1932

Abstract

Sediment transfer from land to ocean begins in coastal settings and, for large rivers such as the Amazon, has dramatic impacts over thousands of kilometers covering diverse environmental conditions. In the relatively natural Amazon tidal river, combinations of fluvial and marine processes transition toward the ocean, affecting the transport and accumulation of sediment in floodplains and tributary mouths. The enormous discharge of Amazon fresh water causes estuarine processes to occur on the continental shelf, where much sediment accumulation creates a large clinoform structure and where additional sediment accumulates along its shoreward boundary in tidal flats and mangrove forests. Some remaining Amazon sediment is transported beyond the region near the river mouth, and fluvial forces on it diminish. Numerous perturbations to Amazon sediment transport and accumulation occur naturally, but human actions will likely dominate future change, and now is the time to document, understand, and mitigate their impacts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060457
2021-01-03
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-010816-060457.html?itemId=/content/journals/10.1146/annurev-marine-010816-060457&mimeType=html&fmt=ahah

Literature Cited

  1. Aalto R, Dunne T, Guyot JL 2006. Geomorphic controls on Andean denudation rates. J. Geol. 114:85–99
    [Google Scholar]
  2. Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA et al. 2003. Episodic sediment accumulation on Amazonian floodplains influenced by El Niño/Southern Oscillation. Nature 425:493–97
    [Google Scholar]
  3. Aalto R, Nittrouer CA. 2012. 210Pb geochronology of flood events in large tropical river systems. Philos. Trans. R. Soc. A 370:2040–74
    [Google Scholar]
  4. Adams CE, Wells JT, Coleman JM 1986. Transverse bedforms on the Amazon shelf. Cont. Shelf Res. 6:175–87
    [Google Scholar]
  5. Alexander CR, Davis RA, Henry VJ 1998. Tidalites: Processes and Products SEPM Spec. Publ. 61 Tulsa, OK: Soc. Sediment. Geol.
  6. Alexander CR, Nittrouer CA, DeMaster DJ 1986. High-resolution seismic stratigraphy and its sedimentological interpretation on the Amazon continental shelf. Cont. Shelf Res. 6:175–87
    [Google Scholar]
  7. Aller JY, Aller RC. 1986. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6:291–310
    [Google Scholar]
  8. Aller JY, Stupakoff I. 1996. The distribution and seasonal characteristics of benthic communities on the Amazon shelf as indicators of physical processes. Cont. Shelf Res. 16:717–51
    [Google Scholar]
  9. Aller RC, Blair NE, Xia Q, Rude PD 1996. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Cont. Shelf Res. 16:753–86
    [Google Scholar]
  10. Aller RC, Mackin JE, Cox RT Jr 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont. Shelf Res. 6:263–89
    [Google Scholar]
  11. Allison MA, Lee MT. 2004. Sediment exchange between Amazon mudbanks and fringing mangroves in French Guiana. Mar. Geol. 208:169–90
    [Google Scholar]
  12. Allison MA, Lee MT, Ogston AS, Aller RC 2000. Origin of Amazon mudbanks along the northeastern coast of South America. Mar. Geol. 163:241–56
    [Google Scholar]
  13. Allison MA, Nittrouer CA, Faria LEC 1995a. Rates and mechanisms of shoreface progradation and retreat downdrift of the Amazon river mouth. Mar. Geol. 125:373–92
    [Google Scholar]
  14. Allison MA, Nittrouer CA, Kineke GC 1995b. Seasonal sediment storage on mudflats adjacent to the Amazon River. Mar. Geol. 125:303–28
    [Google Scholar]
  15. Anthony EJ, Gardel A, Gratiot N, Proisy C, Allison MA et al. 2010. The Amazon-influenced muddy coast of South America: a review of mud-bank-shoreline interactions. Earth-Sci. Rev. 103:99–121
