Abrupt changes in climate have occurred in many locations around the globe over the last glacial cycle, with pronounced temperature swings on timescales of decades or less in the North Atlantic. The global pattern of these changes suggests that they reflect variability in the Atlantic meridional overturning circulation (AMOC). This review examines the evidence from ocean sediments for ocean circulation change over these abrupt events. The evidence for changes in the strength and structure of the AMOC associated with the Younger Dryas and many of the Heinrich events is strong. Although it has been difficult to directly document changes in the AMOC over the relatively short Dansgaard-Oeschger events, there is recent evidence supporting AMOC changes over most of these oscillations as well. The lack of direct evidence for circulation changes over the shortest events leaves open the possibility of other driving mechanisms for millennial-scale climate variability.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adkins JF. 2013. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28:539–61 [Google Scholar]
  2. Alley RB, Clark PU. 1999. The deglaciation of the northern hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci. 27:149–82 [Google Scholar]
  3. Alley RB, Clark PU, Keigwin LD, Webb RS. 1999. Making sense of millennial-scale climate change. Mechanisms of Global Climate Change at Millennial Time Scales PU Clark, RS Webb, LD Keigwin 385–94 Washington, DC: Am. Geophys. Union [Google Scholar]
  4. Álvarez-Solas J, Montoya M, Ritz C, Ramstein G, Charbit S. et al. 2011. Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes. Clim. Past 7:1297–306 [Google Scholar]
  5. Álvarez-Solas J, Robinson A, Montoya M, Ritz C. 2013. Iceberg discharges of the last glacial period driven by oceanic circulation changes. PNAS 110:16350–54 [Google Scholar]
  6. Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P. et al. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–51 [Google Scholar]
  7. Arz HW, Patzold J, Wefer G. 1998. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quat. Res. 50:157–66 [Google Scholar]
  8. Barker S, Chen J, Gong X, Jonkers L, Knorr G, Thornalley D. 2015. Icebergs not the trigger for North Atlantic cold events. Nature 520:333–36 [Google Scholar]
  9. Barker S, Knorr G, Edwards RL, Parrenin F, Putnam AE. et al. 2011. 800,000 years of abrupt climate variability. Science 334:347–51 [Google Scholar]
  10. Blunier T, Brook EJ. 2001. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–12 [Google Scholar]
  11. Bohm E, Lippold J, Gutjahr M, Frank M, Blaser P. et al. 2015. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517:73–76 [Google Scholar]
  12. Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L. et al. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–47 [Google Scholar]
  13. Bond G, Heinrich H, Broecker W, Labeyrie L, McManus J. et al. 1992. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 360:245–49 [Google Scholar]
  14. Boyle EA, Keigwin LD. 1987. North Atlantic thermohaline circulation during the last 20,000 years linked to high latitude surface temperature. Nature 330:35–40 [Google Scholar]
  15. Bradtmiller LI, McManus JF, Robinson LF. 2014. 231Pa/230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1. Nat. Commun. 5:5817 [Google Scholar]
  16. Broecker W, Bond G, Klas M, Bonani G, Wolfli W. 1990. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5:469–77 [Google Scholar]
  17. Broecker W, Petit D, Rind D. 1985. Does the ocean–atmosphere system have more than one stable mode of operation. Nature 315:21–25 [Google Scholar]
  18. Buizert C, Schmittner A. 2015. Southern Ocean control of glacial AMOC stability and Dansgaard-Oeschger interstadial duration. Paleoceanography 30:1595–612 [Google Scholar]
  19. Burckel P, Waelbroeck C, Gherardi JM, Pichat S, Arz H. et al. 2015. Atlantic Ocean circulation changes preceded millennial tropical South America rainfall events during the last glacial. Geophys. Res. Lett. 42:411–18 [Google Scholar]
