This is a personal review of how one can apply the principles of physical chemistry to study the ocean and other natural waters. Physical chemistry is the study of chemical thermodynamics, kinetics, and molecular structure. My long-term interest in the chemistry of seawater is an extension of my early work on water and the interactions that occur in aqueous electrolyte solutions, which I began as part of my PhD research on the thermodynamics of organic acids in water. Over the years, I have attempted to apply the tools of physical chemistry to elucidate the structures of seawater, brines, lakes, and rivers. I have developed and continue to work on ionic interaction models that can be applied to all natural waters. Here, I reflect on how my students, postdocs, research assistants, and scientific colleagues have influenced my life, my career, and the field of marine physical chemistry. My hope was and is to use these tools to understand the molecular structures of natural waters.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bakker DCE, Watson AJ, Law CS. 2001. Southern Ocean iron enrichment promotes inorganic carbon drawdown. Deep-Sea Res. II 48:2483–507 [Google Scholar]
  2. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T. et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702 [Google Scholar]
  3. Brewer PG. 1978. Direct observation of the oceanic CO2 increase. Geophys. Res. Lett. 5:997–1000 [Google Scholar]
  4. Brewer PG, Bradshaw A. 1975. The effect of non-ideal composition of seawater on salinity and density. J. Mar. Res. 33:157–75 [Google Scholar]
  5. Brewer PG, Wong G, Spenser E. 1975. An oceanic calcium problem?. Earth Planet. Sci. Lett. 26:81–87 [Google Scholar]
  6. Broecker WS, Takahashi T. 1966. Calcium carbonate precipitation on the Bahama Banks. J. Geophys. Res. 71:1575–602 [Google Scholar]
  7. Broecker WS, Takahashi T, Peng T-H. 1985. Reconstruction of the past atmospheric CO2 contents of the chemistry of the contemporary ocean: an evaluation Tech. Rep. DOE/OR 857, US Dep. Energy, Washington, DC
  8. Bustos H, Morse JW, Millero FJ. 2009. The formation of whitings on the Little Bahama Banks. Mar. Chem. 113:1–8 [Google Scholar]
  9. Chanson M, Millero FJ. 2006. The solubility of boric acid in electrolyte solutions. J. Solut. Chem. 35:689–703 [Google Scholar]
  10. Chen C-TA. 1978. Decomposition of calcium carbonate and organic carbon in the deep oceans. Science 201:735–36 [Google Scholar]
  11. Chen C-TA. 1993. The oceanic anthropogenic CO2 sink. Chemosphere 27:1041–64 [Google Scholar]
  12. Chen C-TA, Chen L-S, Millero FJ. 1978. The speed of sound in NaCl, MgCl2, Na2SO4, and MgSO4 aqueous solutions as functions of concentration, temperature, and pressure. J. Acoust. Soc. Am. 63:1795–800 [Google Scholar]
  13. Chen C-TA, Emmet RT, Millero FJ. 1977a. The apparent molal volumes of aqueous solutions of NaCl, KCl, MgCl2, Na2SO4, and MgSO4 from 0 to 1000 bars at 0, 25, and 50°C. J. Chem. Eng. Data 22:201–7 [Google Scholar]
  14. Chen C-TA, Fine RA, Millero FJ. 1977b. The equation of state of pure water determined from sound speeds. J. Chem. Phys. 66:2142–44 [Google Scholar]
  15. Chen C-TA, Millero FJ. 1979. Gradual increase of oceanic CO2. Nature 277:205–6 [Google Scholar]
  16. Chen C-TA, Millero FJ. 1981. The equation of state of D2O determined from sound speeds. J. Chem. Phys. 75:3553–58 [Google Scholar]
  17. Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT. et al. 2004. Southern Ocean Iron Enrichment Experiment: carbon cycling in high- and low-Si waters. Science 304:408–14 [Google Scholar]
  18. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S. et al. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501 [Google Scholar]