    [Google Scholar]
  16. Archer AW. 2005. Review of Amazonian depositional systems. Fluvial Sedimentology VII MD Blum, SB Marriott, SF Leclair 17–39 Oxford, UK: Blackwell
    [Google Scholar]
  17. Asp NE, Gomes VJC, Ogston A, Borges JCC, Nittrouer CA 2016. Sediment source, turbidity maximum, and implications for mud exchange between channel and mangroves in an Amazonian estuary. Ocean Dyn 66:285–97
    [Google Scholar]
  18. Asp NE, Gomes VJC, Schettini CAF, Souza Filho PWM, Siegle E et al. 2018. Sediment dynamics of a tropical tide-dominated estuary: turbidity maximum, mangroves and the role of the Amazon River sediment load. Estuar. Coast. Shelf Sci. 214:10–24
    [Google Scholar]
  19. Asp NE, Schettini CAF, Siegle E, da Silva MS, de Brito RNR 2012. The dynamics of a frictionally-dominated Amazonian estuary. Braz. J. Oceanogr. 60:391–403
    [Google Scholar]
  20. Augustinus PGEF. 2004. The influence of the trade winds on the coastal development of the Guianas at various scale levels: a synthesis. Mar. Geol. 208:141–51
    [Google Scholar]
  21. Augustinus PGEF, Hazelhoff L, Kroon A 1989. The chenier coast of Suriname: modern and geological development. Mar. Geol. 90:269–81
    [Google Scholar]
  22. Barreto LA, Milliman JD, Amaral CAB, Francisconi O 1975. Continental margin sedimentation off Brazil, part II. Northern Brazil. Contrib. Sedimentol. 4:11–43
    [Google Scholar]
  23. Beardsley RC, Candela J, Limeburner R, Geyer WR, Lentz SJ et al. 1995. The M2 tide on the Amazon shelf. J. Geophys. Res. 100:2283–319
    [Google Scholar]
  24. Berhane I, Sternberg RW, Kineke GC, Milligan TG, Kranck K 1997. The variability of suspended aggregates on the Amazon continental shelf. Cont. Shelf Res. 17:267–86
    [Google Scholar]
  25. Berner RA, Rao JL. 1994. Phosphorus in sediments of the Amazon River and estuary: implications for global flux of phosphorus to the sea. Geochim. Cosmochim. Acta 58:2333–45
    [Google Scholar]
  26. Bonnet MP, Barroux G, Martinez JM, Seyler F, Moreira-Turcq P et al. 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). J. Hydrol. 349:18–30
    [Google Scholar]
  27. Bouchez J, Métivier F, Lupker M, Maurice L, Perez M et al. 2011. Prediction of depth-integrated fluxes of suspended sediment in the Amazon River: particle aggregation as a complicating factor. Hydrol. Process. 25:778–94
    [Google Scholar]
  28. Bowles FA, Fleischer P. 1985. Orinoco and Amazon River sediment input to the eastern Caribbean Basin. Mar. Geol. 68:53–72
    [Google Scholar]
  29. Cacchione DA, Drake DE, Kayen RW, Sternberg RW, Kineke GC, Tate GB 1995. Measurements in the bottom boundary layer on the Amazon subaqueous delta. Mar. Geol. 125:235–57
    [Google Scholar]
  30. Callède J, Cochonneau G, Ronchail J, Vieira Alves F, Guyot J-L et al. 2010. Les apports en eau de l'Amazone à l'Océan Atlantique. Rev. Sci. Eau 23:247–73
    [Google Scholar]
  31. Curtin TB. 1986a. Physical observations in the plume region of the Amazon River during peak discharge—II. Water masses. Cont. Shelf Res. 6:53–71
    [Google Scholar]
  32. Curtin TB. 1986b. Physical observations in the plume region of the Amazon River during peak discharge—III. Currents. Cont. Shelf Res. 6:73–86
    [Google Scholar]
  33. Curtin TB, Legeckis RV. 1986. Physical observations in the plume region of the Amazon River during peak discharge—I. Surface variability. Cont. Shelf Res. 6:31–51
    [Google Scholar]
  34. Damuth JE, Flood RD. 1985. Amazon Fan, Atlantic Ocean. Submarine Fans and Related Turbidite Sequences AH Bouma, NE Barnes, WR Normark 97–106 New York: Springer
    [Google Scholar]
  35. Damuth JE, Flood RD, Kowsmann RO, Belderson RH, Gorini MA 1988. Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies. Am. Assoc. Petrol. Geol. Bull. 72:885–911
