Life in the ocean relies on the photosynthetic production of phytoplankton, which is influenced by the availability of light and nutrients that are modulated by a host of physical processes. Submesoscale processes are particularly relevant to phytoplankton productivity because the timescales on which they act are similar to those of phytoplankton growth. Their dynamics are associated with strong vorticity and strain rates that occur on lateral scales of 0.1–10 km. They can support vertical velocities as large as 100 m d−1 and play a crucial role in transporting nutrients into the sunlit ocean for phytoplankton production. In regimes with deep surface mixed layers, submesoscale instabilities can cause stratification within days, thereby increasing light exposure for phytoplankton trapped close to the surface. These instabilities help to create and maintain localized environments that favor the growth of phytoplankton, contribute to productivity, and cause enormous heterogeneity in the abundance of phytoplankton, which has implications for interactions within the ecosystem.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abraham ER. 1998. The generation of plankton patchiness by turbulent stirring. Nature 391:577–80 [Google Scholar]
  2. Allen JT, Smeed DA. 1996. Potential vorticity and vertical velocity at the Iceland Færoes front. J. Phys. Oceanogr. 26:2611–34 [Google Scholar]
  3. Ascani F, Richards KJ, Firing E, Grant S, Johnson KS. et al. 2013. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep-Sea Res. II 93:119–34 [Google Scholar]
  4. Badin G. 2013. Surface semi-geostrophic dynamics in the ocean. Geophys. Astrophys. Fluid Dyn. 107:526–40 [Google Scholar]
  5. Badin G, Tandon A, Mahadevan A. 2011. Lateral mixing in the pycnocline by baroclinic mixed layer eddies. J. Phys. Oceanogr. 41:2080–100 [Google Scholar]
  6. Baltar F, Arístegui J, Gasol JM, Lekunberri I, Herndl GJ. 2010. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean. ISME J. 4:975–88 [Google Scholar]
  7. Behrenfeld MJ. 2010. Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms. Ecology 91:977–89 [Google Scholar]
  8. Behrenfeld MJ, Boss E. 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6:167–94 [Google Scholar]
  9. Benoit-Bird KJ, McManus MA. 2012. Bottom-up regulation of a pelagic community through spatial aggregations. Biol. Lett. 8:813–16 [Google Scholar]
  10. Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. J. Phys. Oceanogr. 37:2228–50 [Google Scholar]
  11. Boucher J, Ibanez F, Prieur L. 1987. Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian Sea Front. J. Mar. Res. 45:133–73 [Google Scholar]
  12. Brody SR, Lozier MS. 2014. Changes in dominant mixing length scales drive subpolar phytoplankton blooms in the North Atlantic. Geophys. Res. Lett. 41:3197–203 [Google Scholar]
  13. Brunner-Suzuki AMEG, Sundermeyer MA, Lelong MP. 2014. Upscale energy transfer by the vortical mode and internal waves. J. Phys. Oceanogr. 44:2446–69 [Google Scholar]
  14. Bühler O, Callies J, Ferrari R. 2014. Wave-vortex decomposition of one-dimensional ship track data. J. Fluid Mech. 756:1007–26 [Google Scholar]
  15. Callies J, Ferrari R. 2013. Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr. 43:2456–74 [Google Scholar]
  16. Campbell J, Aarup T. 1992. New production in the North Atlantic derived from seasonal patterns of surface chlorophyll. Deep-Sea Res. 39:1669–94 [Google Scholar]
  17. Capet X, Campos EJ, Paiva AM. 2008a. Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett. 35:L15605 [Google Scholar]
  18. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF. 2008b. Mesoscale to submesoscale transition in the California Current system: energy balance and flux. J. Phys. Oceanogr. 38:2256–69 [Google Scholar]
