The kinetic energy in ocean currents, or marine hydrokinetic (MHK) energy, is a renewable energy resource that can help meet global energy requirements. An ocean circulation model–based census shows that subtropical surface western boundary currents (WBCs) are the only nearshore, large-scale currents swift enough to drive large electricity-generating ocean turbines envisioned for future use. We review several WBCs in the context of kinetic energy extraction. The power density in the Gulf Stream off North Carolina at times reaches several thousand watts per square meter at 75 m below the surface, and the annual average power is approximately 500–1,000 W m−2. Significant fluctuations occur with periods of 3–20 days (Gulf Stream meanders) and weeks to months (Gulf Stream path shifts). Interannual variations in annual average power occur because of year-to-year changes in these WBC motions. No large-scale turbines presently exist, and the road to establishing MHK facilities in WBCs will encounter challenges that are similar in many aspects to those associated with the development of offshore wind power.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bane JM, Brooks DA, Lorenson KR. 1981. Synoptic observations of the three-dimensional structure and propagation of Gulf Stream meanders along the Carolina continental margin. J. Geophys. Res. 86:6411–25 [Google Scholar]
  2. Bane JM, Dewar WK. 1988. Gulf Stream bimodality and variability downstream of the Charleston Bump. J. Geophys. Res. 93:6695–710 [Google Scholar]
  3. Batten WMJ, Bahaj AS, Molland AF, Chaplin JR. 2006. Hydrodynamics of marine current turbines. Renew. Energy 31:249–56 [Google Scholar]
  4. Bedard R. 2008. Prioritized research, development, deployment and demonstration (RDD & D) needs: marine and other hydrokinetic renewable energy Rep., Electric Power Res. Inst., Palo Alto, CA [Google Scholar]
  5. Betz A. 1920. Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Z. Gesamte Turbinenwesen 26:307–9 [Google Scholar]
  6. Boehlert GW, Gill AB. 2010. Environmental and ecological effects of ocean renewable energy development: a current synthesis. Oceanography 23:268–81 [Google Scholar]
  7. BOEM (Bur. Ocean Energy Manag.) 2016. Ocean current energy. http://www.boem.gov/Renewable-Energy-Program/Renewable-Energy-Guide/Ocean-Current-Energy.aspx [Google Scholar]
  8. Brooks DA, Bane JM. 1978. Gulf Stream deflection by a bottom feature off Charleston, South Carolina. Science 201:1225–26 [Google Scholar]
  9. Brooks DA, Bane JM. 1981. Gulf Stream fluctuations and meanders over the Onslow Bay upper continental slope. J. Phys. Oceanogr. 11:247–56 [Google Scholar]
  10. Brown A, Beiter P, Heimiller D, Davidson C, Denholm P. et al. 2015. Estimating renewable energy economic potential in the United States: methodology and initial results Tech. Rep. NREL/TP-6A20-64503, Natl. Renew. Energy Lab., Golden, CO [Google Scholar]
  11. Bryden H, Beal LM, Duncan LM. 2005. Structure and transport of the Agulhas Current and its temporal variability. J. Oceanogr. 61:479–92 [Google Scholar]
  12. Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Hogan PJ. et al. 2007. The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65:60–83 [Google Scholar]
  13. Corren D, Hughes S, Paquette J, Sotiropoulos F, Calkins J. 2013. Improved structure and fabrication of large, high-power KHPS rotors. Tech. Rep. DOE/GO18168, Verdant Power, New York, NY [Google Scholar]
  14. Doran C. 2015. Power from the sea. J. Homel. Def. Secur. Inf. Anal. Cent. 2:3–6 [Google Scholar]
  15. Ecomerit Technol 2016. Aquantis http://ecomerittech.com/aquantis.php [Google Scholar]
  16. EIA (Energy Inf. Admin.) 2016. Frequently asked questions http://www.eia.gov/tools/faqs [Google Scholar]