    [Google Scholar]
  36. Damuth JE, Kumar N. 1975. Amazon Cone, morphology, sediments, age, and growth pattern. Geol. Soc. Am. Bull. 86:863–78
    [Google Scholar]
  37. Degens ET, Kempe S, Richey JE 1991. Summary: biogeochemistry of major world rivers. Biogeochemistry of Major World Rivers ET Degens, S Kempe, JE Richey 323–47 New York: Wiley
    [Google Scholar]
  38. DeMaster DJ, Knapp GB, Nittrouer CA 1983. Biological uptake and accumulation of silica on the Amazon continental shelf. Geochim. Cosmochim. Acta 47:1713–23
    [Google Scholar]
  39. DeMaster DJ, Kuehl SA, Nittrouer CA 1986. Effects of suspended sediments on geochemical processes near the mouth of the Amazon River: examination of biological silica uptake and the fate of particle-reactive elements. Cont. Shelf Res. 6:107–25
    [Google Scholar]
  40. DeMaster DJ, Pope RH. 1996. Nutrient dynamics in Amazon shelf waters: results from AMASSEDS. Cont. Shelf Res 16:263–89
    [Google Scholar]
  41. DeMaster DJ, Smith WO, Nelson DM, Aller JY 1996. Biogeochemical processes in Amazon shelf waters: chemical distributions and uptake rates of silicon, carbon and nitrogen. Cont. Shelf Res 16:617–43
    [Google Scholar]
  42. Dukat DA, Kuehl SA. 1995. Non-steady-state 210Pb flux and the use of 228Ra/226Ra as a geochronometer on the Amazon continental shelf. Mar. Geol. 125:329–50
    [Google Scholar]
  43. Dunne T, Mertes LAK, Meade RH, Richey JE, Forsberg BR 1998. Exchanges of sediment between the floodplain and channel of the Amazon River in Brazil. Geol. Soc. Am. Bull. 110:450–67
    [Google Scholar]
  44. Eisma D, Augustinus PGEF, Alexander CR 1991. Recent and subrecent changes in the dispersal of Amazon mud. Neth. J. Sea Res. 28:181–92
    [Google Scholar]
  45. Faas RW. 1986. Mass-physical and geotechnical properties of surficial sediments and dense nearbed sediment suspensions on the Amazon continental shelf. Cont. Shelf Res. 6:189–208
    [Google Scholar]
  46. Fassoni-Andrade AC, de Paiva RCD 2019. Mapping spatial-temporal sediment dynamics of river-floodplains in the Amazon. Remote Sens. Environ. 221:94–107
    [Google Scholar]
  47. Fearnside PM. 2005. Deforestation in Brazilian Amazonia: history, rates and consequences. Conserv. Biol. 19:680–88
    [Google Scholar]
  48. Fearnside PM. 2015. Hidrelétricas na Amazônia: Impactos Ambientais e Sociais na Tomada de Decisões Sobre Grandes Obras, Vol. 1: Manaus, Braz: Inst. Nac. Pesqui. Amaz.
  49. Figueiredo AG, Nittrouer CA. 1995. New insights to high-resolution stratigraphy on the Amazon continental shelf. Mar. Geol. 125:393–99
    [Google Scholar]
  50. Figueiredo J, Hoorn C, van der Ven P, Soares E 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology 37:619–22
    [Google Scholar]
  51. Filizola N, Guyot JL. 2009. Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set. Hydrol. Process. 23:3207–15
    [Google Scholar]
  52. Flood RD, Damuth JE. 1987. Quantitative characteristics of sinuous distributary channels on the Amazon Deep-Sea Fan. Geol. Soc. Am. Bull. 98:728–38
    [Google Scholar]
  53. Flood RD, Manley PL, Kowsmann RO, Appi CJ, Pirmez C 1991. Seismic facies and Late Quaternary growth of Amazon submarine fan. Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems P Weimer, MH Link 415–33 New York: Springer
    [Google Scholar]
  54. Flood RD, Piper DJW. 1997. Amazon Fan sedimentation: the relationship to equatorial climate change, continental denudation, and sea-level fluctuations. Proceedings of the Ocean Drilling Program, Vol. 155 Sci. Results: Amazon Fan: Sites 930–946 RD Flood, DJW Piper, A Klaus, LC Peterson 653–78 College Station, TX: Ocean Drill. Prog.