  19. Connaughton LM, Hershey JP, Millero FJ. 1986. PVT properties of concentrated electrolytes. V. The density of NaCl, Na2SO4, MgCl2 and MgSO4 from 0 to 100°C. J. Solut. Chem. 15:989–1002 [Google Scholar]
  20. de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A. et al. 2005. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. 110:C09S16 [Google Scholar]
  21. Dickson AG, Millero FJ. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–43 [Google Scholar]
  22. Duedall IW. 1968. Partial molal volumes of 16 salts in seawater. Environ. Sci. Technol. 2:706–7 [Google Scholar]
  23. Duer WC, Leung WH, Oglesby GB, Millero FJ. 1976. Seawater—a test for multicomponent electrolyte solution theories. II. Enthalpy of mixing and dilution of the major sea salts. J. Solut. Chem. 5:509–28 [Google Scholar]
  24. Fine RA, Millero FJ. 1975. The high pressure PVT properties of deuterium oxide. J. Chem. Phys. 63:89–95 [Google Scholar]
  25. Friis K, Körtzinger A, Pätsch J, Wallace DWR. 2005. On the temporal increase of anthropogenic CO2 in the subpolar North Atlantic. Deep-Sea Res. I 52:681–98 [Google Scholar]
  26. Gleitz M, Rutgers M, Loeff VD, Thomas DN, Dieckmann GS, Millero FJ. 1995. Seasonal changes of inorganic carbon, oxygen and nutrient concentrations in Antarctic Sea ice brines. Mar. Chem. 51:81–91 [Google Scholar]
  27. González-Dávila M, Santana-Casiano JM, Millero FM. 2005. Oxidation of iron (II) nanomolar with H2O2 in seawater. Geochim. Cosmochim. Acta 69:83–93 [Google Scholar]
  28. González-Dávila M, Santana-Casiano JM, Millero FM. 2006. Competition between O2 and H2O2 in the oxidation of Fe(II) in seawater. J. Solut. Chem. 35:95–111 [Google Scholar]
  29. Gordon AS, Millero FJ. 1983. Measurement of attached bacteria using a sorption microcalorimeter. J. Microbiol. Methods 1:291–96 [Google Scholar]
  30. Gordon AS, Millero FJ. 1987. Sorption of copper by a marine vibrio in seawater. Va. J. Sci. 38:194–99 [Google Scholar]
  31. Gordon AS, Millero FJ, Gerchakov SM. 1982. Microcalorimetric measurements of glucose metabolism by marine bacterium Vibrio alginolyticus. Appl. Environ. Microbiol. 44:1102–9 [Google Scholar]
  32. Goyet C, Poisson A. 1989. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Res. A 36:1635–54 [Google Scholar]
  33. Gruber N, Sarmiento J, Stocker T. 1996. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10:809–37 [Google Scholar]
  34. Hansson I. 1973. A new set of acidity constants for carbonic acid and boric acid in seawater. Deep-Sea Res. Oceanogr. Abstr. 20:461–78 [Google Scholar]
  35. Hepler LG. 1957. Partial molal volumes of aqueous ions. J. Phys. Chem. 61:1426–28 [Google Scholar]
  36. Hiscock W, Millero FJ. 2005. Nutrient and carbon parameters during the Southern Ocean Iron Experiment (SOFeX). Deep-Sea Res. I 52:2086–108 [Google Scholar]
  37. Hiscock W, Millero FJ. 2006. Alkalinity of the anoxic waters in the western Black Sea. Deep-Sea Res. II 53:1787–801 [Google Scholar]
  38. Intergov. Oceanogr. Comm., Sci. Comm. Ocean. Res., Int. Assoc. Phys. Sci. Ocean 2010. The international thermodynamic equation of seawater—2010: calculation and use of thermodynamic properties Man. Guides No. 56, Intergov. Oceanogr. Comm., UN Educ. Sci. Cult. Organ., Paris
  39. King DW, Lounsbury HA, Millero FJ. 1995. Rates and mechanism of Fe(II) oxidation at nanomolar concentrations. Environ. Sci. Technol. 29:818–24 [Google Scholar]
  40. Latimer WM. 1952. Oxidation Potentials Englewood, NJ: Prentice Hall, 2nd ed..
  41. Lepple FK, Millero FJ. 1971. The isothermal compressibility of seawater near one atmosphere. Deep-Sea Res. Oceanogr. Abstr. 18:1233–54 [Google Scholar]
  42. Lewis E, Wallace DWR. 1998. Program developed for CO2 system calculations Rep. ORNL/CDIAC-105, Oak Ridge Natl. Lab., Oak Ridge, TN