  20. Burckel P, Waelbroeck C, Luo Y, Roche DM, Pichat S. et al. 2016. Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka). Clim. Past 12:2061–75 [Google Scholar]
  21. Came RE, Oppo DW, Curry WB, Broccoli AJ, Stouffer RJ, Lynch-Stieglitz J. 2007. North Atlantic intermediate depth variability during the Younger Dryas: evidence from benthic foraminiferal Mg/Ca and the GFDL R30 coupled climate model. Past and Future Changes in the Ocean's Overturning Circulation: Mechanisms and Impacts on Climate and Ecosystems A Schmittner, J Chiang, S Hemming 247–63 Washington, DC: Am. Geophys. Union [Google Scholar]
  22. Came RE, Oppo DW, Curry WB, Lynch-Stieglitz J. 2008. Deglacial variability in the surface return flow of the Atlantic meridional overturning circulation. Paleoceanography 23:PA1217 [Google Scholar]
  23. Carlson AE. 2013. The Younger Dryas climate event. The Encyclopedia of Quaternary Science SA Elias 126–34 Amsterdam: Elsevier [Google Scholar]
  24. Carlson AE, Clark PU, Haley BA, Klinkhammer GP, Simmons K. et al. 2007. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. PNAS 104:6556–61 [Google Scholar]
  25. Charles CD, Lynch-Stieglitz J, Ninnemann US, Fairbanks RG. 1996. Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett. 142:19–27 [Google Scholar]
  26. Chen T, Robinson LF, Burke A, Southon J, Spooner P. et al. 2015. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation. Science 349:1537–41 [Google Scholar]
  27. Clark PU, Pisias NG, Stocker TF, Weaver AJ. 2002. The role of the thermohaline circulation in abrupt climate change. Nature 415:863–69 [Google Scholar]
  28. Clark PU, Shakun JD, Baker PA, Bartlein PJ, Brewer S. et al. 2012. Global climate evolution during the last deglaciation. PNAS 109:E1134–42 [Google Scholar]
  29. Clement AC, Cane MA, Seager R. 2001. An orbitally driven tropical source for abrupt climate change. J. Clim. 14:2369–75 [Google Scholar]
  30. Clement AC, Peterson LC. 2008. Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys. 46:RG4002 [Google Scholar]
  31. Crowley TJ. 1992. North Atlantic Deep Water cools the southern hemisphere. Paleoceanography 7:489–97 [Google Scholar]
  32. Curry WB, Oppo DW. 2005. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20:PA1017 [Google Scholar]
  33. Deng FF, Thomas AL, Rijkenberg MJA, Henderson GM. 2014. Controls on seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep waters in the Southwest Atlantic. Earth Planet. Sci. Lett. 390:93–102 [Google Scholar]
  34. Dokken TM, Nisancioglu KH, Li C, Battisti DS, Kissel C. 2013. Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28:491–502 [Google Scholar]
  35. Evans HK, Hall IR. 2008. Deepwater circulation on Blake Outer Ridge (western North Atlantic) during the Holocene, Younger Dryas, and Last Glacial Maximum. Geochem. Geophys. Geosyst. 9:Q03023 [Google Scholar]
  36. Ganopolski A, Rahmstorf S. 2001. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–58 [Google Scholar]
  37. Gherardi J-M, Labeyrie L, Nave S, Francois R, McManus JF, Cortijo E. 2009. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography 24:PA2204 [Google Scholar]
  38. Gildor H, Tziperman E. 2003. Sea-ice switches and abrupt climate change. Philos. Trans. R. Soc. A 361:1935–42 [Google Scholar]
  39. Goldstein SL, Hemming SR. 2014. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. The Oceans and Marine Geochemistry MJ Mottl, H Elderfield 453–89 Amsterdam: Elsevier [Google Scholar]
  40. Gottschalk J, Skinner LC, Misra S, Waelbroeck C, Menviel L, Timmermann A. 2015. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nat. Geosci. 8:950–54 [Google Scholar]
  41. Guillevic M, Bazin L, Landais A, Kindler P, Orsi A. et al. 2013. Spatial gradients of temperature, accumulation and δ18O-ice in Greenland over a series of Dansgaard-Oeschger events. Clim. Past 9:1029–51 [Google Scholar]
  42. Gutjahr M, Lippold J. 2011. Early arrival of Southern Source Water in the deep North Atlantic prior to Heinrich event 2. Paleoceanography 26:PA2101 [Google Scholar]
