefs London: Smith Elder & Co.
  24. Davis KA, Leichter JJ, Hench JL, Monismith SG. 2008. Effects of western boundary current dynamics on the internal wave field of the Southeast Florida shelf. J. Geophys. Res. 113:C09010 [Google Scholar]
  25. Davis KA, Lentz SJ, Pineda J, Farrar JT, Starczak VR, Churchill JH. 2011. Observations of the thermal environment on Red Sea platform reefs: a heat budget analysis. Coral Reefs 30:25–36 [Google Scholar]
  26. De'ath G, Fabricius KE, Sweatman H, Puotinen M. 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109:17995–99 [Google Scholar]
  27. Delesalle B, Sournia A. 1992. Residence time of water and phytoplankton biomass in coral-reef lagoons. Cont. Shelf Res. 12:939–49 [Google Scholar]
  28. Depczynski M, Gilmour J, Ridgway T, Barnes H, Heyward A. et al. 2013. Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs 32:233–38 [Google Scholar]
  29. Dollar SJ, Tribble GW. 1993. Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs 12:223–33 [Google Scholar]
  30. Douillet P, Ouillon S, Cordier E. 2001. A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs 20:361–72 [Google Scholar]
  31. Dumas F, Gendre RL, Thomas Y, Andréfouët S. 2012. Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling. Mar. Pollut. Bull. 65:425–40 [Google Scholar]
  32. Egbert GD, Erofeeva SY. 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19:183–204 [Google Scholar]
  33. Espinosa-Gayosso A, Ghisalberti M, Ivey GN, Jones NL. 2012. Particle capture and low-Reynolds-number flow around a circular cylinder. J. Fluid Mech. 710:362–78 [Google Scholar]
  34. Fabricius KE, Yahel G, Genin A. 1998. In situ depletion of phytoplankton by an azoothanthallae soft coral. Limnol. Oceanogr. 43:354–56 [Google Scholar]
  35. Falter JL, Atkinson MJ, Merrifield MA. 2004. Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr. 49:1820–31 [Google Scholar]
  36. Falter JL, Lowe RJ, Atkinson MJ, Monismith SG, Schar DW. 2008. Continuous measurements of net production over a shallow reef community using a modified Eulerian approach. J. Geophys. Res. 113:C07035 [Google Scholar]
  37. Falter JL, Lowe RJ, Zhang Z, McCulloch M. 2013. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS ONE 8:e53303 [Google Scholar]
  38. Falter JL, Sansone FJ. 2000. Hydraulic control of pore water geochemistry within the oxic-suboxic zone of a permeable sediment. Limnol. Oceanogr. 45:550–57 [Google Scholar]
  39. Falter JL, Zhang ZL, Lowe RJ, McGregor F, Keesing J, McCulloch M. 2014. Assessing seasonal and spatial temperature variability within coral reefs through in situ observations and global climate data. Limnol. Oceanogr. 59:1241–55 [Google Scholar]
  40. Ferrier-Pagès C, Witting J, Tambutté E, Sebens K. 2003. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–40 [Google Scholar]
  41. Freeman LA, Miller AJ, Norris RD, Smith JE. 2012. Classification of remote Pacific coral reefs by physical oceanographic environment. J. Geophys. Res. 117:C02007 [Google Scholar]
  42. Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M. 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Mar. Ecol. Prog. Ser. 96:259–67 [Google Scholar]
  43. Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseff JR. 2009. Intense benthic grazing of phytoplankton in a coral reef. Limnol. Oceanogr. 54:938–51 [Google Scholar]
  44. Ghisalberti M. 2009. Obstructed shear flows: similarities across systems and scales. J. Fluid Mech. 641:51–61 [Google Scholar]
  45. Gourlay M, Colleter G. 2005. Wave-generated flow on coral reefs: an analysis for two-dimensional horizontal reef-tops with steep faces. Coast. Eng. 52:353–87 [Google Scholar]
  46. Gove JM, Merrifield MA, Brainard RE. 2006. Temporal variability of current-driven upwelling at Jarvis Island. J. Geophys. Res. 111:C12011 [Google Scholar]
  47. Gove JM, Williams G, McManus M. 2013. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PLoS ONE 8:e61974 [Google Scholar]
  48. Grigg RW. 1998. Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. Coral Reefs 17:263–72 [Google Scholar]
  49. Hamner W, Wolanski E. 1988. Hydrodynamic forcing functions and biological processes on coral reefs: a status review. Proceedings of the 6th International Coral Reef Symposium 1 Plenary Addresses and Status Review JH Choat, D Barnes, MA Borowitzka, JC Coll, PJ Davies, et al ., pp. 103–13 Townsville, Aust: Int. Coral Reef Symp. Exec. Comm.