  43. Lewis GN, Randall M. 1961. Thermodynamics Revis. KS Pitzer, L Brewer New York: McGraw-Hill, 2nd ed..
  44. Martin JH, Coal KH, Johnson KS, Fitzwater SE, Gordon RM. et al. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–29 [Google Scholar]
  45. McDougall TJ, Jackett DR, Millero FJ, Pawlowicz R, Barker PM. 2012. A global algorithm for estimating absolute salinity. Ocean Sci. 8:1117–28 [Google Scholar]
  46. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18:897–907 [Google Scholar]
  47. Millero FJ. 1967. High precision magnetic float densimeter. Rev. Sci. Instrum. 38:1441–44 [Google Scholar]
  48. Millero FJ. 1968. Relative viscosity and apparent molal volume of N-methylpropionamide solutions at various temperatures. J. Phys. Chem. 72:3209–14 [Google Scholar]
  49. Millero FJ. 1969. The partial molal volume of ions in seawater. Limnol. Oceanogr. 14:376–85 [Google Scholar]
  50. Millero FJ. 1971. The molal volumes of electrolytes. Chem. Rev. 71:147–76 [Google Scholar]
  51. Millero FJ. 1972. The partial molal volumes of electrolytes in aqueous solution. Structure and Transport Processes in Water and Aqueous Solutions RA Horne 519–95 New York: Wiley-Interscience [Google Scholar]
  52. Millero FJ. 1974a. The physical chemistry of seawater. Annu. Rev. Earth Planet. Sci. 2:101–150 [Google Scholar]
  53. Millero FJ. 1974b. Seawater as a multicomponent electrolyte solution. The Sea: Ideas and Observations on Progress in the Study of the Seas 5 Marine Chemistry ED Goldberg 3–80 New York: Wiley-Interscience [Google Scholar]
  54. Millero FJ. 1977. Thermodynamic models for the state of metal ions in seawater. The Sea: Ideas and Observations on Progress in the Study of the Seas 6 Marine Modeling ED Goldberg, IN McCave, JJ O'Brien, JH Steele 653–93 New York: Wiley-Interscience [Google Scholar]
  55. Millero FJ. 1979a. Effects of pressure and temperature on activity coefficients. Activity Coefficients in Electrolyte Solutions 2 RM Pytkowicz 63–151 Boca Raton, FL: CRC Press [Google Scholar]
  56. Millero FJ. 1979b. The thermodynamics of the carbonate system in seawater. Geochim. Cosmochim. Acta 43:1651–61 [Google Scholar]
  57. Millero FJ. 1982a. The effect of pressure on the solubility of minerals in water and seawater. Geochim. Cosmochim. Acta 46:11–22 [Google Scholar]
  58. Millero FJ. 1982b. Use of models to determine ionic interactions in natural waters. Thalass. Jugosl. 18:253–91 [Google Scholar]
  59. Millero FJ. 1983a. Influence of pressure on chemical processes in the sea. Chemical Oceanography 5 JP Riley, R Chester 1–88 London: Academic, 2nd ed.. [Google Scholar]
  60. Millero FJ. 1983b. The thermodynamics of seawater, part II. Thermochemical properties. Ocean Sci. Eng. 8:1–40 [Google Scholar]
  61. Millero FJ. 1984. The conductivity-density chlorinity relationship for estuarine water. Limnol. Oceanogr. 29:1317–21 [Google Scholar]
  62. Millero FJ. 1985. The effect of ionic interactions on the oxidation of metals in natural waters. Geochim. Cosmochim. Acta 49:547–53 [Google Scholar]
  63. Millero FJ. 1987. Estimate of the life time of superoxide in seawater. Geochim. Cosmochim. Acta 51:351–53 [Google Scholar]
  64. Millero FJ. 1991a. The oxidation of H2S in Chesapeake Bay. Estuar. Coast. Shelf Sci. 33:521–27 [Google Scholar]
  65. Millero FJ. 1991b. The oxidation of H2S in Framvaren Fjord. Limnol. Oceanogr. 36:1007–14 [Google Scholar]
