Polychaetes are common in most marine habitats and dominate many infaunal communities. Functional guild classification based on taxonomic identity and morphology has linked community structure to ecological function. The functional guilds now include osmotrophic siboglinids as well as sipunculans, echiurans, and myzostomes, which molecular genetic analyses have placed within Annelida. Advances in understanding of encounter mechanisms explicitly relate motility to feeding mode. New analyses of burrowing mechanics explain the prevalence of bilateral symmetry and blur the boundary between surface and subsurface feeding. The dichotomy between microphagous deposit and suspension feeders and macrophagous carnivores, herbivores, and omnivores is further supported by divergent digestive strategies. Deposit feeding appears to be limited largely to worms longer than 1 cm, with juveniles and small worms in general restricted to ingesting highly digestible organic material and larger, rich food items, blurring the macrophage-microphage dichotomy that applies well to larger worms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baumfalk YA. 1979. Heterogeneous grain size distribution in tidal flat sediment caused by bioturbation activity of Arenicola marina (Polychaeta). Neth. J. Sea Res. 13:428–40 [Google Scholar]
  2. Bock MJ, Mayer LM. 1999. Digestive plasticity of the marine benthic omnivore Nereis virens. J. Exp. Mar. Biol. Ecol. 240:77–92 [Google Scholar]
  3. Bock MJ, Miller DC. 1996. Fluid flow and suspended particulates as determinants of polychaete feeding behavior. J. Mar. Res. 54:565–88 [Google Scholar]
  4. Butterfield NJ. 2003. Exceptional fossil preservation and the Cambrian explosion. Integr. Comp. Biol. 43:166–77 [Google Scholar]
  5. Caut S, Angulo E, Courchamp F. 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46:443–53 [Google Scholar]
  6. Che J, Dorgan KM. 2010a. It's tough to be small: dependence of burrowing kinematics on body size. J. Exp. Biol. 213:1241–50 [Google Scholar]
  7. Che J, Dorgan KM. 2010b. Mechanics and kinematics of backward burrowing by the polychaete, Cirriformia moorei. J. Exp. Biol. 213:4272–77 [Google Scholar]
  8. Chen Z, Mayer LM. 1999. Sedimentary metal bioavailability determined by the digestive constraints of marine deposit feeders: gut retention time and dissolved amino acids. Mar. Ecol. Prog. Ser. 176:139–51 [Google Scholar]
  9. Chen Z, Mayer LM, Weston DP, Bock MJ, Jumars PA. 2002. Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates. Environ. Toxicol. Chem. 21:1243–48 [Google Scholar]
  10. Currie DR, Small KJ. 2005. Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar. Coast. Shelf Sci. 63:315–31 [Google Scholar]
  11. Dafoe LT, Gingras MK, Pemberton SG. 2008. Analysis of mineral segregation in Euzonus mucronata burrow structures: one possible method used in the construction of ancient Macaronichnus segregates. Ichnos 15:91–102 [Google Scholar]
  12. Dauer DM, Maybury CA, Ewing RM. 1981. Feeding behavior and general ecology of several spionid polychaetes from the Chesapeake Bay. J. Exp. Mar. Biol. Ecol. 54:21–38 [Google Scholar]
  13. de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ. et al. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–10 [Google Scholar]
  14. Di Domenico M, Martínez A, Lana P, Worsaae K. 2014. Molecular and morphological phylogeny of Saccocirridae (Annelida) reveals two cosmopolitan clades with specific habitat preferences. Mol. Phylogenet. Evol. 75:202–18 [Google Scholar]