  19. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF. 2008c. Mesoscale to submesoscale transition in the California Current system: flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 38:29–43 [Google Scholar]
  20. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF. 2008d. Mesoscale to submesoscale transition in the California Current system: frontal processes. J. Phys. Oceanogr. 38:44–64 [Google Scholar]
  21. Chavez FP, Barber RT, Kosro PM, Huyer A, Ramp SR. et al. 1991. Horizontal transport and the distribution of nutrients in the Coastal Transition Zone off northern California: effects on primary production, phytoplankton biomass and species composition. J. Geophys. Res. Oceans 96:14833–48 [Google Scholar]
  22. Cunningham A, McKee D, Craig S, Tarran G, Widdicombe V. 2003. Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an autonomous underwater vehicle. J. Mar. Syst. 43:51–59 [Google Scholar]
  23. d'Ovidio F, Monte SD, Alvain S, Dandonneaub Y, Lévy M. 2010. Fluid dynamical niches of phytoplankton types. PNAS 107:18366–70 [Google Scholar]
  24. Ferrari R, Merrifield ST, Taylor JR. 2015. Shutdown of convection triggers increase of surface chlorophyll. J. Mar. Syst. 147:116–22 [Google Scholar]
  25. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  26. Fielding S, Crisp N, Allen J, Hartman M, Rabe B, Roe H. 2001. Mesoscale subduction at the Almeria-Oran front: part 2. Biophysical interactions. J. Mar. Syst. 30:287–304 [Google Scholar]
  27. Flierl G, McGillicuddy DJ Jr. 2002. Mesoscale and submesoscale physical-biological interactions. The Sea 12 Biological-Physical Interactions in the Sea AR Robinson, JJ McCarthy, BJ Rothschild 113–85 New York: Wiley & Sons [Google Scholar]
  28. Fox-Kemper B, Ferrari R. 2008. Parameterization of mixed layer eddies. Part II: prognosis and impact. J. Phys. Oceanogr. 38:1166–79 [Google Scholar]
  29. Fox-Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38:1145–65 [Google Scholar]
  30. Franks PJS. 1992. Phytoplankton blooms at fronts: patterns, scales and physical forcing mechanisms. Rev. Aquat. Sci. 6:121–37 [Google Scholar]
  31. Franks PJS. 1997. Spatial patterns in dense algal blooms. Limnol. Oceanogr. 42:1297–305 [Google Scholar]
  32. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Baranova OK. et al. 2014. World Ocean Atlas 2013 4 Dissolved Inorganic Nutrients (Phosphate, Nitrate, Silicate). Ed. S Levitus, tech. ed. A Mishonov. NOAA Atlas NESDIS 76 Silver Spring, MD: Natl. Cent. Environ. Inf.
  33. Gargett A, Marra J. 2002. Effects of upper ocean physical processes (turbulence, advection, and air–sea interaction) on oceanic primary production. The Sea 12 Biological-Physical Interactions in the Sea AR Robinson, JJ McCarthy, BJ Rothschild 19–49 New York: Wiley & Sons [Google Scholar]
  34. Garside C. 1985. The vertical distribution of nitrate in open ocean surface water. Deep-Sea Res. 32:723–32 [Google Scholar]
  35. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Mnnich M. et al. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4:787–92 [Google Scholar]
  36. Guidi L, Calil PHR, Duhamel S, Björkman KM, Doney SC. et al. 2012. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre?. J. Geophys. Res. 117:G02024 [Google Scholar]
  37. Gula J, Molemaker MJ, McWilliams JC. 2014. Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 44:2617–43 [Google Scholar]
  38. Haine TWN, Marshall JC. 1998. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28:634–58 [Google Scholar]