  50. Hearn CJ. 1999. Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J. Geophys. Res. 104:30007–19 [Google Scholar]
  51. Hearn CJ, Atkinson MJ, Falter JL. 2001. A physical derivation of nutrient-uptake rates in coral reefs: effects of roughness and waves. Coral Reefs 20:347–56 [Google Scholar]
  52. Hench JL, Leichter JJ, Monismith SG. 2008. Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr. 53:2681–94 [Google Scholar]
  53. Hochberg E, Atkinson M, Andréfouët S. 2003. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sens. Environ. 85:159–73 [Google Scholar]
  54. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P. et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1737–42 [Google Scholar]
  55. Hoeke RK, Storlazzi CD, Ridd PV. 2013. Drivers of circulation in a fringing coral reef embayment: a wave-flow coupled numerical modeling study of Hanalei Bay, Hawaii. Cont. Shelf Res. 58:79–95 [Google Scholar]
  56. Houlbrèque F, Ferrier-Pagès C. 2009. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84:1–17 [Google Scholar]
  57. Houlbrèque F, Tambutté E, Allemand D, Ferrier-Pagès C. 2004. Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J. Exp. Biol. 207:1461–69 [Google Scholar]
  58. Huettel M, Rusch A. 2000. Transport and degradation of phytoplankton in permeable sediment. Limnol. Oceanogr. 45:534–49 [Google Scholar]
  59. Hughes AD, Grottoli AG. 2013. Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE 8:e81172 [Google Scholar]
  60. Humphries S. 2009. Filter feeders and plankton increase particle encounter rates through flow regime control. Proc. Natl. Acad. Sci. USA 106:7882–87 [Google Scholar]
  61. Jouon A, Douillet P, Ouillon S, Fraunié P. 2006. Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Cont. Shelf Res. 26:1395–415 [Google Scholar]
  62. Kaandorp JA, Koopman EA, Sloot PM, Bak RP, Vermeij MJ, Lampmann LE. 2003. Simulation and analysis of flow patterns around the scleractinian coral Madracis mirabilis (Duchassaing and Michelotti). Philos. Trans. R. Soc. Lond. B 358:1551–57 [Google Scholar]
  63. Karnauskas KB, Cohen AL. 2012. Equatorial refuge amid tropical warming. Nat. Clim. Change 2:530–34 [Google Scholar]
  64. Kinsey DW. 1978. Productivity and calcification estimates using slack-water periods and field enclosures. Coral Reefs: Research Methods DR Stoddart, RE Johannes 439–68 Paris: UNESCO [Google Scholar]
  65. Kinsey DW. 1985. Metabolism, calcification, and carbon production: I. Systems level studies. Proceedings of the Fifth International Coral Reef Congress 4 Symposia and Seminars C Gabrie, B Salvat 505–26 Moorea, Fr. Polyn: Antenne Mus.–EPHE [Google Scholar]
  66. Kraines S, Suzuki Y, Omori T, Shitashima K, Kanahara S, Komiyama H. 1997. Carbonate dynamics of the coral reef system at Bora Bay, Miyako Island. Mar. Ecol. Prog. Ser. 156:1–16 [Google Scholar]
  67. Lai S, Gillis LG, Mueller C, Bouma TJ, Guest JR. et al. 2013. First experimental evidence of corals feeding on seagrass matter. Coral Reefs 32:1061–64 [Google Scholar]
  68. Leal MC, Ferrier-Pagès C, Calado R, Thompson ME, Frischer ME, Nejstgaard JC. 2014. Coral feeding on microalgae assessed with molecular trophic markers. Mol. Ecol. 23:3870–76 [Google Scholar]
  69. Leichter JJ, Stewart HL, Miller SL. 2003. Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr. 48:1394–407 [Google Scholar]