  15. Dorgan KM. 2010. Environmental constraints on the mechanics of crawling and burrowing using hydrostatic skeletons. J. Exp. Mech. 50:1373–81 [Google Scholar]
  16. Dorgan KM, Arwade SR, Jumars PA. 2007. Burrowing in marine muds by crack propagation: kinematics and forces. J. Exp. Biol. 210:4198–212 [Google Scholar]
  17. Dorgan KM, Jumars PA, Boudreau BP, Johnson BD. 2006. Macrofaunal burrowing: the medium is the message. Oceanogr. Mar. Biol. Annu. Rev. 44:85–121 [Google Scholar]
  18. Dorgan KM, Jumars PA, Johnson B, Boudreau BP, Landis E. 2005. Burrowing mechanics: burrow extension by crack propagation. Nature 433:475 [Google Scholar]
  19. Dorgan KM, Law CJ, Rouse GW. 2013. Meandering worms: mechanics of undulatory burrowing in muds. Proc. R. Soc. B 280:20122948 [Google Scholar]
  20. Drazen JC, Phleger CF, Guest MA, Nichols PD. 2008. Lipid, sterols and fatty acids of abyssal polychaetes, crustaceans, and a cnidarian from the northeast Pacific Ocean: food web implications. Mar. Ecol. Prog. Ser. 372:157–67 [Google Scholar]
  21. Fantle MS, Dittel AI, Schwalm SM, Epifanio CE, Fogel ML. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120:416–26 [Google Scholar]
  22. Fauchald K, Jumars PA. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Annu. Rev. 17:193–284 [Google Scholar]
  23. Fenchel T. 1984. Suspended marine bacteria as a food source. Flows of Energy and Materials in Marine Ecosystems MJR Fasham 301–15 New York: Plenum [Google Scholar]
  24. Fisk DA. 1983. Free-living corals: distributions according to plant cover, sediments, hydrodynamics, depth and biological factors. Mar. Biol. 74:287–94 [Google Scholar]
  25. Gallagher ED, Gardner GB, Jumars PA. 1990. Competition among the pioneers in a seasonal soft-bottom benthic succession: field experiments and analysis of the Gilpin-Ayala model. Oecologia 83:427–42 [Google Scholar]
  26. Gaston GR. 1987. Benthic polychaeta of the Middle Atlantic Bight: feeding and distribution. Mar. Ecol. Prog. Ser. 36:251–62 [Google Scholar]
  27. Goedkoop W, Åkerblom N, Demandt MH. 2006. Trophic fractionation of carbon and nitrogen stable isotopes in Chironomus riparius reared on food of aquatic and terrestrial origin. Freshw. Biol. 51:878–86 [Google Scholar]
  28. Grünbaum D. 2002. Predicting availability to consumers of spatially and temporally variable resources. Hydrobiologia 480:175–91 [Google Scholar]
  29. Guieb RA, Jumars PA, Self RFL. 2004. Adhesive-based selection by a tentacle-feeding polychaete for particle size, shape and bacterial coating in silt and sand. J. Mar. Res. 62:261–82 [Google Scholar]
  30. Hansen MD. 1978. Nahrung und Fressverhalten bei Sedimentfressern dargestellt am Beispiel von Sipunculiden und Holothurien. Helgol. Wiss. Meeresunters. 31:191–221 [Google Scholar]
  31. Hentschel BT. 1998a. Intraspecific variations in δ13C indicate ontogenetic diet changes in deposit-feeding polychaetes. Ecology 79:1357–70 [Google Scholar]
  32. Hentschel BT. 1998b. Spectrofluorometric quantification of neutral and polar lipids suggests a food-related recruitment bottleneck for juveniles of a deposit-feeding polychaete population. Limnol. Oceangr. 43:543–49 [Google Scholar]
  33. Hentschel BT. 2004. Sediment resuspension and boundary layer flow dramatically increase the growth rates of interface-feeding spionid polychaetes. J. Mar. Syst. 49:209–24 [Google Scholar]