  17. Gong Y, He R, Gawarkiewicz GG, Savidge DK. 2015. Numerical investigation of coastal circulation dynamics near Cape Hatteras, North Carolina, in January 2005. Ocean Dyn. 65:1–15 [Google Scholar]
  18. Gorban AN, Gorlov AM, Silantyev VM. 2001. Limits of the turbine efficiency for free fluid flow. J. Energy Resour. Technol. 123:311–17 [Google Scholar]
  19. Gula J, Molemaker MJ, McWilliams JC. 2015. Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr. 45:690–715 [Google Scholar]
  20. Gunawan B, Neary VS, Colby J. 2014. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renew. Energy 71:509–17 [Google Scholar]
  21. Guney MS. 2011. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 15:3669–75 [Google Scholar]
  22. Hagerman G, Polagye B, Bedard R, Previsic B. 2006. Methodology for estimating tidal current energy resources and power production by tidal in-stream energy conversion (TISEC) devices Rep. EPRI-TP-001 NA Rev 2, Electr. Power Res. Inst., Palo Alto, CA [Google Scholar]
  23. Halkin D, Rossby T. 1985. The structure and transport of the Gulf Stream at 73°W. J. Phys. Oceanogr. 15:1439–52 [Google Scholar]
  24. Hanson HP, Bozek A, Duerr A. 2011. The Florida current: a clean but challenging energy resource. Eos Trans. AGU 92:29–36 [Google Scholar]
  25. Hogg NG, Johns WE. 1995. Western boundary currents. Rev. Geophys. 33:1311–34 [Google Scholar]
  26. Imawaki S, Bower A, Beal L, Qiu B. 2013. Western boundary currents. Ocean Circulation and Climate: A 21st Century Perspective G Siedler, SM Griffies, J Gould, JA Church 305–38 Oxford, UK: Academic, 2nd ed.. [Google Scholar]
  27. Johns WE, Lee TN, Beardsley RC, Candela J, Limeburner R, Castro B. 1998. Annual cycle and variability of the North Brazil Current. J. Phys. Oceanogr. 28:103–28 [Google Scholar]
  28. Kabir A, Lemongo-Tchamba I, Fernandez A. 2015. An assessment of available ocean current hydrokinetic energy near the North Carolina shore. Renew. Energy 80:301–7 [Google Scholar]
  29. Lanchester FW. 1915. A contribution to the theory of propulsion and the screw propeller. Trans. Inst. Nav. Archit. 57:98–116 [Google Scholar]
  30. Leaman KD, Molinari RL, Vertes PS. 1987. Structure and variability of the Florida Current at 27°N: April 1982–July 1984. J. Phys. Oceanogr. 17:565–83 [Google Scholar]
  31. Lee T, Cornillon P. 1995. Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream. J. Geophys. Res. 100:13603–613 [Google Scholar]
  32. Lee TN. 1975. Florida current spin-off eddies. Deep-Sea Res. Oceanogr. Abstr. 22:753–65 [Google Scholar]
  33. Lee TN, Atkinson LP, Legeckis R. 1981. Observations of a Gulf Stream frontal eddy on the Georgia continental shelf, April 1977. Deep-Sea Res. A 28:347–78 [Google Scholar]
  34. Legeckis RV. 1979. Satellite observations of the influence of bottom topography on the seaward deflection of the Gulf Stream off Charleston, South Carolina. J. Phys. Oceanogr. 9:483–97 [Google Scholar]
  35. Lissaman PBS. 1980. The Coriolis program. Oceanus 22:23–28 [Google Scholar]
  36. Lissaman PBS, Radkey RL. 1979. Coriolis program: a review of the status of the ocean turbine energy system. Oceans 79:559–65 [Google Scholar]
  37. Lowcher CF. 2015. An assessment of marine hydrokinetic (MHK) energy in the Gulf Stream off Cape Hatteras BS Thesis, Univ. North Carolina, Chapel Hill [Google Scholar]
  38. Miller JL. 1994. Fluctuations of Gulf Stream frontal position between Cape Hatteras and the Straits of Florida. J. Geophys. Res. 99:5057–64 [Google Scholar]
  39. Neary V, Lawson M, Previsic M, Copping A, Hallett KC. et al. 2014a. Methodology for design and economic analysis of marine energy conversion (MEC) technologies. Proceedings of the 2nd Marine Energy Technology Symposium, April 15–18, 2014, Seattle, WA. http://www.globalmarinerenewable.com/images/pdf/METS_PAPERS_VII/90-Neary.pdf [Google Scholar]