  43. Hall IR, Evans HK, Thornalley DJR. 2011. Deep water flow speed and surface ocean changes in the subtropical North Atlantic during the last deglaciation. Glob. Planet. Change 79:255–63 [Google Scholar]
  44. Hemming SR. 2004. Heinrich events: massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42:RG1005 [Google Scholar]
  45. Henry LG, McManus JF, Curry WB, Roberts NL, Piotrowski AM, Keigwin LD. 2016. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353:470–74 [Google Scholar]
  46. Hillaire-Marcel C, Bilodeau G. 2000. Instabilities in the Labrador Sea water mass structure during the last climatic cycle. Can. J. Earth Sci. 37:795–809 [Google Scholar]
  47. Hodell D, Crowhurst S, Skinner L, Tzedakis PC, Margari V. et al. 2013. Response of Iberian Margin sediments to orbital and suborbital forcing over the past 420 ka. Paleoceanography 28:185–99 [Google Scholar]
  48. Hoogakker BAA, McCave IN, Vautravers MJ. 2007. Antarctic link to deep flow speed variation during Marine Isotope Stage 3 in the western North Atlantic. Earth Planet. Sci. Lett. 257:463–73 [Google Scholar]
  49. Howe JNW, Piotrowski AM, Noble TL, Mulitza S, Chiessi CM, Bayon G. 2016. North Atlantic Deep Water production during the Last Glacial Maximum. Nat. Commun. 7:11765 [Google Scholar]
  50. Huang K-F, Oppo DW, Curry WB. 2014. Decreased influence of Antarctic intermediate water in the tropical Atlantic during North Atlantic cold events. Earth Planet. Sci. Lett. 389:200–8 [Google Scholar]
  51. Jonkers L, Zahn R, Thomas A, Henderson G, Abouchami W. et al. 2015. Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, neodymium isotope and benthic δ13C record. Earth Planet. Sci. Lett. 419:14–21 [Google Scholar]
  52. Kageyama M, Paul A, Roche DM, Van Meerbeeck CJ. 2010. Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat. Sci. Rev. 29:2931–56 [Google Scholar]
  53. Keigwin LD. 2004. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography 19:PA4012 [Google Scholar]
  54. Keigwin LD, Boyle EA. 1999. Surface and deep ocean variability in the northern Sargasso Sea during marine isotope stage 3. Paleoceanography 14:164–70 [Google Scholar]
  55. Keigwin LD, Jones GA. 1994. Western North Atlantic evidence for millennial-scale changes in ocean circulation and climate. J. Geophys. Res. Oceans 99:12397–410 [Google Scholar]
  56. Kissel C, Laj C, Labeyrie L, Dokken T, Voelcker A, Blamart D. 1999. Rapid climatic variations during marine isotopic stage 3: magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth Planet. Sci. Lett. 171:489–502 [Google Scholar]
  57. Li C, Battisti DS, Schrag DP, Tziperman E. 2005. Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett. 32:L19702 [Google Scholar]
  58. Lippold J, Grützner J, Winter D, Lahaye Y, Mangini A, Christl M. 2009. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 36:L12601 [Google Scholar]
  59. Lippold J, Luo Y, Francois R, Allen SE, Gherardi J et al. 2012. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nat. Geosci. 5:813–16 [Google Scholar]
  60. Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003 [Google Scholar]
  61. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R. et al. 2009. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325:310–14 [Google Scholar]
  62. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR. et al. 2007. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316:66–69 [Google Scholar]
  63. Lynch-Stieglitz J, Curry WB, Oppo DW, Ninnemann U, Charles CD, Munsen J. 2006. Meridional overturning circulation in the South Atlantic at the last glacial maximum. Geochem. Geophys. Geosyst. 7:Q10N03 [Google Scholar]
  64. Lynch-Stieglitz J, Curry WB, Slowey N. 1999a. A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera. Paleoceanography 14:360–73 [Google Scholar]
  65. Lynch-Stieglitz J, Curry WB, Slowey N. 1999b. Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum. Nature 402:644–48 [Google Scholar]
  66. Lynch-Stieglitz J, Marchitto TM. 2014. Tracers of past ocean circulation. The Oceans and Marine Geochemistry MJ Mottl, H Elderfield 433–51 Amsterdam: Elsevier [Google Scholar]