  34. Hentschel BT, Jumars PA. 1994. In situ chemical inhibition of benthic diatom growth and the response of recruiting permanent and temporary meiofauna. Limnol. Oceanogr. 39:816–38 [Google Scholar]
  35. Hessler RR, Jumars PA. 1974. Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res. 21:185–209 [Google Scholar]
  36. Jaeckle W, Strathmann R. 2013. The anus as a second mouth: anal suspension feeding by an oral deposit feeding sea cucumber. Invertebr. Biol. 132:62–68 [Google Scholar]
  37. Jouin C. 1979. Description of a free-living polychaete without gut: Astomus taenioides n. gen., n. sp. (Protodrilidae, Archiannelida). Can. J. Zool. 57:2448–56 [Google Scholar]
  38. Jumars PA, Dorgan KM, Mayer LM, Boudreau BP, Johnson BD. 2007. Physical constraints on infaunal lifestyles: may the persistent and strong forces be with you. Trace Fossils: Concepts, Problems, Prospects W Miller III 442–57 Amsterdam: Elsevier [Google Scholar]
  39. Jumars PA, Fauchald K. 1977. Between-community contrasts in successful polychaete feeding strategies. Ecology of Marine Benthos BC Coull 1–20 Columbia: Univ. S.C. Press [Google Scholar]
  40. Jumars PA, Penry DL, Baross JA, Perry MJ, Frost BW. 1989. Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res. 36:483–95 [Google Scholar]
  41. Jumars PA, Self RFL, Nowell ARM. 1982. Mechanics of particle selection by tentaculate deposit feeders. J. Exp. Mar. Biol. Ecol. 64:47–70 [Google Scholar]
  42. Kappler A, Brune A. 1999. Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl. Soil Ecol. 13:219–29 [Google Scholar]
  43. Kemp PF. 1986. Direct uptake of detrital carbon by the deposit-feeding polychaete Euzonus mucronata (Treadwell). J. Exp. Mar. Biol. Ecol. 99:49–61 [Google Scholar]
  44. Kihslinger RL, Woodin SA. 2000. Food patches and a surface deposit feeding spionid polychaete. Mar. Ecol. Prog. Ser. 201:233–39 [Google Scholar]
  45. Kiørboe T. 2008. A Mechanistic Approach to Plankton Ecology Princeton, NJ: Princeton Univ. Press [Google Scholar]
  46. Koehl MAR, Koseff JR, Crimaldi JP, McCay MG, Cooper T. et al. 2001. Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume. Science 294:1948–51 [Google Scholar]
  47. Kojima S, Ohta S. 1989. Patterns of bottom environments and macrobenthos communities along the depth gradient in the bathyal zone off Sanriku, Northwestern Pacific. J. Oceanogr. Soc. Jpn. 45:95–105 [Google Scholar]
  48. Lindsay SM. 2009. Ecology and biology of chemoreception in polychaetes. Zoosymposia 2:339–67 [Google Scholar]
  49. Lindsay SM, Riordan TJ Jr, Forest D. 2004. Identification and activity-dependent labeling of peripheral sensory structures of a spionid polychaete. Biol. Bull. 206:65–77 [Google Scholar]
  50. Lindsay SM, Woodin SA. 1995. Tissue loss induces switching of feeding mode in spionid polychaetes. Mar. Ecol. Prog. Ser. 125:159–69 [Google Scholar]
  51. Macdonald TA, Burd BJ, Macdonald VI, van Roodselaar A. 2010. Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia Can. Tech. Rep. Fish. Aquat. Sci. 2874, Fish. Oceans Can., Sidney [Google Scholar]
  52. Macko SA, Estep ML. 1984. Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org. Geochem. 6:787–90 [Google Scholar]
  53. Martínez García A, Palmero AM, del Carmen Brito M, Núñez J, Worsaae K. 2009. Anchialine fauna of the Corona lava tube (Lanzarote, Canary Islands): diversity, endemism and distribution. Mar. Biodivers. 39:169–82 [Google Scholar]