  39. Hansen C, Samuelsen A. 2009. Influence of horizontal model grid resolution on the simulated primary production in an embedded primary production model in the Norwegian Sea. J. Mar. Syst. 75:236–44 [Google Scholar]
  40. Held IM, Schneider T. 1999. The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci. 56:1688–97 [Google Scholar]
  41. Johnson KS, Riser SC, Karl DM. 2010. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465:1062–65 [Google Scholar]
  42. Johnston T, Cheriton O, Pennington JT, Chavez FP. 2009. Thin phytoplankton layer formation at eddies, filaments, and fronts in a coastal upwelling zone. Deep-Sea Res. II 56:246–59 [Google Scholar]
  43. Klein P, Hua BL, Lapeyre G, Capet X, Gentil SL, Sasaki H. 2008. Upper ocean turbulence from high-resolution 3-D resolution simulations. J. Phys. Oceanogr. 38:1748–63 [Google Scholar]
  44. Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 1:351–75 [Google Scholar]
  45. Klein P, Lapeyre G, Roullet G, Le Gentil S, Sasaki H. 2011. Ocean turbulence at meso and submesoscales: connection between surface and interior dynamics. Geophys. Astrophys. Fluid Dyn. 105:421–37 [Google Scholar]
  46. Klein P, Smith SL, Lapeyre G. 2004. Organization of near-inertial energy by an eddy field. Q. J. R. Meteorol. Soc. 130:1153–66 [Google Scholar]
  47. Kunze E. 1985. Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15:544–65 [Google Scholar]
  48. LaCasce J, Mahadevan A. 2006. Estimating subsurface horizontal and vertical velocities from sea-surface temperature. J. Mar. Res. 64:695–721 [Google Scholar]
  49. Lapeyre G, Klein P. 2006. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr. 36:165–76 [Google Scholar]
  50. Lehahn Y, d'Ovidio F, Ley M, Heifetz E. 2007. Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multi-satellite data. J. Geophys. Res. Oceans 112:C08005 [Google Scholar]
  51. Lévy M, Iovino D, Resplandy L, Klein P, Madec G. et al. 2012. Large-scale impacts of submesoscale dynamics on phytoplankton: local and remote effects. Ocean Model.43–4477–93
  52. Lévy M, Jahn O, Dutkiewicz S, Follows MJ. 2014a. Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence. Limnol. Oceanogr. Fluids Environ. 4:67–84 [Google Scholar]
  53. Lévy M, Klein P, Treguier AM. 2001. Impacts of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res. 59:535–65 [Google Scholar]
  54. Lévy M, Martin A. 2013. The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions. Glob. Biogeochem. Cycles 27:1139–50 [Google Scholar]
  55. Lévy M, Resplandy R, Lengaigne M. 2014b. Oceanic mesoscale turbulence drives large biogeochemical interannual variability at mid and high latitudes. Geophys. Res. Lett. 41:2467–74 [Google Scholar]
  56. Lima ID, Olson DB, Doney SC. 2002. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: biological production and community structure. J. Geophys. Res. Oceans 107:25–121 [Google Scholar]
  57. Lindemann C, St. John MA. 2014. A seasonal diary of phytoplankton in the North Atlantic. Front. Mar. Sci. 1:37 [Google Scholar]
  58. Lovejoy S, Currie WJS, Claeroboudt TY, Bourget E, Roff JC, Schertzer D. 2001. Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity. J. Plankton Res. 23:117–41 [Google Scholar]
  59. Mackas DL. 1984. Spatial autocorrelation of plankton community composition in a continental shelf ecosystem. Limnol. Oceanogr. 29:451–57 [Google Scholar]
  60. Mackas DL, Denman KL, Abbott MR. 1985. Plankton patchiness: biology in the physical vernacular. Bull. Mar. Sci. 37:652–74 [Google Scholar]
  61. Mahadevan A. 2006. Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales?. Ocean Model. 14:222–40 [Google Scholar]
  62. Mahadevan A, Archer D. 2000. Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res. Oceans 105:1209–25 [Google Scholar]