  40. Neary V, Previsic M, Jepsen RA, Lawson MJ, Yu Y-H. et al. 2014b. Reference model 4 (RM4): ocean current turbine. Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies V Neary, M Previsic, RA Jepsen, MJ Lawson, Y-H Yu 180–228 Albuquerque, NM: Sandia Natl. Lab. [Google Scholar]
  41. Quattrocchi G, Pierini S, Dijkstra HA. 2012. Intrinsic low-frequency variability of the Gulf Stream. Nonlinear Process. Geophys. 19:155–64 [Google Scholar]
  42. Savidge DK. 2004. Gulf Stream meander propagation past Cape Hatteras. J. Phys. Oceanogr. 34:2073–85 [Google Scholar]
  43. Shchepetkin AF, McWilliams JC. 2005. The regional ocean modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9:347–404 [Google Scholar]
  44. Southeast Natl. Mar. Renew. Energy Cent 2016. Technology testing. http://coet.fau.edu/focus-areas/technology-testing.html [Google Scholar]
  45. Stewart HB. 1974. Current from the current. Oceanus 17:38–41 [Google Scholar]
  46. Thomas N, Seim H, Haines S. 2015. An observational, spatially explicit, stability-based estimate of the wind resource off the shore of North Carolina. J. Appl. Meteorol. Climatol. 54:2407–25 [Google Scholar]
  47. Tracey KL, Watts DR. 1986. On Gulf Stream meander characteristics near Cape Hatteras. J. Geophys. Res. 91:7587–602 [Google Scholar]
  48. US Census Bureau 2016. Total midyear population for the world: 1950–2050 http://www.census.gov/population/international/data/worldpop/table_population.php [Google Scholar]
  49. Van Kuik GAM. 2007. The Lanchester-Betz-Joukowsky limit. Wind Energy 10:289–91 [Google Scholar]
  50. VanZwieten JH, Baxley WE, Alsenas GM, Meyer I, Muglia M. et al. 2015. Marine renewable energy—ocean current turbine mooring considerations. Proceedings of the Offshore Technology Conference, 4–7 May, Houston, Texas Doc. OTC-25965-MS. Houstin, TX: Offshore Technol. Conf. [Google Scholar]
  51. VanZwieten JH, Duerr AES, Alsenas GM, Hanson HP. 2013a. Global ocean current energy assessment: an initial look. Proceedings of the 1st Marine Energy Technology Symposium, April 10–11, Washington, DC http://www.globalmarinerenewable.com/images/global%20ocean%20current%20energy%20assessment%20an%20initial%20look.pdf [Google Scholar]
  52. VanZwieten JH, McAnally W, Ahmad J, Davis T, Martin J. et al. 2014a. In-stream hydrokinetic power: review and appraisal. J. Energy Eng. 141:04014024 [Google Scholar]
  53. VanZwieten JH, Meyer I, Alsenas GM. 2014b. Evaluation of HYCOM as a tool for ocean current energy assessment. Proceedings of the 2nd Marine Energy Technology Symposium, April 15–18, Seattle, WA http://www.globalmarinerenewable.com/images/pdf/METS_PAPERS_VII/100-VanZweiten.pdf [Google Scholar]
  54. VanZwieten JH, Vanrietvelde N, Hacker BL. 2013b. Numerical simulation of an experimental ocean current turbine. IEEE J. Ocean. Eng. 38:131–43 [Google Scholar]
  55. Von Arx WS, Stewart HB, Apel JR. 1974. The Florida Current as a potential source of usable energy. Proceedings of the MacArthur Workshop on the Feasibility of Extracting Usable Energy From the Florida Current HB Stewart 91–101 Miami, FL: NOAA Atl. Oceanogr. Meteorol. Lab. [Google Scholar]
  56. Webster F. 1961. A description of Gulf Stream meanders off Onslow Bay. Deep-Sea Res. 9:130–43 [Google Scholar]
  57. Zeng X, He R. 2016. Diagnosing large Gulf Stream meanders in the South Atlantic Bight using adjoint sensitivity analysis Presented at 2016 Ocean Sci. Meet., New Orleans, LA, Feb. 21–26 [Google Scholar]
  58. Zhu X-H, Kaneko A, Saitoa T, Gohda N. 2001. Kuroshio stream path variation and its associated velocity structures south of Shikoku, Japan. Geophys. Res. Lett. 28:4615–18 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error