SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×1028 cells—approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alio C. 2008. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ. Microbiol. 10:2444–54 [Google Scholar]
  2. Aluwihare LI, Repeta DJ, Chen RF. 1997. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387:166–69 [Google Scholar]
  3. Angly FE, Willner D, Prieto-Davo A, Edwards RA, Schmieder R. et al. 2009. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLOS Comput. Biol. 5:e1000593 [Google Scholar]
  4. Apprill A, McNally S, Parsons R, Weber L. 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75:129–37 [Google Scholar]
  5. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257–63 [Google Scholar]
  6. Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. 2014. Proteorhodopsin. Biochim. Biophys. Acta. 1837:614–25 [Google Scholar]
  7. Bosdriesz E, Magnusdottir S, Bruggeman FJ, Teusink B, Molenaar D. 2015. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate. FEBS J 282:2394–407 [Google Scholar]
  8. Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D. et al. 2012. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8:595 [Google Scholar]
  9. Button DK, Robertson B, Gustafson E, Zhao X. 2004. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis-Menten paradigm of microbial kinetics. Appl. Environ. Microbiol. 70:5511–21 [Google Scholar]
  10. Campbell BJ, Yu LY, Heidelberg JF, Kirchman DL. 2011. Activity of abundant and rare bacteria in a coastal ocean. PNAS 108:12776–81 [Google Scholar]
  11. Carini P, Campbell EO, Morré J, Sañudo-Wilhelmy SA, Thrash JC. et al. 2014a. Discovery of a SAR11 growth requirement for thiamin's pyrimidine precursor and its distribution in the Sargasso Sea. ISME J 8:1727–38 [Google Scholar]
  12. Carini P, Steindler L, Beszteri S, Giovannoni SJ. 2013. Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J 7:592–602 [Google Scholar]
  13. Carini P, Van Mooy BAS, Thrash JC, White A, Zhao Y. et al. 2015. SAR11 lipid renovation in response to phosphate starvation. PNAS 112:7767–72 [Google Scholar]
  14. Carini P, White AE, Campbell EO, Giovannoni SJ. 2014b. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat. Commun. 5:4346 [Google Scholar]
  15. Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Vergin K. 2004. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol. Oceanogr. 49:1073–83 [Google Scholar]
  16. Carlson CA, Hansell DA, Nelson NB, Siegel DA, Smethie WM. et al. 2010. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep-Sea Res. II 57:1433–45 [Google Scholar]
  17. Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. 2008. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 3:283–95 [Google Scholar]
  18. Cohan FM. 2006. Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philos. Trans. R. Soc. Lond. B 361:1985–96 [Google Scholar]
  19. Cohan FM, Perry EB. 2007. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17:R373–86 [Google Scholar]
  20. Dethlefsen L, Schmidt TM. 2007. Performance of the translational apparatus varies with the ecological strategies of bacteria. J. Bacteriol. 189:3237–45 [Google Scholar]
  21. Dixon JL, Beale R, Nightingale PD. 2011. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source. Biogeosciences 8:2707–16 [Google Scholar]
  22. Dixon JL, Beale R, Nightingale PD. 2013. Production of methanol, acetaldehyde, and acetone in the Atlantic Ocean. Geophys. Res. Lett. 40:4700–5 [Google Scholar]
  23. Dufresne A, Garczarek L, Partensky F. 2005. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:R14 [Google Scholar]
  24. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA. et al. 2012. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–99 [Google Scholar]
  25. Eiler A, Mondav R, Sinclair L, Fernandez-Vidal L, Scofield DG. et al. 2016. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria. ISME J 10:1902–14 [Google Scholar]
  26. Elifantz H, Malmstrom RR, Cottrell MT, Kirchman DL. 2005. Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl. Environ. Microbiol. 71:7799–805 [Google Scholar]
  27. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL. et al. 2013. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 4:1111–19 [Google Scholar]
  28. Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. 2013. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLOS ONE 8:e83383 [Google Scholar]
  29. Field KG, Gordon D, Wright T, Rappé MS, Urbach E. et al. 1997. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 61:63–70 [Google Scholar]
  30. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. 2013. Glycolytic strategy as a tradeoff between energy yield and protein cost. PNAS 110:10039–44 [Google Scholar]