    [Google Scholar]
  55. Franzinelli E, Potter PE. 1983. Petrology, chemistry, and texture of modern river sands, Amazon River system. J. Geol. 91:23–39
    [Google Scholar]
  56. Freitas PTA, Asp NE, Souza Filho PWM, Nittrouer CA, Ogston AS et al. 2017. Tidal influence on the hydrodynamics and sediment entrapment in a major Amazon River tributary – lower Tapajós River. J. S. Am. Earth Sci. 79:189–201
    [Google Scholar]
  57. Fricke AT, Nittrouer CA, Ogston AS, Nowacki DJ, Asp NE et al. 2017. River tributaries as sediment sinks: processes operating where the Tapajós and Xingu Rivers meet the Amazon tidal river. Sedimentology 64:1731–53
    [Google Scholar]
  58. Fricke AT, Nittrouer CA, Ogston AS, Nowacki DJ, Asp NE et al. 2019. Morphology and dynamics of the intertidal floodplain along the Amazon tidal river. Earth Surf. Process. Landf. 44:204–18
    [Google Scholar]
  59. Gensac E, Martinez J-M, Vantrepotte V, Anthony EJ 2016. Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon river: the role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation. Cont. Shelf Res. 118:49–62
    [Google Scholar]
  60. Geyer WR. 1995. Tide-induced mixing in the Amazon frontal zone. J. Geophys. Res. 100:2341–53
    [Google Scholar]
  61. Geyer WR, Beardsley RC, Lentz SJ, Candela J, Limeburner R et al. 1996. Physical oceanography of the Amazon shelf. Cont. Shelf Res. 16:575–616
    [Google Scholar]
  62. Geyer WR, Kineke GC. 1995. Observations of currents and water properties in the Amazon frontal zone. J. Geophys. Res. 100:2321–39
    [Google Scholar]
  63. Gibbs RJ. 1967. The geochemistry of the Amazon River system: part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol. Soc. Am. Bull. 78:1203–32
    [Google Scholar]
  64. Gibbs RJ. 1970. Circulation in the Amazon River estuary and adjacent Atlantic Ocean. J. Mar. Res. 28:113–23
    [Google Scholar]
  65. Gibbs RJ. 1982. Currents on the shelf of north-eastern South America. Estuar. Coast. Shelf Sci. 14:283–99
    [Google Scholar]
  66. Gibbs RJ, Konwar L. 1986. Coagulation and settling of Amazon River suspended sediment. Cont. Shelf Res. 6:127–49
    [Google Scholar]
  67. Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J et al. 2013. Intensification of the Amazon hydrological cycle over the last two decades. Geophys. Res. Lett. 40:1729–33
    [Google Scholar]
  68. Gomes VJC, Asp NE, Siegle E, McLachlan RL, Ogston AS et al. 2020. Connection between macrotidal estuaries along the southeastern Amazon coast and its role in coastal progradation. Estuar. Coast. Shelf Sci. 240:106794
    [Google Scholar]
  69. Gratiot N, Anthony EJ, Gardel A, Gaucherel C, Proisy C et al. 2008. Significant contribution of the 18.6 year tidal cycle to regional coastal changes. Nat. Geosci. 1:169–72
    [Google Scholar]
  70. Gratiot N, Gardel A, Anthony EJ 2007. Trade-wind waves and mud dynamics on the French Guiana coast, South America: input from ERA-40 wave data and field investigations. Mar. Geol. 236:15–26
    [Google Scholar]
  71. Hellweger FL, Gordon AL. 2002. Tracing Amazon River water into the Caribbean Sea. J. Mar. Res. 60:537–49
    [Google Scholar]
  72. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–31
    [Google Scholar]
  73. Hübscher C, Figueiredo AG, Kruse L, Spieß V 2002. High-resolution analysis of the deposition pattern on the Amazon sub-aquatic delta and outer continental shelf. Mar. Geophys. Res. 23:209–22
    [Google Scholar]
  74. Irion G. 1984. Sedimentation and sediments of Amazonian rivers and evolution of the Amazonian landscape since Pliocene times. The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin H Sioli 201–14 Dordrecht, Neth: Dr. W. Junk
    [Google Scholar]
  75. Irion G, de Mello ASN, Morais J, Piedade MTF, Junk WJ et al. 2010. Development of the Amazon valley during the middle to late Quaternary: sedimentological and climatological observations. Amazonian Floodplain Forests WJ Junk, MTF Piedade, F Wittmann, J Schöngart, P Parolin 27–42 Berlin: Springer
    [Google Scholar]