  54. Mayer LM, Jumars PA, Bock MJ, Vetter YA, Schmidt JL. 2001a. Two roads to sparagmos: extracellular digestion of sedimentary food by bacterial inoculation versus deposit-feeding. Organism–Sediment Interactions JY Aller, SA Woodin, RC Aller 335–47 Columbia: Univ. S.C. Press [Google Scholar]
  55. Mayer LM, Jumars PA, Taghon GL, Macko S, Trumbore S. 1993. Low-density particles as potential nitrogenous foods for benthos. J. Mar. Res. 51:373–89 [Google Scholar]
  56. Mayer LM, Schick LL, Hardy KR, Wagai R, McCarthy J. 2004. Organic matter in small mesopores in sediments and soils. Geochim. Cosmochim. Acta 68:3863–72 [Google Scholar]
  57. Mayer LM, Schick LL, Self RF, Jumars PA, Findlay RH. et al. 1997. Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and dissolved organic matter. J. Mar. Res. 55:785–812 [Google Scholar]
  58. Mayer LM, Weston DP, Bock MJ. 2001b. Benzo[a]pyrene and zinc solubilization by digestive fluids of benthic invertebrates—a cross-phyletic study. Environ. Toxicol. Chem. 20:1890–900 [Google Scholar]
  59. Merz RA, Edwards DR. 1998. Jointed setae—their role in locomotion and gait transitions in polychaete worms. J. Exp. Mar. Biol. Ecol. 228:273–90 [Google Scholar]
  60. Middelburg JJ, Nieuwenhuize J. 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar. Chem. 60:217–25 [Google Scholar]
  61. Miller DC, Bock MJ, Turner EJ. 1992. Deposit and suspension feeding in oscillatory flows and sediment fluxes. J. Mar. Res. 50:489–520 [Google Scholar]
  62. Mintenbeck K, Jacob U, Knust R, Arntz WE, Brey T. 2007. Depth-dependence in stable isotope ratio δ15N of benthic POM consumers: the role of particle dynamics and organism trophic guild. Deep-Sea Res. I 54:1015–23 [Google Scholar]
  63. Mora C, Wei C-L, Rollo A, Amaro T, Baco AR. et al. 2013. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11:e1001682 [Google Scholar]
  64. Osborn KJ, Rouse GW, Goffredi SK, Robison BH. 2007. Description and relationships of Chaetopterus pugaporcinus, an unusual pelagic polychaete (Annelida, Chaetopteridae). Biol. Bull. 212:40–54 [Google Scholar]
  65. Ott JA, Bright M, Schiemer F. 1998. The ecology of a novel symbiosis between a marine peritrich ciliate and chemoautotrophic bacteria. Mar. Ecol. 19:229–43 [Google Scholar]
  66. Paxton H. 2009. Phylogeny of Eunicida (Annelida) based on morphology of jaws. Zoosymposia 2:241–64 [Google Scholar]
  67. Penry DL, Jumars PA. 1987. Modeling animal guts as chemical reactors. Am. Nat. 129:69–96 [Google Scholar]
  68. Penry DL, Jumars PA. 1990. Gut architecture, digestive constraints and feeding ecology of deposit-feeding and carnivorous polychaetes. Oecologia 82:1–11 [Google Scholar]
  69. Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293–320 [Google Scholar]
  70. Pich J. 1966. Theory of aerosol filtration by fibrous and membrane filters. Aerosol Science CN Davies 223–85 New York: Academic [Google Scholar]
  71. Plante CJ, Jumars PA, Baross JA. 1990. Digestive associations between marine detritivores and bacteria. Annu. Rev. Ecol. Syst. 21:93–127 [Google Scholar]
  72. Pulliainen E, Tunkkari P. 1983. Seasonal changes in the gut length of the willow grouse (Lagopus lagopus) in Finnish Lapland. Ann. Zool. Fenn. 20:53–56 [Google Scholar]
  73. Purschke G. 1997. Ultrastructure of nuchal organs in polychaetes (Annelida)—new results and review. Acta Zool. 78:123–43 [Google Scholar]
  74. Read G. 2014. Polychaeta World Regist. Mar. Species, updated Feb. 8, 2012, last accessed June 30, 2014. http://www.marinespecies.org/aphia.php?p=taxdetails&id=883 [Google Scholar]