  66. Millero FJ. 1991c. The rates of oxidation of H2S in Black Sea waters. Deep-Sea Res. A 38:Suppl. 2S1139–50 [Google Scholar]
  67. Millero FJ. 1997a. The effect of iron on carbon dioxide in the oceans. Sci. Prog. 80:147–68 [Google Scholar]
  68. Millero FJ. 1997b. The influence of iron on carbon dioxide in surface seawater. Marine Chemistry: An Environmental Analytical Chemistry Approach A Gianguzza, E Pellizzetti, S Sammartano 381–98 New York: Kluwer Acad. [Google Scholar]
  69. Millero FJ. 1999. Modeling the effect of ionic interactions on radionuclides in natural waters. Actinide Speciation in High Ionic Strength Media D Reed, SB Clark, L Rao 39–61 New York: Kluwer Acad. [Google Scholar]
  70. Millero FJ. 2000. The activity coefficients of non-electrolytes in seawater. Mar. Chem. 70:5–22 [Google Scholar]
  71. Millero FJ. 2001a. Effect of change in the composition of seawater on the density-salinity relationship. Deep-Sea Res. I 47:1583–90 [Google Scholar]
  72. Millero FJ. 2001b. Physical Chemistry of Natural Waters New York: Wiley-Interscience
  73. Millero FJ. 2003. Physico-chemical controls on seawater. The Oceans and Marine Geochemistry H Elderfield 1–21 Treatise Geochem 6 Oxford, UK: Elsevier [Google Scholar]
  74. Millero FJ. 2007. The marine inorganic carbon cycle. Chem. Rev. 107:308–41 [Google Scholar]
  75. Millero FJ. 2010a. Carbonate constants for estuarine waters. Mar. Freshw. Res. 61:130–43 [Google Scholar]
  76. Millero FJ. 2010b. History of the equation of state of seawater. Oceanography 23:318–33 [Google Scholar]
  77. Millero FJ. 2013. Chemical Oceanography Boca Raton, FL: CRC Press, 4th ed..
  78. Millero FJ, Chen C-TA, Bradshaw A, Schleicher K. 1980. A new high pressure equation of state for seawater. Deep-Sea Res. A 27:255–64 [Google Scholar]
  79. Millero FJ, DiTrolio B. 2010. Use of thermodynamics in examining the effects of ocean acidification. Elements 6:293–97 [Google Scholar]
  80. Millero FJ, Drost-Hansen W. 1968. Apparent molal volumes of monovalent salt solutions at various temperatures. J. Chem. Eng. Data 13:330–33 [Google Scholar]
  81. Millero FJ, Feistel R, Wright DG, McDougall TJ. 2008a. The standard composition of seawater: the definition of a reference salinity scale. Deep-Sea Res. I 55:50–72 [Google Scholar]
  82. Millero FJ, Forsht D, Means D, Gieskes J, Kenyon K. 1978a. The density of North Pacific Ocean waters. J. Geophys. Res. 83:2359–64 [Google Scholar]
  83. Millero FJ, Gonzalez A, Brewer PG, Bradshaw A. 1976a. The density of North Atlantic and North Pacific deep waters. Earth Planet. Sci. Lett. 32:468–72 [Google Scholar]
  84. Millero FJ, Gonzalez A, Ward GK. 1976b. The density of seawater solutions at one atmosphere as a function of temperature and salinity. J. Mar. Res. 34:61–93 [Google Scholar]
  85. Millero FJ, Graham T, Huang F, Bustos H, Pierrot D. 2006. Dissociation constants for carbonic acid in seawater as a function of temperature and salinity. Mar. Chem. 100:80–94 [Google Scholar]
  86. Millero FJ, Hansen LD, Hoff EV. 1973a. The enthalpy of seawater from 0 to 30°C and 0 to 40‰ salinity. J. Mar. Res. 31:21–39 [Google Scholar]
  87. Millero FJ, Hershey JP. 1989. Thermodynamics and kinetics of hydrogen sulfide in natural waters. Biogenic Sulfur in the Environment ES Saltzman, WJ Cooper 282–313 Washington, DC: Am. Chem. Soc. [Google Scholar]