  76. Irion G, Müller J, de Mello JN, Junk WJ 1995. Quaternary geology of the Amazonian lowland. Geo-Mar. Lett. 15:172–78
    [Google Scholar]
  77. Jaeger JM, Nittrouer CA. 1995. Tidal controls on the formation of fine-scale sedimentary strata near the Amazon river mouth. Mar. Geol. 125:259–81
    [Google Scholar]
  78. Johns EM, Muhling BA, Perez RC, Müller-Karger FE, Melo N et al. 2014. Amazon River water in the northeastern Caribbean Sea and its effect on larval reef fish assemblages during April 2009. Fish. Oceanogr. 23:472–94
    [Google Scholar]
  79. Kineke GC, Sternberg RW. 1995. Distribution of fluid muds on the Amazon continental shelf. Mar. Geol. 125:193–234
    [Google Scholar]
  80. Kineke GC, Sternberg RW, Trowbridge JH, Geyer WR 1996. Fluid-mud processes on the Amazon continental shelf. Cont. Shelf Res. 16:667–96
    [Google Scholar]
  81. Klammer G. 1984. The relief of the extra-Andean Amazon basin. The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin H Sioli 47–84 Dordrecht, Neth: Dr. W. Junk
    [Google Scholar]
  82. Kosuth P, Callede J, Laraque A, Filizola N, Guyot JL et al. 2009. Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrol. Process. 23:3141–50
    [Google Scholar]
  83. Kuehl SA, DeMaster DJ, Nittrouer CA 1986a. Nature of sediment accumulation on the Amazon continental shelf. Cont. Shelf Res. 6:209–25
    [Google Scholar]
  84. Kuehl SA, Nittrouer CA, Allison MA, Faria LEC, Dukat DA et al. 1996. Sediment deposition, accumulation, and seabed dynamics in an energetic fine-grained coastal environment. Cont. Shelf Res. 16:787–815
    [Google Scholar]
  85. Kuehl SA, Nittrouer CA, DeMaster DJ 1986b. Distribution of sedimentary structures in the Amazon subaqueous delta. Cont. Shelf Res. 6:311–36
    [Google Scholar]
  86. Kuehl SA, Pacioni TD, Rine JM 1995. Seabed dynamics of the inner Amazon continental shelf: temporal and spatial variability of surficial strata. Mar. Geol. 125:283–302
    [Google Scholar]
  87. Latrubesse EM. 2000. The Late Pleistocene in Amazonia: a paleoclimatic approach. Southern Hemisphere Paleo- and Neoclimates P Smolka, W Volkheimer 209–24 Berlin: Springer
    [Google Scholar]
  88. Latrubesse EM, Arima EY, Dunne T, Park E, Baker VR et al. 2017. Damming the rivers of the Amazon basin. Nature 546:363–69
    [Google Scholar]
  89. Latrubesse EM, Franzinelli E. 2002. The Holocene alluvial plain of the middle Amazon River, Brazil. Geomorphology 44:241–57
    [Google Scholar]
  90. Latrubesse EM, Stevaux JC, Sinha R 2005. Tropical rivers. Geomorphology 70:187–206
    [Google Scholar]
  91. Lentz SJ. 1995a. The Amazon River plume during AMASSEDS: subtidal current variability and the importance of wind forcing. J. Geophys. Res. 100:2377–90
    [Google Scholar]
  92. Lentz SJ. 1995b. Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. J. Geophys. Res. 100:2391–400
    [Google Scholar]
  93. Lentz SJ, Limeburner R. 1995. The Amazon River Plume during AMASSEDS: spatial characteristics and salinity variability. J. Geophys. Res. 100:2355–75
    [Google Scholar]
  94. Liu JP, Li AC, Xu KH, Veiozzi DM, Yang ZS et al. 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Cont. Shelf Res. 26:2141–56
    [Google Scholar]
  95. Mackin JE, Aller RC. 1986. The effects of clay mineral reactions on dissolved Al distributions in sediments and waters of the Amazon continental shelf. Cont. Shelf Res. 6:245–62
    [Google Scholar]
  96. Manley PL, Flood RD. 1988. Cyclic sediment deposition within Amazon deep-sea fan. Am. Assoc. Petrol. Geol. Bull. 72:912–25
    [Google Scholar]
  97. Martinez JM, Guyot JL, Filizola N, Sondag F 2009. Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena 79:257–64
    [Google Scholar]
  98. Maslin M, Vilela C, Mikkelsen N, Grootes P 2005. Causes of catastrophic sediment failures of the Amazon Fan. Quat. Sci. Rev. 24:2180–93
    [Google Scholar]
  99. McGeary DFR, Damuth JE. 1973. Postglacial iron-rich crusts in hemipelagic deep-sea sediment. Geol. Soc. Am. Bull. 84:1201–12
    [Google Scholar]