  75. Riisgård HU, Kamermans P. 2001. Switching between deposit and suspension feeding in coastal zoobenthos. Ecological Comparisons of Sedimentary Shores K Reise 73–101 Berlin: Springer-Verlag [Google Scholar]
  76. Riisgård HU, Larsen PS. 2010. Particle capture mechanisms in suspension-feeding invertebrates. Mar. Ecol. Prog. Ser. 418:255–93 [Google Scholar]
  77. Riisgård HU, Nielsen C, Larsen PS. 2000. Downstream collecting in ciliary suspension feeders: the catch-up principle. Mar. Ecol. Prog. Ser. 207:33–51 [Google Scholar]
  78. Riordan TJ Jr, Lindsay SM. 2002. Feeding responses to particle-bound cues by a deposit-feeding spionid polychaete, Dipolydora quadrilobata (Jacobi 1883). J. Exp. Mar. Biol. Ecol. 277:79–95 [Google Scholar]
  79. Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U. et al. 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7:e34737 [Google Scholar]
  80. Rubenstein D, Koehl MAR. 1977. Mechanisms of filter feeding—some theoretical considerations. Am. Nat. 111:981–94 [Google Scholar]
  81. Sakaguchi E. 2003. Digestive strategies of small hindgut fermenters. Anim. Sci. J. 74:327–37 [Google Scholar]
  82. Sampaio L, Rodrigues AM, Quintino V. 2010. Carbon and nitrogen stable isotopes in coastal benthic populations under multiple organic enrichment sources. Mar. Pollut. Bull. 60:1790–802 [Google Scholar]
  83. Self RFL, Jumars PA. 1978. New resource axes for deposit feeders?. J. Mar. Res. 36:627–41 [Google Scholar]
  84. Self RFL, Jumars PA. 1988. Cross-phyletic patterns of particle selection by deposit feeders. J. Mar. Res. 46:119–43 [Google Scholar]
  85. Shimeta JS, Jumars PA. 1991. Physical mechanisms and rates of particle capture by suspension feeders. Oceanogr. Mar. Biol. Annu. Rev. 29:191–257 [Google Scholar]
  86. Shull DH, Yasuda M. 2001. Size-selective downward particle transport by cirratulid polychaetes. J. Mar. Res. 59:453–73 [Google Scholar]
  87. Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Marinez Arbizu P. 2008. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23:518–28 [Google Scholar]
  88. Sperling EA, Frieder CA, Raman AV, Girguis PR, Levin LA. et al. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proc. Natl. Acad. Sci. USA 110:13446–51 [Google Scholar]
  89. Starck JM. 1999. Phenotypic flexibility of the avian gizzard: rapid, reversible and repeated changes of organ size in response to changes in dietary fibre content. J. Exp. Biol. 202:3171–79 [Google Scholar]
  90. Strathmann RR, Cameron RA, Strathmann MF. 1984. Spirobranchus giganteus (Pallas) breaks a rule for suspension-feeders. J. Exp. Mar. Biol. Ecol. 79:245–49 [Google Scholar]
  91. Struck TH, Paul C, Hill N, Hartmann S, Hösel C. et al. 2011. Phylogenomic analyses unravel annelid evolution. Nature 470:95–98 [Google Scholar]
  92. Struck TH, Schult N, Kusen T, Hickman E, Bleidorn C. et al. 2007. Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol. Biol. 7:57 [Google Scholar]
  93. Taghon GL. 1982. Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia 52:295–304 [Google Scholar]
  94. Taghon GL. 1988. The benefits and costs of deposit feeding in the polychaete Abarenicola pacifica. Limnol. Oceangr. 33:1166–75 [Google Scholar]
  95. Taghon GL, Nowell A, Jumars PA. 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes. Science 210:562–64 [Google Scholar]