  70. Leichter JJ, Stokes MD, Hench JL, Witting J, Washburn L. 2012. The island-scale internal wave climate of Moorea, French Polynesia. J. Geophys. Res. 117:C06008 [Google Scholar]
  71. Leichter JJ, Wing SR, Miller SL, Denny MW. 1996. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41:1490–501 [Google Scholar]
  72. Longuet-Higgins MS, Stewart RW. 1962. Radiation stress and mass transport in gravity waves, with application to surf beats. J. Fluid Mech. 13:481–504 [Google Scholar]
  73. Lowe RJ, Falter JL, Monismith SG, Atkinson MJ. 2009a. A numerical study of circulation in a coastal reef-lagoon system. J. Geophys. Res. 114:C06022 [Google Scholar]
  74. Lowe RJ, Falter JL, Monismith SG, Atkinson MJ. 2009b. Wave-driven circulation of a coastal reef-lagoon system. J. Phys. Oceanogr. 39:873–93 [Google Scholar]
  75. Lowe RJ, Hart C, Pattiaratchi CB. 2010. Morphological constraints to wave-driven circulation in coastal reef-lagoon systems: a numerical study. J. Geophys. Res. 115:C09021 [Google Scholar]
  76. Lowe RJ, Ivey GN, Brinkman RM, Jones NL. 2012. Seasonal circulation and temperature variability near the North West Cape of Australia. J. Geophys. Res. 117:C04010 [Google Scholar]
  77. Lowe RJ, Koseff JR, Monismith SG. 2005a. Oscillatory flow through submerged canopies: 1. Velocity structure. J. Geophys. Res. 110:C10016 [Google Scholar]
  78. Lowe RJ, Koseff JR, Monismith SG, Falter JL. 2005b. Oscillatory flow through submerged canopies: 2. Canopy mass transfer. J. Geophys. Res. 110:C10017 [Google Scholar]
  79. Lowe RJ, Shavit U, Falter JL, Koseff JR, Monismith SG. 2008. Modeling flow in coral communities with and without waves: a synthesis of porous media and canopy flow approaches. Limnol. Oceanogr. 53:2668–80 [Google Scholar]
  80. Lugo-Fernández A, Gravois M. 2010. Understanding impacts of tropical storms and hurricanes on submerged bank reefs and coral communities in the northwestern Gulf of Mexico. Cont. Shelf Res. 30:1226–40 [Google Scholar]
  81. Macdonald IF, Elsayed MS, Mow K, Dullien FAL. 1979. Flow through porous media—the Ergun equation revisited. Ind. Eng. Chem. Fundam. 18:199–208 [Google Scholar]
  82. Madin JS, Connolly SR. 2006. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–80 [Google Scholar]
  83. Manzello DP. 2010. Ocean acidification hot spots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol. Oceanogr. 55:239–48 [Google Scholar]
  84. Massel SR, Done TJ. 1993. Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography. Coral Reefs 12:153–66 [Google Scholar]
  85. Massel SR, Gourlay MR. 2000. On the modelling of wave breaking and set-up on coral reefs. Coast. Eng. 39:1–27 [Google Scholar]
  86. McCabe RM, Estrade P, Middleton JH, Melville WK, Roughan M, Lenain L. 2010. Temperature variability in a shallow, tidally isolated coral reef lagoon. J. Geophys. Res. 115:C12011 [Google Scholar]
  87. McClanahan TR, Baird AH, Marshall PA, Toscano MA. 2004. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Mar. Pollut. Bull. 48:327–35 [Google Scholar]
  88. McDonald CB, Koseff JR, Monismith SG. 2006. Effects of the depth to coral height ratio on drag coefficients for unidirectional flow over coral. Limnol. Oceanogr. 51:1294–301 [Google Scholar]