  100. McKee BA, DeMaster DJ, Nittrouer CA 1986. Temporal variability in the partitioning of thorium between dissolved and particulate phases on the Amazon shelf: implications for the scavenging of particle-reactive species. Cont. Shelf Res. 6:87–106
    [Google Scholar]
  101. McLachlan RL, Ogston AS, Asp NE, Fricke AT, Nittrouer CA et al. 2020a. Impacts of tidal-channel connectivity on transport asymmetry and sediment exchange with mangrove forests. Estuar. Coast. Shelf Sci. 233:106524
    [Google Scholar]
  102. McLachlan RL, Ogston AS, Asp NE, Fricke AT, Nittrouer CA et al. 2020b. Morphological evolution of a macrotidal back-barrier environment: the Amazon coast. Sedimentology https://doi.org/10.1111/sed.12752
    [Crossref] [Google Scholar]
  103. Meade RH. 1985. Suspended sediment in the Amazon River and its tributaries in Brazil during 1982–1984 Open-File Rep 85–492 US Geol. Surv Denver, CO:
  104. Meade RH, Dunne T, Richey JE, Santos UM, Salati E 1985. Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science 228:488–90
    [Google Scholar]
  105. Meade RH, Nordin CF, Curtis WF, Rodrigues FMC, do Vale CM et al. 1979. Sediment loads in the Amazon River. Nature 278:161–63
    [Google Scholar]
  106. Mertes LAK, Dunne T. 2007. Effects of tectonism, climate change, and sea-level change on the form and behaviour of the modern Amazon River and its floodplain. Large Rivers: Geomorphology and Management A Gupta 115–44 New York: Wiley
    [Google Scholar]
  107. Mertes LAK, Dunne T, Martinelli LA 1996. Channel floodplain geomorphology along the Solimões-Amazon River, Brazil. Geol. Soc. Am. Bull. 108:1089–107
    [Google Scholar]
  108. Michalopoulos P, Aller RC. 1995. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270:614–17
    [Google Scholar]
  109. Michalopoulos P, Aller RC. 2004. Early diagenesis of biogenic silica in the Amazon Delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68:1061–85
    [Google Scholar]
  110. Milliman JD, Barretto HT. 1975. Relict magnesian calcite oolite and subsidence of the Amazon shelf. Sedimentology 22:137–45
    [Google Scholar]
  111. Milliman JD, Farnsworth KL. 2011. River Discharge to the Coastal Ocean Cambridge, UK: Cambridge Univ. Press
  112. Milliman JD, Summerhayes CP, Barretto HT 1975. Quaternary sedimentation on the Amazon continental margin: a model. Geol. Soc. Am. Bull. 86:610–14
    [Google Scholar]
  113. Molinier M, Guyot JL, Oliveira E, Guimaraes V 1996. Les regimes hydrologiques de l'Amazone et de ses affluents. L'hydrologie tropicale: geoscience et outil pour le développement P Chevallier, B Pouyaud 209–22 Paris: AIHS
    [Google Scholar]
  114. Montanher OC, de Morais Novo EML, de Souza Filho EE 2018. Temporal trend of the suspended sediment transport of the Amazon River (1984–2016). Hydrol. Sci. J. 63:13–14
    [Google Scholar]
  115. Moore WS, DeMaster DJ, Smoak JM, McKee BA, Swarzcnski PW 1996. Radionuclide tracers of sediment-water interactions on the Amazon Shelf. Cont. Shelf Res. 16:645–65
    [Google Scholar]
  116. Moquet JS, Guyot JL, Crave A, Viers J, Filizola N et al. 2016. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ. Sci. Pollut. Res. 23:11405–29
    [Google Scholar]
  117. Moreira-Turcq P, Jouanneau JM, Turcq B, Seyler P, Weber O et al. 2004. Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates. Palaeogeol. Palaeoclimatol. Palaeoecol. 214:27–40
    [Google Scholar]
  118. Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS et al. 2016. An extensive reef system at the Amazon River mouth. Sci. Adv. 2:e1501252
    [Google Scholar]
  119. Nichols MM, Biggs RB. 1985. Estuaries. Coastal Sedimentary Environments RA Davis 77–186 New York: Springer
    [Google Scholar]
  120. Nittrouer CA, Curtin TB, DeMaster DJ 1986a. Concentration and flux of suspended sediment on the Amazon continental shelf. Cont. Shelf Res. 6:151–74
    [Google Scholar]
  121. Nittrouer CA, DeMaster DJ. 1986. Sedimentary processes on the Amazon continental shelf: past, present and future research. Cont. Shelf Res. 6:5–30
    [Google Scholar]
  122. Nittrouer CA, DeMaster DJ. 1996. The Amazon shelf setting: tropical, energetic, and influenced by a large river. Cont. Shelf Res. 16:553–73