  88. Millero FJ, Hershey JP, Johnson G, Zhang JZ. 1989a. The solubility of SO2 and the dissociation of H2SO3 in NaCl solutions.. J. Atmos. Chem. 8:377–89 [Google Scholar]
  89. Millero FJ, Huang F. 2009. The density of seawater as a function of salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K). Ocean Sci. 5:91–100 [Google Scholar]
  90. Millero FJ, Huang F. 2011. The compressibility of seawater from 0 to 95°C at 1 atm. Mar. Chem. 126:149–54 [Google Scholar]
  91. Millero FJ, Huang F. 2013. The partial molal volume and compressibility of salts in seawater. Geochim. Cosmochim. Acta 104:19–28 [Google Scholar]
  92. Millero FJ, Huang F, Laferriere AL. 2002. The solubility of oxygen in the major sea salts and their mixtures. Geochim. Cosmochim. Acta 66:2349–59 [Google Scholar]
  93. Millero FJ, Huang F, Williams N, Waters J, Woosley R. 2009a. The effect of composition on the density of South Pacific Ocean waters. Mar. Chem. 114:56–62 [Google Scholar]
  94. Millero FJ, Huang F, Woosley R, Letcher R, Hansell D. 2011. Effect of dissolved organic carbon and alkalinity on the density of Arctic Ocean waters. Aquat. Geochem. 17:311–26 [Google Scholar]
  95. Millero FJ, Hubinger S, Fernandez M, Garnett S. 1987a. The oxidation of H2S in seawater as a function of temperature, pH and ionic strength. Environ. Sci. Technol. 21:439–43 [Google Scholar]
  96. Millero FJ, Knox JH, Emmet RT. 1972. A high-precision, variable-pressure magnetic float densimeter. J. Solut. Chem. 1:173–86 [Google Scholar]
  97. Millero FJ, Laferriere AL, Fernandez M, Hubinger S, Hershey JP. 1989b. Oxidation of hydrogen sulfide with hydrogen peroxide.. Environ. Sci. Technol. 23:209–13 [Google Scholar]
  98. Millero FJ, Leung WH. 1976. The thermodynamics of seawater at one atmosphere. Am. J. Sci. 276:1035–77 [Google Scholar]
  99. Millero FJ, Macchi G, Pettine M. 1981. The speciation of ions in Tiber river estuary waters. Estuar. Coast. Shelf Sci. 13:517–34 [Google Scholar]
  100. Millero FJ, Means D, Miller CM. 1978b. The densities of Mediterranean Sea waters. Deep-Sea Res. 25:563–69 [Google Scholar]
  101. Millero FJ, Morse JW, Chen C-TA. 1979. The carbonate system in the western Mediterranean Sea. Deep-Sea Res. A 26:1395–404 [Google Scholar]
  102. Millero FJ, Perron G, Desnoyers JE. 1973b. Heat capacity of seawater solutions from 5 to 35°C and 0.5 to 22‰ chlorinity. J. Geophys. Res. 78:4499–507 [Google Scholar]
  103. Millero FJ, Pierrot D. 1998. A chemical model for natural waters. Aquat. Geochem. 4:153–99 [Google Scholar]
  104. Millero FJ, Pierrot D. 2002. Speciation of metals in natural waters. Chemistry of Marine Water and Sediments A Gianguzza, E Pellizzetti, S Sammartano 193–220 Berlin: Springer-Verlag [Google Scholar]
  105. Millero FJ, Pierrot D. 2005. The thermochemical properties of seawater fit to the Pitzer equations. Mar. Chem. 94:81–99 [Google Scholar]
  106. Millero FJ, Pierrot D. 2007. The activity coefficients of Fe(III) complexes with hydroxide in NaCl and NaClO4 solutions. Geochim. Cosmochim. Acta 71:4825–33 [Google Scholar]
  107. Millero FJ, Poisson A. 1981. International one-atmosphere equation of state of seawater. Deep-Sea Res. A 28:625–29 [Google Scholar]
  108. Millero FJ, Roy RN. 1997. A chemical equilibrium model for the carbonate system in natural waters. Croat. Chem. Acta 70:1–38 [Google Scholar]