  96. Taghon GL, Self RFL, Jumars PA. 1978. Predicting particle selection by deposit feeders: a model and its implications. Limnol. Oceanogr. 23:752–59 [Google Scholar]
  97. Tresguerres M, Katz S, Rouse GW. 2013. How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms. Proc. R. Soc. B 280:20130625 [Google Scholar]
  98. Tzetlin A, Purschke G. 2005. Pharynx and intestine. Hydrobiologia 535/536:199–225 [Google Scholar]
  99. Uyeno TA. 2007. The morphology and biomechanics of the muscle articulation: a new class of soft tissue joint. PhD Thesis, Univ. N.C., Chapel Hill [Google Scholar]
  100. Uyeno TA, Kier WM. 2005. Functional morphology of the cephalopod buccal mass: a novel joint type. J. Morphol. 264:211–22 [Google Scholar]
  101. Vahl O. 1976. On the digestion of Glycera alba (Polychaeta). Ophelia 15:49–56 [Google Scholar]
  102. van Nugteren P, Herman PMJ, Moodley L, Middelburg JJ, Vos M. et al. 2009. Spatial distribution of detrital resources determines the outcome of competition between bacteria and a facultative detritivorous worm. Limnol. Oceanogr. 54:1413–19 [Google Scholar]
  103. Vanderklift MA, Ponsard S. 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–82 [Google Scholar]
  104. Vetter YA, Deming JW, Jumars PA. Krieger-Brockett BB. 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36:75–92 [Google Scholar]
  105. Voparil IM, Mayer LM. 2004. Commercially available chemicals that mimic a deposit feeder's (Arenicola marina) digestive solubilization of lipids. Environ. Sci. Technol. 38:4334–39 [Google Scholar]
  106. Voparil IM, Mayer LM, Jumars PA. 2008. Emulsions versus micelles in the digestion of lipids by benthic invertebrates. Limnol. Oceangr. 53:387–94 [Google Scholar]
  107. Wang H. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology Princeton, NJ: Princeton Univ. Press [Google Scholar]
  108. Ward ME, Jenkins CD, Dover CLM. 2003. Functional morphology and feeding strategy of the hydrothermal-vent polychaete Archinome rosacea (family Archinomidae). Can. J. Zool. 81:582–90 [Google Scholar]
  109. Weigert A, Helm C, Meyer M, Nickel B, Arendt D. et al. 2014. Illuminating the base of the annelid tree using transcriptomics. Mol. Biol. Evol. 31:1391–401 [Google Scholar]
  110. Weissburg MJ, Zimmer-Faust RK. 1993. Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–43 [Google Scholar]
  111. Wieking G, Kröncke I. 2001. Decadal changes in macrofauna communities on the Dogger Bank caused by large-scale climate variability. Senckenberg. Marit. 31:125–41 [Google Scholar]
  112. Wilkens H, Iliffe TM, Oromí P, Martínez A, Tysall TN. et al. 2009. The Corona lava tube, Lanzarote: geology, habitat diversity and biogeography. Mar. Biodivers. 39:155–67 [Google Scholar]
  113. Wolf PS. 1986. A new genus and species on interstitial Sigalionidae and a report on the presence of venom glands in some scale-worm families (Annelida: Polychaeta). Proc. Biol. Soc. Wash. 99:79–83 [Google Scholar]
  114. Worsaae K, Sterrer W, Iliffe TM. 2004. Longipalpa saltatrix, a new genus and species of the meiofaunal family Nerillidae (Annelida: Polychaeta) from an anchihaline cave in Bermuda. Proc. Biol. Soc. Wash. 117:346–62 [Google Scholar]
  115. Zanutto BS, Staddon JE. 2007. Bang-bang control of feeding: role of hypothalamic and satiety signals. PLoS Comput. Biol. 3:e97 [Google Scholar]
  116. Zrzavý J, Říha P, Piálek L, Janouškovec J. 2009. Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes. BMC Evol. Biol. 9:189 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error