  63. Mahadevan A, Campbell J. 2002. Biogeochemical patchiness at the sea surface. Geophys. Res. Lett. 29:1926 [Google Scholar]
  64. Mahadevan A, D'Asaro E, Lee C, Perry MJ. 2012. Eddy-driven stratification initiates North Atlantic Spring phytoplankton blooms. Science 337:54–58 [Google Scholar]
  65. Mahadevan A, Oliger J, Street R. 1996a. A nonhydrostatic mesoscale ocean model. Part I: well-posedness and scaling. J. Phys. Oceanogr. 26:1868–80 [Google Scholar]
  66. Mahadevan A, Oliger J, Street R. 1996b. A nonhydrostatic mesoscale ocean model. Part II: numerical implementation. J. Phys. Oceanogr. 26:1881–900 [Google Scholar]
  67. Mahadevan A, Tandon A. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model. 14:241–56 [Google Scholar]
  68. Mahadevan A, Tandon A, Ferrari R. 2010. Rapid changes in the mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res. Oceans 115:C03017 [Google Scholar]
  69. Mahadevan A, Thomas LN, Tandon A. 2008. Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.”. Science 320:448 [Google Scholar]
  70. Martin A. 2003. Plankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr. 57:125–74 [Google Scholar]
  71. Martin A, Richards K, Bracco A, Provenzale A. 2002. Patchy productivity in the open ocean. Glob. Biogeochem. Cycles 16:9–19 [Google Scholar]
  72. McGillicuddy DJ Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci.8 125–59
  73. McGillicuddy DJ Jr, Robinson AR, Siegel DA, Jannasch HW, Johnson R. et al. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–66 [Google Scholar]
  74. McNeil JD, Jannasch HW, Dickey T, McGillicuddy DJ Jr, Brzezinski M, Sakamoto CM. 1999. New chemical, bio-optical and physical observations of upper ocean response to the passage of a mesoscale eddy off Bermuda. J. Geophys. Res. Oceans 104:15537–48 [Google Scholar]
  75. McWilliams JC, Colas F, Molemaker M. 2009. Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett. 36:L18602 [Google Scholar]
  76. Mensa JA, Garraffo Z, Griffa A, Özgökmen TM, Haza A, Veneziani M. 2013. Seasonality of the submesoscale dynamics in the gulf stream region. Ocean Dyn. 63:923–41 [Google Scholar]
  77. Molemaker M, McWilliams JC, Yavneh I. 2005. Baroclinic instability and loss of balance. J. Phys. Oceanogr. 35:1505–17 [Google Scholar]
  78. Nagai T, Tandon A, Kunze E, Mahadevan A. 2015. Spontaneous generation of near-inertial waves by the Kuroshio Front. J. Phys. Oceanogr. 45:2381–406
  79. Niiler P. 1969. On the Ekman divergence in an oceanic jet. J. Geophys. Res. 74:7048–52 [Google Scholar]
  80. Okubo A. 1991. Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences. Deep-Sea Res. 17:445–54 [Google Scholar]
  81. Omand MM, D'Asaro EA, Lee CM, Perry M-J, Briggs N. et al. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348:54–58 [Google Scholar]
  82. Omand MM, Mahadevan A. 2013. Large-scale alignment of oceanic nitrate and density. J. Geophys. Res. Oceans 118:5322–32 [Google Scholar]
  83. Omand MM, Mahadevan A. 2015. Shape of the oceanic nitracline. Biogeosciences 12:3273–87 [Google Scholar]
  84. Owen RW. 1989. Microscale and finescale variations of small plankton in coastal and pelagic environments. J. Mar. Res. 47:197–240 [Google Scholar]
  85. Palter JB, Lozier SM, Barber RT. 2005. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437:687–92 [Google Scholar]
  86. Pasquero C, Bracco A, Provenzale A. 2005. Impact of spatiotemporal variability of the nutrient flux on primary productivity in the ocean. J. Geophys. Res. Oceans 110:C07005 [Google Scholar]
  87. Pollard RT, Regier L. 1990. Large variations in potential vorticity at small spatial scales in the upper ocean. Nature 348:227–29 [Google Scholar]