  89. McGowan HA, Sturman AP, MacKellar MC, Wiebe AH, Neil DT. 2010. Measurements of the local energy balance over a coral reef flat, Heron Island, southern Great Barrier Reef, Australia. J. Geophys. Res. 115:D19124 [Google Scholar]
  90. McMahon A, Santos IR, Cyronak T, Eyre BD. 2013. Hysteresis between coral reef calcification and the seawater aragonite saturation state. Geophys. Res. Lett. 40:4675–79 [Google Scholar]
  91. Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K. et al. 2009. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–62 [Google Scholar]
  92. Monismith SG. 2007. Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech. 39:37–55 [Google Scholar]
  93. Monismith SG. 2013. Flow through a rough, shallow reef. Coral Reefs 33:99–104 [Google Scholar]
  94. Monismith SG, Davis KA, Shellenbarger GG, Hench JL, Nidzieko NJ. et al. 2010. Flow effects on benthic grazing on phytoplankton by a Caribbean reef. Limnol. Oceanogr. 55:1881–92 [Google Scholar]
  95. Monismith SG, Fong DA. 2004. A note on the potential transport of scalars and organisms by surface waves. Limnol. Oceanogr. 49:1214–17 [Google Scholar]
  96. Monismith SG, Genin A, Reidenbach MA, Yahel G, Koseff JR. 2006. Thermally driven exchanges between a coral reef and the adjoining ocean. J. Phys. Oceanogr. 36:1332–47 [Google Scholar]
  97. Monismith SG, Herdman LM, Ahmerkamp S, Hench JL. 2013. Wave transformation and wave-driven flow across a steep coral reef. J. Phys. Oceanogr. 43:1356–79 [Google Scholar]
  98. Moore JA, Bellchambers LM, Depczynski MR, Evans RD, Evans SN. et al. 2012. Unprecedented mass bleaching and loss of coral across 12 of latitude in Western Australia in 2010–11. PLoS ONE 7:e51807 [Google Scholar]
  99. Munk WH, Sargent MC. 1948. Adjustment of Bikini Atoll to ocean waves. Trans. Am. Geophys. Union 29:855–60 [Google Scholar]
  100. Munk WH, Sargent MC. 1954. Adjustment of Bikini Atoll to ocean waves. Bikini and Nearby Atolls: Part 2. Oceanography (Physical)275–80 US Geol. Surv. Prof. Pap. 260 Washington, DC: US Gov. Print. Off. [Google Scholar]
  101. Nelson RC. 1994. Depth limited design wave heights in very flat regions. Coast. Eng. 23:43–59 [Google Scholar]
  102. Nepf HM. 2012. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44:123–42 [Google Scholar]
  103. Nepf HM, Vivoni ER. 2000. Flow structure in depth-limited vegetative flow. J. Geophys. Res. 105:28547–57 [Google Scholar]
  104. Odum HT, Odum EP. 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok atoll. Ecol. Monogr. 25:291–320 [Google Scholar]
  105. Patten NL, Wyatt ASJ, Lowe RJ, Waite AM. 2011. Uptake of picophytoplankton, bacterioplankton and virioplankton by a fringing coral reef community (Ningaloo Reef, Australia). Coral Reefs 30:555–67 [Google Scholar]
  106. Pineda J, Starczak V, Tarrant A, Blythe J, Davis K. et al. 2013. Two spatial scales in a bleaching event: Corals from the mildest and the most extreme thermal environments escape mortality. Limnol. Oceanogr. 58:1531–45 [Google Scholar]
  107. Pomeroy A, Lowe RJ, Symonds G, van Dongeren A, Moore C. 2012. The dynamics of infragravity wave transformation over a fringing reef. J. Geophys. Res. 117:C11022 [Google Scholar]
  108. Raupach MR, Shaw RH. 1982. Averaging procedures for flow within vegetation canopies. Bound. Layer Meteorol. 22:79–90 [Google Scholar]
  109. Reidenbach MA, Koseff JR, Monismith SG. 2007. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy. Phys. Fluids 19:075107 [Google Scholar]