  109. Millero FJ, Schreiber DR. 1982. Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am. J. Sci. 282:1508–40 [Google Scholar]
  110. Millero FJ, Sharma VK, Karn B. 1991. The rate of reduction of Cu(II) with hydrogen peroxide in seawater. Mar. Chem. 36:71–83 [Google Scholar]
  111. Millero FJ, Sharp JD. 2013. Estimation of the partial molal adiabatic compressibility of ions in mixed electrolyte solutions using the Pitzer equations. J. Chem. Eng. Data 58:3458–63 [Google Scholar]
  112. Millero FJ, Sohn ML. 1991. Chemical Oceanography Boca Raton, FL: CRC Press
  113. Millero FJ, Sotolongo S. 1989. The oxidation of Fe(II) with H2O2 in seawater. Geochim. Cosmochim. Acta 53:1867–73 [Google Scholar]
  114. Millero FJ, Sotolongo S, Izaguirre M. 1987b. The kinetics of oxidation of Fe(II) in seawater. Geochim. Cosmochim. Acta 51:793–801 [Google Scholar]
  115. Millero FJ, Vinokurova F, Fernandez M, Hershey JP. 1987c. PVT properties of concentrated electrolytes. VI. The speed of sound and apparent molal compressibilities of NaCl, Na2SO4, MgCl2 and MgSO4 solutions from 0 to 100°C. J. Solut. Chem. 16:269–84 [Google Scholar]
  116. Millero FJ, Waters J, Woosley R, Huang F, Chanson M. 2008b. The effect of composition of the density of Indian Ocean waters. Deep-Sea Res. I 55:460–70 [Google Scholar]
  117. Millero FJ, Woosley R. 2009. The hydrolysis of Al(III) in NaCl solutions: a model for Fe(III). Environ. Sci. Technol. 43:1818–23 [Google Scholar]
  118. Millero FJ, Woosley R, DiTrolio B, Waters J. 2009b. The effect of ocean acidification on the speciation of metals in natural waters. Oceanography 22:472–85 [Google Scholar]
  119. Millero FJ, Yao W, Lee K, Zhang J-Z, Campbell DM. 1998. Carbonate system in the waters near the Galapagos Islands. Deep-Sea Res. II 45:1115–34 [Google Scholar]
  120. Moffett JW, Zika RG. 1977. Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ. Sci. Technol. 21:804–10 [Google Scholar]
  121. Moffett JW, Zika RG. 1983. Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Mar. Chem. 13:239–51 [Google Scholar]
  122. Mojica Prieto FJ, Millero FJ. 2002. The values of pK1 + pK2 for the dissociation of carbonic acid in seawater. Geochim. Cosmochim. Acta 66:2529–40 [Google Scholar]
  123. Morse JM, Gledhill DK, Millero FJ. 2003. CaCO3 precipitation kinetics in waters from the Great Bahama Bank. Geochim. Cosmochim. Acta 67:2819–26 [Google Scholar]
  124. Morse JW, Millero FJ, Brown TE, Ostlund HG. 1984. The carbonate chemistry of Grand Bahama bank waters: after 18 years another look. J. Geophys. Res. 89:3604–14 [Google Scholar]
  125. Park PK. 1969. Oceanic CO2 system: an evaluation of ten methods of investigation. Limnol. Oceanogr. 14:179–86 [Google Scholar]
  126. Pettine M, La Noce T, Macchi M, Millero FJ. 1982. Heavy metals in the Tiber river basin. Mar. Pollut. Bull. 13:327–29 [Google Scholar]
  127. Pierrot D, Millero FJ. 2000. The apparent molal volume and compressibility of seawater fit to the Pitzer equations. J. Solut. Chem. 29:719–42 [Google Scholar]
  128. Pitzer KS. 1991. Ion interaction approach: theory and data correlation. Activity Coefficients in Electrolyte Solutions KS Pitzer 75–153 Boca Raton, FL: CRC Press, 2nd ed.. [Google Scholar]
  129. Poisson A, Chanu J. 1975. The partial molal volumes of some major ions in seawater. Limnol. Oceanogr. 21:853–61 [Google Scholar]