  67. Lynch-Stieglitz J, Schmidt MW, Curry WB. 2011. Evidence from the Florida Straits for Younger Dryas ocean circulation changes. Paleoceanography 26:PA1205 [Google Scholar]
  68. Lynch-Stieglitz J, Schmidt MW, Henry LG, Curry WB, Skinner LC. et al. 2014. Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nat. Geosci. 7:144–50 [Google Scholar]
  69. Manabe S, Stouffer RJ. 1988. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1:841–66 [Google Scholar]
  70. Manabe S, Stouffer RJ. 1995. Simulation of abrupt climate-change induced by fresh-water input to the North Atlantic Ocean. Nature 378:165–67 [Google Scholar]
  71. Marchitto TM, Broecker WS. 2006. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from trace metal paleonutrient proxies. Geochem. Geophys. Geosyst. 7:Q12003 [Google Scholar]
  72. Marcott SA, Clark PU, Padman L, Klinkhammer GP, Springer SR. et al. 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. PNAS 108:13415–19 [Google Scholar]
  73. McCave IN, Hall IR. 2006. Size sorting in marine muds: processes, pitfalls, and prospects for paleoflow-speed proxies. Geochem. Geophys. Geosyst. 7:Q10N05 [Google Scholar]
  74. McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S. 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–37 [Google Scholar]
  75. McManus JF, Oppo DW, Cullen JL. 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283:971–75 [Google Scholar]
  76. Menviel L, Timmermann A, Friedrich T, England MH. 2014. Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Clim. Past 10:63–77 [Google Scholar]
  77. Moreno-Chamarro E, Ortega P, González-Rouco F, Montoya M. 2016. Assessing reconstruction techniques of the Atlantic Ocean circulation variability during the last millennium. Clim. Dyn. In press. doi: 10.1007/s00382-016-3111-x [Google Scholar]
  78. Mulitza S, Prange M, Stuut JB, Zabel M, von Dobeneck T. et al. 2008. Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23:PA4206 [Google Scholar]
  79. Negre C, Zahn R, Thomas AL, Masqué P, Henderson GM. et al. 2010. Reversed flow of Atlantic deep water during the Last Glacial Maximum. Nature 468:84–88 [Google Scholar]
  80. Oppo DW, Curry WB, McManus JF. 2015. What do benthic δ13C and δ18O data tell us about Atlantic circulation during Heinrich Stadial 1. Paleoceanography 30:353–68 [Google Scholar]
  81. Petersen SV, Schrag DP, Clark PU. 2013. A new mechanism for Dansgaard-Oeschger cycles. Paleoceanography 28:24–30 [Google Scholar]
  82. Peterson LC, Haug GH, Hughen KA, Rohl U. 2000. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290:1947–51 [Google Scholar]
  83. Piotrowski AM, Goldstein SL, Hemming SR, Fairbanks RG, Zylberberg DR. 2008. Oscillating glacial northern and southern deep water formation from combined neodymium and carbon isotopes. Earth Planet. Sci. Lett. 272:394–405 [Google Scholar]
  84. Praetorius SK, McManus JF, Oppo DW, Curry WB. 2008. Episodic reductions in bottom-water currents since the last ice age. Nat. Geosci. 1:449–52 [Google Scholar]
  85. Rahmstorf S. 2002. Ocean circulation and climate during the past 120,000 years. Nature 419:207–14 [Google Scholar]
  86. Ritz SP, Stocker TF, Grimalt JO, Menviel L, Timmermann A. 2013. Estimated strength of the Atlantic overturning circulation during the last deglaciation. Nat. Geosci. 6:208–12 [Google Scholar]
  87. Roberts NL, Piotrowski AM, McManus JF, Keigwin LD. 2010. Synchronous deglacial overturning and water mass source changes. Science 327:75–78 [Google Scholar]
  88. Robinson LF, Adkins JF, Keigwin LD, Southon J, Fernandez DP. et al. 2005. Radiocarbon variability in the western North Atlantic during the last deglaciation. Science 310:1469–73 [Google Scholar]
  89. Rooth C. 1982. Hydrology and ocean circulation. Prog. Oceanogr. 11:131–49 [Google Scholar]
  90. Ruddiman WF, McIntyre A. 1981. The mode and mechanism of the last deglaciation: oceanic evidence. Quat. Res. 16:125–34 [Google Scholar]