  88. Pollard RT, Regier L. 1992. Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr. 22:609–25 [Google Scholar]
  89. Ramachandran S, Tandon A, Mahadevan A. 2014. Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans 119:8495–511 [Google Scholar]
  90. Rudnick DL. 1996. Intensive surveys of the Azores front: 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res. Oceans 101:16291–303 [Google Scholar]
  91. Ruiz S, Pascual A, Garau B, Pujol I, Tintore J. 2009. Vertical motion in the upper ocean from glider and altimetry data. Geophys. Res. Lett. 36:L14607 [Google Scholar]
  92. Schmidtko S, Johnson GC, Lyman J. 2013. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans 118:1658–72 [Google Scholar]
  93. Shay LK, Cook TM, An PE. 2003. Submesoscale coastal ocean flows detected by very high frequency radar and autonomous underwater vehicles. J. Atmos. Ocean. Technol. 20:1583–99 [Google Scholar]
  94. Shcherbina AY, D'Asaro EA, Lee CM, Klymak JM, Molemaker MJ, McWilliams JC. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett. 40:4706–11 [Google Scholar]
  95. Shearman RK, Barth JM, Kosro PM. 1999. Diagnosis of three-dimensional circulation associated with mesoscale motion in the California current. J. Phys. Oceanogr. 29:651–70 [Google Scholar]
  96. Siegel DA, Doney SC, Yoder JA. 2002. The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis. Science 296:730–33 [Google Scholar]
  97. Siegel DA, McGillicuddy DJ Jr, Fields E. 1999. Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J. Geophys. Res. Oceans 104:13359–79 [Google Scholar]
  98. Spall MA. 1995. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res. Oceans 100:2543–57 [Google Scholar]
  99. Spall SA, Richards KJ. 2000. A numerical model of mesoscale frontal instabilities and plankton dynamics—I. Model formulation and initial experiments. Deep-Sea Res. I 47:1261–301 [Google Scholar]
  100. Stone PH. 1970. On non-geostrophic baroclinic stability: part II. J. Atmos. Sci. 27:721–27 [Google Scholar]
  101. Sverdrup HU. 1953. On conditions for the vernal bloom of phytoplankton. J. Cons. Int. Explor. Mer 18:287–95 [Google Scholar]
  102. Tandon A, Garrett C. 1994. Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr. 24:1419–24 [Google Scholar]
  103. Taniguchi DAA, Franks PJS, Poulin FJ. 2014. Planktonic biomass size spectra: an emergent property of size-dependent physiological rates, food web dynamics, and nutrient regimes. Mar. Ecol. Prog. Ser. 514:13–33 [Google Scholar]
  104. Taylor J, Ferrari R. 2009. On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622:103–13 [Google Scholar]
  105. Taylor J, Ferrari R. 2011a. Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett. 38:L23601 [Google Scholar]
  106. Taylor J, Ferrari R. 2011b. Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol. Oceanogr. 56:2293–307 [Google Scholar]
  107. Thomas LN. 2005. Destruction of potential vorticity by winds. J. Phys. Oceanogr. 35:2457–66 [Google Scholar]
  108. Thomas LN, Lee CM. 2005. Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr. 35:1086–102 [Google Scholar]
  109. Thomas LN, Rhines PB. 2002. Nonlinear stratified spin-up. J. Fluid Mech. 473:211–44 [Google Scholar]
  110. Thomas LN, Tandon A, Mahadevan A. 2008. Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime MW Hecht, H Hasumi 17–38 Geophys. Monogr 177 Washington, DC: Am. Geophys. Union [Google Scholar]
  111. Tintore J, Gomis D, Alonso S, Parrilla G. 1991. Mesoscale dynamics and vertical motion in the Alboran Sea. J. Phys. Oceanogr. 21:811–23 [Google Scholar]
  112. Williams RG, Follows MJ. 1998. The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep-Sea Res. I 45:461–89 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error