  130. Riley JP, Skirrow G. 1965. Chemical Oceanography New York: Academic, 1st ed..
  131. Riley JP, Skirrow G. 1975. Chemical Oceanography New York: Academic, 2nd ed..
  132. Rodriguez C, Millero FJ. 2013a. Estimating the densities and compressibilities of seawater to high temperatures using the Pitzer equations. Aquat. Geochem. 19:115–33 [Google Scholar]
  133. Rodriguez C, Millero FJ. 2013b. Modeling the density and isentropic compressibility of seawater. J. Solut. Chem. 42:303–16 [Google Scholar]
  134. Roy RN, Vogel KN, Moore CP, Pearson T, Roy LN. et al. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Mar. Chem. 44:249–67 [Google Scholar]
  135. Sabine CL, Bullister JL, Feely RA, Gruber N, Key RM. et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71 [Google Scholar]
  136. Safarov J, Berndt S, Millero FJ, Feistel R, Heintz A, Hassel E. 2012. (p,ρ,T) properties of seawater: extensions to high salinities. Deep-Sea Res. I 65:146–56 [Google Scholar]
  137. Safarov J, Millero FJ, Feistel R, Heintz A, Hassel E. 2009. Thermodynamic properties of standard seawater: extension to high temperature and pressures. Ocean Sci. 5:235–46 [Google Scholar]
  138. Sakamoto CM, Millero FJ, Yao W, Friederich GE, Chavez FP. 1998. Surface seawater distributions of inorganic carbon and nutrients around the Galapagos Islands: results from the PlumEx experiment using automated chemical mapping. Deep-Sea Res. II 45:1055–71 [Google Scholar]
  139. Schijf J, de Baar HJW, Millero FJ. 1994. Kinetics of Ce and Nd scavenging in Black Sea waters. Mar. Chem. 46:345–59 [Google Scholar]
  140. Schreiber DR, Gordon AS, Millero FJ. 1985. The toxicity of copper to the marine bacterium Vibrio alginolyticus. Can. J. Microbiol. 31:83–87 [Google Scholar]
  141. Schreiber DR, Millero FJ, Gordon AG. 1990. Production of an extracellular copper binding protein by the heterotrophic marine bacterium Vibrio alginolyticus. Mar. Chem. 28:275–84 [Google Scholar]
  142. Sharma VK, Millero FJ. 1988. Oxidation of copper(I) in seawater. Environ. Sci. Technol. 22:768–71 [Google Scholar]
  143. Sharma VK, Millero FJ. 1989. The oxidation of Cu(I) with H2O2 in natural waters. Geochim. Cosmochim. Acta 53:2269–76 [Google Scholar]
  144. Sharma VK, Millero FJ, De Stefano C, Crea P. 2007. Dissociation constants of protonated methionine species in seawater. Mar. Chem. 106:453–70 [Google Scholar]
  145. Steinberg PA, Millero FJ, Zhu X. 1998. Carbonate system response to iron enrichment. Mar. Chem. 62:31–43 [Google Scholar]
  146. Vazquez F, Zhang JZ, Millero FJ. 1989. Effect of trace metals on the oxidation rates of H2S in seawater. Geophys. Res. Lett. 16:1363–66 [Google Scholar]
  147. Wanninkhof R, Doney SC, Peng T-H, Bullister JL, Lee K, Feely RA. 1999. Comparison of methods to determine the anthropogenic CO2 invasion into the Atlantic Ocean. Tellus 51B:511–30 [Google Scholar]
  148. Waters J, Millero FJ. 2013. The pH of seawater on the free scale. Mar. Chem. 149:19–28 [Google Scholar]
  149. Waters J, Millero FJ, Sabine CL. 2013. Synthesis and analysis of the carbonate parameters in the Pacific Ocean. Glob. Biogeochem. Cycles 25:GB4011 [Google Scholar]
  150. Watson AJ, Law CS, Van Scoy KA, Millero FJ, Yao W. et al. 1994. Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations. Nature 371:143–45 [Google Scholar]
  151. Woosley R, Millero FJ. 2010. The hydrolysis of Al(III) in NaCl solutions: a model for M(II), M(III), and M(IV) ions. Aquat. Geochem. 16:317–24 [Google Scholar]
  152. Woosley R, Millero FJ. 2013. Pitzer model for the speciation of lead chloride and carbonate complexes in natural waters. Mar. Chem. 149:1–7 [Google Scholar]
  153. Yao W, Millero FJ. 1995a. The chemistry of anoxic waters in the Framvaren Fjord, Norway. Aquat. Geochem. 1:53–88 [Google Scholar]
  154. Yao W, Millero FJ. 1995b. Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. Geochemical Transformation of Sedimentary Sulfur MA Vairavamurthy, MAA Schooner 260–79 Washington, DC: Am. Chem. Soc. [Google Scholar]
  155. Young T, Smith MB. 1954. Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem. 58:716–24 [Google Scholar]
  156. Zhang JZ, Millero FJ. 1991. The rate of sulfite oxidation in seawater. Geochim. Cosmochim. Acta 55:677–85 [Google Scholar]
  157. Zhang JZ, Millero FJ. 1993. The chemistry of the anoxic waters in the Cariaco Trench. Deep-Sea Res. I 40:1023–41 [Google Scholar]
  158. Zhang JZ, Millero FJ. 1994. The kinetics of oxidation of hydrogen sulfide in natural waters. Environmental Geochemistry of Sulfide Oxidation CN Alpers, D Blowes 393–409 Washington, DC: Am. Chem. Soc. [Google Scholar]
  159. Zika RG. 1981. Marine organic photochemistry. Marine Organic Chemistry EK Duursma, R Dawson 299–326 Amsterdam: Elsevier [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error