    [Google Scholar]
  123. Nittrouer CA, DeMaster DJ, Kuehl SA, Kowsmann RO 1986b. The deltaic nature of Amazon shelf sedimentation. Geol. Soc. Am. Bull. 97:444–58
    [Google Scholar]
  124. Nittrouer CA, Kuehl SA, Figueiredo AG, Allison MA, Sommerfield CK et al. 1996. The geological record preserved by Amazon shelf sedimentation. Cont. Shelf Res. 16:817–41
    [Google Scholar]
  125. Nittrouer CA, Kuehl SA, Sternberg RW, Figueiredo AG, Faria LEC 1995. An introduction to the geological significance of sediment transport and accumulation on the Amazon continental shelf. Mar. Geol. 125:177–92
    [Google Scholar]
  126. Nittrouer CA, Sharara MT, DeMaster DJ 1983. Variations of sediment texture on the Amazon continental shelf. J. Sediment. Petrol. 53:179–91
    [Google Scholar]
  127. Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS et al. 2016. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. PNAS 113:10759–68
    [Google Scholar]
  128. Nordin CF, Meade RH, Curtis WF, Bosio NJ, Landim PMB 1980. Size distribution of Amazon River bed sediment. Nature 286:52–53
    [Google Scholar]
  129. Nowacki DJ, Ogston AS, Nittrouer CA, Fricke AT, Asp NE et al. 2019. Seasonal, tidal, and geomorphic controls on sediment export to Amazon River tidal floodplains. Earth Surf. Process. Landf. 44:1846–59
    [Google Scholar]
  130. Oltman RE. 1968. Reconnaissance investigations of the discharge and water quality of the Amazon River Circ. 552, US Geol. Surv Washington, DC:
  131. Omachi C, Asp NE, Siegle E, Mariana AAC, Francini-Filho RB, Thompson FL 2019. Light availability for reef-building organisms in a plume-influenced shelf. Cont. Shelf Res. 181:25–33
    [Google Scholar]
  132. Patchineelam SM, Figueiredo AG. 2000. Preferential settling of smectite on the Amazon continental shelf. Geo-Mar. Lett. 20:37–42
    [Google Scholar]
  133. Patruno S, Helland-Hansen W. 2018. Clinoforms and clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth-Sci. Rev. 185:202–33
    [Google Scholar]
  134. Piper DJW, Pirmez C, Manley PL, Long D, Flood RD et al. 1997. Mass transport deposits of the Amazon Fan. Proceedings of the Ocean Drilling Program, Vol. 155 Sci. Results: Amazon Fan: Sites 930–946 RD Flood, DJW Piper, A Klaus, LC Peterson 109–46 College Station, TX: Ocean Drill. Prog.
    [Google Scholar]
  135. Pritchard DW. 1967. What is an estuary: physical viewpoint. Estuaries GH Lauff 3–5 Washington, DC: Am. Assoc. Adv. Sci.
    [Google Scholar]
  136. Reineck H-E, Singh IB. 1975. Depositional Sedimentary Environments Berlin: Springer
  137. Richey JE, Meade RH, Salati E, Devol AH, Nordin CF, dos Santos U 1986. Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Resour. Res. 22:756–64
    [Google Scholar]
  138. Richey JE, Nobre C, Deser C 1989. Amazon River discharge and climate variability: 1903–1985. Science 246:101–3
    [Google Scholar]
  139. Rine JM, Ginsburg RN. 1985. Depositional facies of a mud shoreface in Suriname, South America: a mud analogue to sandy, shallow-marine deposits. J. Sediment. Petrol. 55:633–52
    [Google Scholar]
  140. Rude PD, Aller RC. 1994. Fluorine uptake by Amazon continental shelf sediment and its impact on the global fluorine cycle. Cont. Shelf Res. 14:883–908
    [Google Scholar]
  141. Rudorff CM, Dunne T, Melack JM 2018. Recent increase of river–floodplain suspended sediment exchange in a reach of the lower Amazon River. Earth Surf. Process. Landf. 43:322–32
    [Google Scholar]
  142. Rudorff CM, Melack JM, Bates PD 2014a. Flooding dynamics on the lower Amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resour. Res. 50:619–34
    [Google Scholar]
  143. Rudorff CM, Melack JM, Bates PD 2014b. Flooding dynamics on the lower Amazon floodplain: 2. Seasonal and interannual hydrological variability. Water Resour. Res. 50:635–49
    [Google Scholar]
  144. Schettini CAF, Asp NE, Ogston AS, Gomes VJC, McLachlan RL et al. 2020. Circulation and fine-sediment dynamics in the Amazon macrotidal mangrove coast. Earth Surf. Process. Landf. 45:574–89
    [Google Scholar]