  31. Flärdh K, Cohen PS, Kjelleberg S. 1992. Ribosomes exist in large excess over the apparent demand for protein-synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 174:6780–88 [Google Scholar]
  32. Fry JC. 1990. Oligotrophs. Microbiology of Extreme Environments C Edwards 93–116 New York: McGraw-Hill [Google Scholar]
  33. Fuchs BM, Zubkov MV, Sahm K, Burkill PH, Amann R. 2000. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ. Microbiol. 2:191–201 [Google Scholar]
  34. Fuhrmann JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles?. Nat. Rev. Microbiol. 6:488–94 [Google Scholar]
  35. García-Martínez J, Rodríguez-Valera F. 2000. Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol. Ecol. 9:935–48 [Google Scholar]
  36. Ghai R, Mizuno CM, Picazo A, Camacho A, Rodríguez-Valera F. 2013. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci. Rep. 3:2471 [Google Scholar]
  37. Giovannoni SJ, Bibbs L, Cho JC, Stapels MD, Desiderio R. et al. 2005a. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85 [Google Scholar]
  38. Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR. 1990. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. Environ. Microbiol. 56:2572–75 [Google Scholar]
  39. Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA. et al. 2008. The small genome of an abundant coastal ocean methylotroph. Environ. Microbiol. 10:1771–82 [Google Scholar]
  40. Giovannoni SJ, Temperton B, Zhao Y. 2013. Giovannoni et al. reply. Nature 499:E4–5 [Google Scholar]
  41. Giovannoni SJ, Thrash J, Temperton B. 2014. Implications of streamlining theory for microbial ecology. ISME J 8:1553–65 [Google Scholar]
  42. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL. et al. 2005b. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–45 [Google Scholar]
  43. Giovannoni SJ, Vergin KL. 2012. Seasonality in ocean microbial communities. Science 335:671–76 [Google Scholar]
  44. Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P. et al. 2012. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3:e00252–12 [Google Scholar]
  45. Grzymski JJ, Dussaq AM. 2012. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J 6:71–80 [Google Scholar]
  46. Heikes BG, Chang WN, Pilson MEQ, Swift E, Singh HB. et al. 2002. Atmospheric methanol budget and ocean implication. Glob. Biogeochem. Cycles 16:80–1–13 [Google Scholar]
  47. Hellweger FL, van Sebille E, Fredrick ND. 2014. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345:1346–49 [Google Scholar]
  48. Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R. et al. 2016. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ. Microbiol. 18:159–73 [Google Scholar]
  49. Hunt DE, Lin Y, Church MJ, Karl DM, Tringe SG. et al. 2013. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl. Environ. Microbiol. 79:177–84 [Google Scholar]
  50. Kerkhof L, Kemp P. 1999. Small ribosomal RNA content in marine Proteobacteria during non-steady-state growth. FEMS Microbiol. Ecol. 30:253–60 [Google Scholar]
  51. Kirchman DL. 2016. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8:285–309 [Google Scholar]
  52. Klappenbach JA, Dunbar JM, Schmidt TM. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66:1328–33 [Google Scholar]
  53. Kramer JG, Singleton FL. 1992. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Appl. Environ. Microbiol. 58:201–7 [Google Scholar]
  54. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317–27 [Google Scholar]
  55. Laghdass M, Catala P, Caparros J, Oriol L, Lebaron P, Obernosterer I. 2012. High contribution of SAR11 to microbial activity in the north west Mediterranean Sea. Microb. Ecol. 63:324–33 [Google Scholar]
  56. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S. et al. 2009. The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–33 [Google Scholar]
  57. Li GW, Burkhardt D, Gross C, Weissman JS. 2014. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–35 [Google Scholar]
  58. Luo H. 2015. Evolutionary origin of a streamlined marine bacterioplankton lineage. ISME J 9:1423–33 [Google Scholar]
  59. Lynch M. 2006. Streamlining and simplification of microbial genome architecture. Annu. Rev. Microbiol. 60:327–49 [Google Scholar]
  60. Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302:1401–4 [Google Scholar]
  61. Malmstrom RR, Cottrell MT, Elifantz H, Kirchman DL. 2005. Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Appl. Environ. Microbiol. 71:2979–86 [Google Scholar]
  62. Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. 2004a. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl. Environ. Microbiol. 70:4129–35 [Google Scholar]
  63. Malmstrom RR, Kiene RP, Kirchman DL. 2004b. Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol. Oceanogr. 49:597–606 [Google Scholar]