  91. Ruhlemann C, Mulitza S, Lohmann G, Paul A, Prange M, Wefer G. 2004. Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: combining paleoclimate data and modeling results for the last deglaciation. Paleoceanography 19:PA1025 [Google Scholar]
  92. Sarnthein M, Winn K, Jung SJA, Duplessy JC, Labeyrie L. et al. 1994. Changes in east Atlantic deep-water circulation over the last 30,000 years—8 time slice reconstructions. Paleoceanography 9:209–67 [Google Scholar]
  93. Schmidt MW, Chang P, Hertzberg JE, Them TR II, Ji L, Otto-Bliesner BL. 2012. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. PNAS 109:14348–52 [Google Scholar]
  94. Schulz M, Berger WH, Sarnthein M, Grootes PM. 1999. Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys. Res. Lett. 26:3385–88 [Google Scholar]
  95. Seager R, Battisti DS. 2007. Challenges to our understanding of the general circulation: abrupt climate change. The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges T Schneider, AS Sobel 331–71 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  96. Shackleton NJ, Hall MA, Vincent E. 2000. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15:565–69 [Google Scholar]
  97. Shakun JD, Carlson AE. 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev. 29:1801–16 [Google Scholar]
  98. Skinner LC, Elderfield H. 2007. Rapid fluctuations in the deep North Atlantic heat budget during the last glacial period. Paleoceanography 22:PA1205 [Google Scholar]
  99. Skinner LC, Elderfield H, Hall M. 2007. Phasing of millennial climate events and Northeast Atlantic deep-water temperature change since 50 ka BP. Ocean Circulation: Mechanisms and Impacts A Schmittner, J Chiang, S Hemming 197–208 Washington, DC: Am. Geophys. Union [Google Scholar]
  100. Stanford JD, Rohling EJ, Bacon S, Roberts AP, Grousset FE, Bolshaw M. 2011. A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic. Quat. Sci. Rev. 30:1047–66 [Google Scholar]
  101. Stommel H. 1961. Thermohaline convection with 2 stable regimes of flow. Tellus 13:224–30 [Google Scholar]
  102. Them TR, Schmidt MW, Lynch-Stieglitz J. 2015. Millennial-scale tropical atmospheric and Atlantic Ocean circulation change from the Last Glacial Maximum and Marine Isotope Stage 3. Earth Planet. Sci. Lett. 427:47–56 [Google Scholar]
  103. Thomas AL, Henderson GM, Robinson LF. 2006. Interpretation of the 231Pa/230Th paleocirculation proxy: new water-column measurements from the southwest Indian Ocean. Earth Planet. Sci. Lett. 241:493–504 [Google Scholar]
  104. Thornalley DJR, Barker S, Becker J, Hall IR, Knorr G. 2013. Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography 28:253–62 [Google Scholar]
  105. Vautravers MJ, Shackleton NJ, Lopez-Martinez C, Grimalt JO. 2004. Gulf Stream variability during marine isotope stage 3. Paleoceanography 19:PA2011 [Google Scholar]
  106. Voelker AHL. 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat. Sci. Rev. 21:1185–212 [Google Scholar]
  107. Wang XF, Auler AS, Edwards RL, Cheng H, Cristalli PS. et al. 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–43 [Google Scholar]
  108. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY. et al. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–48 [Google Scholar]
  109. Wunsch C. 2006. Abrupt climate change: an alternative view. Quat. Res. 65:191–203 [Google Scholar]
  110. Xie RC, Marcantonio F, Schmidt MW. 2012. Deglacial variability of Antarctic Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope ratios. Paleoceanography 27:PA3221 [Google Scholar]
  111. Yu EF, Francois R, Bacon MP. 1996. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379:689–94 [Google Scholar]
  112. Zhang R, Delworth TL. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18:1853–60 [Google Scholar]
  113. Zhang X, Prange M, Merkel U, Schulz M. 2015. Spatial fingerprint and magnitude of changes in the Atlantic meridional overturning circulation during marine isotope stage 3. Geophys. Res. Lett. 42:1903–11 [Google Scholar]
  114. Zhang Z, Lohmann G, Knorr G, Purcell C. 2014. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512:290–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error