  145. Showers WJ, Angle DG. 1986. Stable isotopic characterization of organic carbon accumulation on the Amazon continental shelf. Cont. Shelf Res. 6:227–44
    [Google Scholar]
  146. Silva MS, Takiyama LR, Pantoja JRS 2007. Características da vazão em áreas sob a influência de maré em um dos tributários do Canal Norte do rio Amazonas: rio Matapi em seu baixo curso. Ecossistemas Costeiros Amazônicos: VIII Workshop ECOLAB, Boletim de Resumos138–43 Macapá, Braz: IEPA
    [Google Scholar]
  147. Sioli H. 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin H Sioli 127–65 Dordrecht, Neth: Dr. W. Junk
    [Google Scholar]
  148. Sommerfield CK, Nittrouer CA, Figueiredo AG 1995. Stratigraphic evidence of changes in Amazon shelf sedimentation during the late Holocene. Mar. Geol. 125:351–71
    [Google Scholar]
  149. Souza Filho PWM, Cohen MCL, Lara RJ, Lessa GC, Koch B et al. 2006. Holocene coastal evolution and facies model of the Bragança macrotidal flat on the Amazon mangrove coast, northern Brazil. J. Coast. Res. SI39:306–10
    [Google Scholar]
  150. Souza Filho PWM, Lessa GC, Cohen MCL, Costa FR, Lara RJ 2008. The subsiding macrotidal barrier estuarine system of the eastern Amazon coast, northern Brazil. Geology of Brazilian Coastal Barriers SF Dillenburg, PA Hesp 1–29 Berlin: Springer
    [Google Scholar]
  151. Souza Filho PWM, Morais Tozzi H, El-Robrini M 2003. Geomorphology, land-use and environmental hazards in Ajuruteua macrotidal sandy beach, northern Brazil. J. Coast. Res. SI35:580–89
    [Google Scholar]
  152. Spracklen DV, Garcia-Carreras L. 2015. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42:9546–52
    [Google Scholar]
  153. Stanley DJ, Warne AG. 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265:228–31
    [Google Scholar]
  154. Sternberg RW, Cacchione DA, Paulson B, Kineke GC, Drake DE 1996. Observations of sediment transport on the Amazon subaqueous delta. Cont. Shelf Res. 16:697–715
    [Google Scholar]
  155. Swenson JB, Paola C, Pratson L, Voller VR, Murray AB 2005. Fluvial and marine controls on combined subaerial and subaqueous delta progradation: morphodynamic modeling of compound-clinoform development. J. Geophys. Res. 110:F02013
    [Google Scholar]
  156. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–80
    [Google Scholar]
  157. Trowbridge JH, Kineke GC. 1994. Structure and dynamics of fluid muds on the Amazon continental shelf. J. Geophys. Res. 99:865–74
    [Google Scholar]
  158. Vital H, Stattegger K. 2000a. Lowermost Amazon River: evidence of late Quaternary sea-level fluctuations in a complex hydrodynamic system. Quat. Int. 72:53–60
    [Google Scholar]
  159. Vital H, Stattegger K. 2000b. Major and trace elements of stream sediments from the lowermost Amazon River. Chem. Geol. 168:151–68
    [Google Scholar]
  160. Vital H, Stattegger K. 2000c. Sediment dynamics in the lowermost Amazon. J. Coast. Res. 16:316–28
    [Google Scholar]
  161. Vital H, Stattegger K, Garbe-Schonberg C 1999. Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River: a provenance study. J. Sediment. Res. 69:563–75
    [Google Scholar]
  162. Vital H, Stattegger K, Posewang J, Theilen F 1998. Lowermost Amazon River: morphology and shallow seismic characteristics. Mar. Geol. 152:277–94
    [Google Scholar]
  163. Walsh JP, Wiberg PL, Aalto R, Nittrouer CA, Kuehl SA 2016. Source-to-sink research: economy of the Earth's surface and its strata. Earth-Sci. Rev. 153:1–6
    [Google Scholar]
  164. Wells JT, Coleman JM. 1978. Longshore transport of mud by waves: northeastern coast of South America. Geol. Mijnb. 57:353–59
    [Google Scholar]
  165. Wells JT, Coleman JM. 1981. Periodic mudflat progradation, northeastern coast of South America: a hypothesis. J. Sediment. Petrol. 51:1053–68
    [Google Scholar]
  166. Wright LD. 1985. River deltas. Coastal Sedimentary Environments RA Davis 1–76 New York: Springer
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060457
Loading
/content/journals/10.1146/annurev-marine-010816-060457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error