  64. Mary I, Heywood JL, Fuchs BM, Amann R, Tarran GA. et al. 2006. SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect. Aquat. Microb. Ecol. 45:107–13 [Google Scholar]
  65. McRose D, Guo J, Monier A, Sudek S, Wilken S. et al. 2014. Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages. ISME J 8:2517–29 [Google Scholar]
  66. Meyer MM, Ames TD, Smith DP, Weinberg Z, Schwalbach MS. et al. 2009. Identification of candidate structured RNAs in the marine organism ‘Candidatus Pelagibacter ubique. BMC Genom 10:268 [Google Scholar]
  67. Mopper K, Zhou XL, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD. 1991. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353:60–62 [Google Scholar]
  68. Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3:e00036–12 [Google Scholar]
  69. Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA. et al. 2002. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–10 [Google Scholar]
  70. Nelson CE, Carlson CA. 2012. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environ. Microbiol. 14:1500–16 [Google Scholar]
  71. Ni J, Xu M, He Z, Sun G, Guo J. 2016. Novel insight into evolutionary process from average genome size in marine. Appl. Ecol. Environ. Res. 14:65–75 [Google Scholar]
  72. Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P. et al. 2015. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J 9:1747–63 [Google Scholar]
  73. Paerl RW, Bertrand EM, Allen AE, Palenik B, Azam F. 2015. Vitamin B1 ecophysiology of marine picoeukaryotic algae: strain-specific differences and a new role for bacteria in vitamin cycling. Limnol. Oceanogr. 60:215–28 [Google Scholar]
  74. Pakulski JD, Benner R. 1994. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr. 39:930–40 [Google Scholar]
  75. Parada AE, Needham DM, Fuhrman JA. 2015. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18:1403–14 [Google Scholar]
  76. Paver SF, Hayek KR, Gano KA, Fagen JR, Brown CT. et al. 2013. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ. Microbiol. 15:2489–504 [Google Scholar]
  77. Pernthaler J, Alonso C. 2006. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ. Microbiol. 8:2022–30 [Google Scholar]
  78. Popendorf KJ, Lomas MW, Van Mooy BAS. 2011. Microbial sources of intact polar diacylglycerolipids in the Western North Atlantic Ocean. Org. Geochem. 42:803–11 [Google Scholar]
  79. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–33 [Google Scholar]
  80. Reisch CR, Stoudemayer MJ, Varaljay VA, Amster IJ, Moran MA, Whitman WB. 2011. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature 473:208–11 [Google Scholar]
  81. Rich JH, Ducklow HW, Kirchman DL. 1996. Concentrations and uptake of neutral monosaccharides along 140°W in the equatorial Pacific: contribution of glucose to heterotrophic bacterial activity and the DOM flux. Limnol. Oceanogr. 41:595–604 [Google Scholar]
  82. Romanova ND, Sazhin AF. 2010. Relationships between the cell volume and the carbon content of bacteria. Oceanology 50:522–30 [Google Scholar]
  83. Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P. et al. 2015. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. PNAS 112:1173–78 [Google Scholar]
  84. Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J. 2009. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ. Microbiol. 11:2078–93 [Google Scholar]
  85. Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. 2010. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ. Microbiol. 12:490–500 [Google Scholar]
  86. Skoog A, Benner R. 1997. Aldoses in various size fractions of marine organic matter: implications for carbon cycling. Limnol. Oceanogr. 42:1803–13 [Google Scholar]
  87. Skoog A, Biddanda B, Benner R. 1999. Bacterial utilization of dissolved glucose in the upper water column of the Gulf of Mexico. Limnol. Oceanogr. 44:1625–33 [Google Scholar]
  88. Smith DP, Kitner JB, Norbeck AD, Clauss TR, Lipton MS. et al. 2010. Transcriptional and translational regulatory responses to iron limitation in the globally distributed marine bacterium Candidatus Pelagibacter ubique. PLOS ONE 5:e10487 [Google Scholar]
  89. Smith DP, Nicora CD, Carini P, Lipton MS, Norbeck AD. et al. 2016. Proteome remodeling in response to sulfur limitation in “Candidatus Pelagibacter ubique. mSystems 1:e00068–16 [Google Scholar]
  90. Smith DP, Thrash JC, Nicora CD, Lipton MS, Burnum-Johnson KE. et al. 2013. Proteomic and transcriptomic analyses of “Candidatus Pelagibacter ubique” describe the first PII-independent response to nitrogen limitation in a free-living alphaproteobacterium. mBio 4:e00133–12 [Google Scholar]
  91. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD. et al. 2009. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3:93–105 [Google Scholar]