  110. Reidenbach MA, Koseff JR, Monismith SG, Genin A. 2006. Effects of waves, currents and morphology on mass transfer in branched reef corals. Limnol. Oceanogr. 51:1134–41 [Google Scholar]
  111. Ribes M, Atkinson M. 2007. Effects of water velocity on picoplankton uptake by coral reef communities. Coral Reefs 26:413–21 [Google Scholar]
  112. Ribes M, Coma R, Atkinson MJ, Kinzie RA. 2005. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol. Oceanogr. 50:1480–89 [Google Scholar]
  113. Richmond R. 1987. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93:527–33 [Google Scholar]
  114. Riegl B, Piller WE. 2003. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92:520–31 [Google Scholar]
  115. Rosman JH, Hench JL. 2011. A framework for understanding drag parameterizations for coral reefs. J. Geophys. Res. 116:C08025 [Google Scholar]
  116. Santos IR, Erler D, Tait D, Eyre BD. 2010. Breathing of a coral cay: tracing tidally driven seawater recirculation in permeable coral reef sediments. J. Geophys. Res. 115:C12010 [Google Scholar]
  117. Sargent M, Austin T. 1949. Organic productivity of an atoll. Trans. Am. Geophys. Union 30:245–49 [Google Scholar]
  118. Sebens KP, Grace SP, Helmuth B, Maney EJ, Miles JS. 1998. Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar. Biol. 131:347–60 [Google Scholar]
  119. Sebens KP, Johnson A. 1991. Effects of water movement on prey capture and distribution of reef corals. Hydrobiologia 226:91–101 [Google Scholar]
  120. Sebens KP, Witting J, Helmuth B. 1997. Effects of water flow and branch spacing on particle capture by the reef coral Madraci mirabalis (Duchassaing and Michelotti). J. Exp. Mar. Biol. Ecol. 211:1–28 [Google Scholar]
  121. Shaw EC, McNeil BI, Tilbrook B. 2012. Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J. Geophys. Res. 117:C03038 [Google Scholar]
  122. Shulman M, Bermingham E. 1995. Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910 [Google Scholar]
  123. Silverman J, Lazar B, Cao L, Caldeira K, Erez J. 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36:L05606 [Google Scholar]
  124. Smith SV. 1973. Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community. Limnol. Oceanogr. 18:106–20 [Google Scholar]
  125. Symonds G, Black KP, Young IR. 1995. Wave-driven flow over shallow reefs. J. Geophys. Res. 100:2639–48 [Google Scholar]
  126. Taebi S, Lowe RJ, Pattiaratchi CB, Ivey GN, Symonds G, Brinkman R. 2011. Nearshore circulation in a tropical fringing reef system. J. Geophys. Res. 116:C02016 [Google Scholar]
  127. Tanaka Y, Miyajima T, Watanabe A, Nadaoka K, Yamamoto T, Ogawa H. 2011. Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs 30:533–41 [Google Scholar]
  128. Tartinville B, Deleersnijder E, Rancher J. 1997. The water residence time in the Mururoa atoll lagoon: sensitivity analysis of a three-dimensional model. Coral Reefs 16:193–203 [Google Scholar]
  129. Teneva L, Dunbar RB, Mucciarone DA, Dunckley JF, Koseff JR. 2013. High-resolution carbon budgets on a Palau back-reef modulated by interactions between hydrodynamics and reef metabolism. Limnol. Oceanogr. 58:1851–70 [Google Scholar]
  130. Thomas FIM, Atkinson MJ. 1997. Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol. Oceanogr. 42:81–88 [Google Scholar]