  92. Steglich C, Futschik ME, Lindell D, Voss B, Chisholm SW, Hess WR. 2008. The challenge of regulation in a minimal photoautotroph: non-coding RNAs in Prochlorococcus. PLOS Genet. 4:e1000173 [Google Scholar]
  93. Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ. 2011. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLOS ONE 6:e19725 [Google Scholar]
  94. Stingl U, Tripp HJ, Giovannoni SJ. 2007. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J 1:361–71 [Google Scholar]
  95. Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP. et al. 2011. One carbon metabolism in SAR11 pelagic marine bacteria. PLOS ONE 6:e23973 [Google Scholar]
  96. Sun J, Todd JD, Thrash JC, Qian Y, Qian MC. et al. 2016. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat. Microbiol. 1:16065 [Google Scholar]
  97. Suttle CA. 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12 [Google Scholar]
  98. Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M. et al. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. PNAS 110:11463–68 [Google Scholar]
  99. Taylor JD, Cottingham SD, Billinge J, Cunliffe M. 2014. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J 8:245–48 [Google Scholar]
  100. Teira E, Martínez-García S, Lønborg C, Alvarez-Salgado XA. 2009. Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system. Environ. Microbiol. Rep. 1:545–54 [Google Scholar]
  101. Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P. et al. 2011. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci. Rep. 1:13 [Google Scholar]
  102. Thrash JC, Temperton B, Swan BK, Landry ZC, Woyke T. et al. 2014. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J 8:1440–51 [Google Scholar]
  103. Tripp HJ. 2013. The unique metabolism of SAR11 aquatic bacteria. J. Microbiol. 51:147–53 [Google Scholar]
  104. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JW, Wilhelm LJ, Giovannoni SJ. 2008. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–44 [Google Scholar]
  105. Tripp HJ, Schwalbach MS, Meyer MM, Kitner JB, Breaker RR, Giovannoni SJ. 2009. Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. Environ. Microbiol. 11:230–38 [Google Scholar]
  106. Våge S, Storesund JE, Giske J, Thingstad TF. 2014. Optimal defense strategies in an idealized microbial food web under trade-off between competition and defense. PLOS ONE 9:e101415 [Google Scholar]
  107. Våge S, Storesund JE, Thingstad TF. 2013. SAR11 viruses and defensive host strains. Nature 499:E3–4 [Google Scholar]
  108. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM. et al. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72 [Google Scholar]
  109. Vergin KL, Beszteri B, Monier A, Thrash JC, Temperton B. et al. 2013a. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J 7:1322–32 [Google Scholar]
  110. Vergin KL, Done B, Carlson CA, Giovannoni SJ. 2013b. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat. Microb. Ecol. 71:1–13 [Google Scholar]
  111. Vergin KL, Tripp HJ, Wilhelm LJ, Denver DR, Rappé MS, Giovannoni SJ. 2007. High intraspecific recombination rate in a native population of Candidatus Pelagibacter ubique (SAR11). Environ. Microbiol. 9:2430–40 [Google Scholar]
  112. Vieira-Silva S, Rocha EPC. 2010. The systemic imprint of growth and its uses in ecological (meta)genomics. PLOS Genet. 6:e1000808 [Google Scholar]
  113. Vieira-Silva S, Touchon M, Rocha EPC. 2010. No evidence for elemental-based streamlining of prokaryotic genomes. Trends Ecol. Evol. 25:319–20 [Google Scholar]
  114. Viklund J, Martijn J, Ettema TJG, Andersson SGE. 2013. Comparative and phylogenomic evidence that the alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade. PLOS ONE 8:e78858 [Google Scholar]
  115. Wang LR, Chen S, Vergin KL, Giovannoni SJ, Chan SW. et al. 2011. DNA phosphorothioation is widespread and quantized in bacterial genomes. PNAS 108:2963–68 [Google Scholar]
  116. Wang Z, Wu M. 2015. An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci. Rep. 5:7949 [Google Scholar]
  117. Wilhelm LJ, Tripp HJ, Givan SA, Smith DP, Giovannoni SJ. 2007. Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol. Direct 2:27 [Google Scholar]
  118. Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM. et al. 2012. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:1883–900 [Google Scholar]
  119. Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ. et al. 2012. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337:1661–65 [Google Scholar]
  120. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL. et al. 2013. Abundant SAR11 viruses in the ocean. Nature 494:357–60 [Google Scholar]
  121. Zubkov MV, Martin AP, Hartmann M, Grob C, Scanlan DJ. 2015. Dominant oceanic bacteria secure phosphate using a large extracellular buffer. Nat. Commun. 6:7878 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error