  131. Thomas FIM, Cornelisen CD. 2003. Ammonium uptake by seagrass communities: effects of oscillatory versus unidirectional flow. Mar. Ecol. Prog. Ser. 247:51–57 [Google Scholar]
  132. UNEP-WCMC (UN Environ. Programme World Conserv. Monit. Cent.) 2003. Global distribution of coral reefs (version 7). A 1 km resolution grid produced by UNEP-WCMC from an updated version of the data layer used in Spalding et al. (2001) Data Set, UNEP-WCMC, Cambridge, UK. http://data.unep-wcmc.org/datasets/14 [Google Scholar]
  133. Van Hooidonk R, Maynard J, Planes S. 2013. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3:508–11 [Google Scholar]
  134. Venti A, Kadko D, Andersson AJ, Langdon C, Bates NR. 2012. A multi-tracer model approach to estimate reef water residence times. Limnol. Oceanogr. Methods 10:1078–95 [Google Scholar]
  135. Wang YH, Dai CF, Chen YY. 2007. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophys. Res. Lett. 34:L18609 [Google Scholar]
  136. Weitzman JS, Aveni-Deforge K, Koseff JR, Thomas FIM. 2013. Uptake of dissolved inorganic nitrogen by shallow seagrass communities exposed to wave-driven unsteady flow. Mar. Ecol. Prog. Ser. 475:65–83 [Google Scholar]
  137. Weller E, Nunez M, Meyers G, Masiri I. 2008. A climatology of ocean–atmosphere heat flux estimates over the great barrier reef and coral sea: implications for recent mass coral bleaching events. J. Clim. 21:3853–71 [Google Scholar]
  138. Wolanski E, Delesalle B. 1995. Upwelling by internal waves, Tahiti, French Polynesia. Cont. Shelf Res. 15:357–68 [Google Scholar]
  139. Wolanski E, Drew E, Abel KM, O'Brien J. 1988. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar. Coast. Shelf Sci. 26:169–201 [Google Scholar]
  140. Wolanski E, Thomson R. 1984. Wind-driven circulation on the northern Great Barrier Reef continental shelf in summer. Estuar. Coast. Shelf Sci. 18:271–89 [Google Scholar]
  141. Woodley J, Chornesky E, Cliffo P. 1981. Hurricane Allen's impact on a Jamaican coral reef. Science 214:749–54 [Google Scholar]
  142. Wyatt ASJ, Falter JL, Lowe RJ, Humphries S, Waite AM. 2012. Oceanographic forcing of nutrient uptake and release over a fringing coral reef. Limnol. Oceanogr. 57:401–19 [Google Scholar]
  143. Wyatt ASJ, Lowe RJ, Humphries S, Waite AM. 2010. Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar. Ecol. Prog. Ser. 405:113–30 [Google Scholar]
  144. Yahel G, Post AF, Fabricius K, Marie D, Vaulot D, Genin A. 1998. Phytoplankton distribution and grazing near coral reefs. Limnol. Oceanogr. 43:551–63 [Google Scholar]
  145. Yahel R, Yahel G, Berman T, Jaffe JS, Genin A. 2005. Diel pattern with abrupt crepuscular changes of zooplankton over a coral reef. Limnol. Oceanogr. 50:930–44 [Google Scholar]
  146. Young IR, Zieger S, Babanin AV. 2011. Global trends in wind speed and wave height. Science 332:451–55 [Google Scholar]
  147. Zhang Z, Falter JL, Lowe RJ, Ivey G. 2012. The combined influence of hydrodynamic forcing and calcification on the spatial distribution of alkalinity in a coral reef system. J. Geophys. Res. 117:C04034 [Google Scholar]
  148. Zhang Z, Falter JL, Lowe RJ, Ivey G, McCulloch M. 2013. Atmospheric forcing intensifies the effects of regional ocean warming on reef-scale temperature anomalies during a coral bleaching event. J. Geophys. Res. 118:4600–16 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error