1932

Abstract

Since preindustrial times, the ocean has removed from the atmosphere 41% of the carbon emitted by human industrial activities. Despite significant uncertainties, the balance of evidence indicates that the globally integrated rate of ocean carbon uptake is increasing in response to increasing atmospheric CO concentrations. The El Niño–Southern Oscillation in the equatorial Pacific dominates interannual variability of the globally integrated sink. Modes of climate variability in high latitudes are correlated with variability in regional carbon sinks, but mechanistic understanding is incomplete. Regional sink variability, combined with sparse sampling, means that the growing oceanic sink cannot yet be directly detected from available surface data. Accurate and precise shipboard observations need to be continued and increasingly complemented with autonomous observations. These data, together with a variety of mechanistic and diagnostic models, are needed for better understanding, long-term monitoring, and future projections of this critical climate regulation service.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060529
2017-01-03
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/9/1/annurev-marine-010816-060529.html?itemId=/content/journals/10.1146/annurev-marine-010816-060529&mimeType=html&fmt=ahah

Literature Cited

  1. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L. et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37:117–34 [Google Scholar]
  2. Ayers JM, Lozier MS. 2012. Unraveling dynamical controls on the North Pacific carbon sink. J. Geophys. Res. Oceans 117:C01017 [Google Scholar]
  3. Bakker DCE, Pfeil B, Smith K, Hankin S, Olsen A. et al. 2014. An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth Syst. Sci. Data 6:69–90 [Google Scholar]
  4. Bates N, Astor Y, Church M, Currie K, Dore J. et al. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27:1126–41 [Google Scholar]
  5. Behrenfeld MJ, O'Malley RT, Boss ES, Westberry TK, Graff JR. et al. 2016. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Change 6:323–30 [Google Scholar]
  6. Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL. et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752–55 [Google Scholar]
  7. Bennington V, McKinley GA, Dutkiewicz S, Ullman D. 2009. What does chlorophyll variability tell us about export and air-sea CO2 flux variability in the North Atlantic?. Glob. Biogeochem. Cycles 23:GB3002 [Google Scholar]
  8. Benway HM, Alin SR, Boyer E, Cai WJ, Coble PG. et al. 2016. A science plan for carbon cycle research in North American coastal waters Rep. Coast. Carbon Synth. (CCARS) Community Workshop, Woods Hole, MA, Aug. 19–21. doi: 10.1575/1912/7777
  9. Böning C, Dispert A, Visbeck M, Rintoul S, Schwarzkopf F. 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1:864–69 [Google Scholar]
  10. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N. 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–32 [Google Scholar]
  11. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP. et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–45 [Google Scholar]
  12. Breeden M, McKinley GA. 2016. Climate impacts on multidecadal pCO2 variability in the North Atlantic: 1948–2009. Biogeosciences 13:3387–96 [Google Scholar]
  13. Canadell JG, Ciais P, Gurney K, Le Quéré C, Piao S. et al. 2011. An international effort to quantify regional carbon fluxes. Eos Trans. AGU 92:81–82 [Google Scholar]
  14. Ciais P, Dolman AJ, Bombelli A, Duren R, Peregon A. et al. 2014. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 11:3547–3602 [Google Scholar]
  15. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V. et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.465–570 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  16. Coop. Glob. Atmos. Data Integr. Proj 2013. Multi-laboratory compilation of synchronized and gap-filled atmospheric carbon dioxide records for the period 1979–2012 (obspack_co2_1_GLOBALVIEW-CO2_2013_v1.0.4_2013–12–23) Compiled by NOAA Glob. Monit. Div., Boulder, CO. Data product accessed at http://dx.doi.org/10.3334/OBSPACK/1002
  17. Corbière A, Metzl N, Reverdin G, Brunet C, Takahashi T. 2007. Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre. Tellus B 59:168–78 [Google Scholar]
  18. Delworth TL, Mann ME. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 16:661–76 [Google Scholar]
  19. DeVries T. 2014. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob. Biogeochem. Cycles 28:631–47 [Google Scholar]
  20. Fay AR, McKinley GA. 2013. Global trends in surface ocean pCO2 from in situ data. Glob. Biogeochem. Cycles 27:541–57 [Google Scholar]
  21. Fay AR, McKinley GA, Lovenduski NS. 2014. Southern Ocean carbon trends: sensitivity to methods. Geophys. Res. Lett. 41:6833–40 [Google Scholar]
  22. Feely RA, Takahashi T, Wanninkhof R, McPhaden MJ, Cosca CE. et al. 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res. Oceans 111:C08S90 [Google Scholar]
  23. Follows M, Williams RG. 2004. Mechanisms controlling the air-sea flux of CO2 in the North Atlantic. The Ocean Carbon Cycle and Climate M Follows, T Oguz 217–49 Dordrecht, Neth: Springer [Google Scholar]
  24. Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP. et al. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28:862–86 [Google Scholar]
  25. Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM. 2014. Betting on negative emissions. Nat. Clim. Change 4:850–53 [Google Scholar]
  26. Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–57 [Google Scholar]
  27. Gent PR. 2016. Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annu. Rev. Mar. Sci. 8:79–94 [Google Scholar]
  28. Graven HD, Gruber N, Key R, Khatiwala S, Giraud X. 2012. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J. Geophys. Res. 117:C10005 [Google Scholar]
  29. Gregg WW, Casey NW, McClain CR. 2005. Recent trends in global ocean chlorophyll. Geophys. Res. Lett. 32:L03606 [Google Scholar]
  30. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S. et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23:GB1005 [Google Scholar]
  31. Gruber N, Keeling CD, Bates NR. 2002. Interannual variability in the North Atlantic Ocean carbon sink. Science 298:2374–78 [Google Scholar]
  32. Gruber N, Sarmiento JL. 2002. Large-scale biogeochemical-physical interactions in elemental cycles. The Sea, 12 Biological-Physical Interactions in the Sea AR Robinson, JJ McCarthy, BJ Rothschild 337–99 New York: Wiley & Sons [Google Scholar]
  33. Hauck J, Völker C, Wang T, Hoppema M, Losch M, Wolf-Gladrow DA. 2013. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode. Glob. Biogeochem. Cycles 27:1236–45 [Google Scholar]
  34. Henson SA, Sarmiento JL, Dunne JP, Bopp L, Lima ID. et al. 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7:621–40 [Google Scholar]
  35. Hogg AMC, Meredith MP, Blundell JR, Wilson C. 2008. Eddy heat flux in the Southern Ocean: response to variable wind forcing. J. Clim. 21:608–20 [Google Scholar]
  36. Ishii M, Feely RA, Rodgers KB, Park GH, Wanninkhof R. et al. 2014. Air-sea CO2 flux in the Pacific Ocean for the period 1990–2009. Biogeosciences 11:709–34 [Google Scholar]
  37. Ishii M, Inoue HY, Midorikawa T, Saito S, Tokieda T. et al. 2009. Spatial variability and decadal trend of the oceanic CO2 in the western equatorial Pacific warm/fresh water. Deep-Sea Res. II 56:591–606 [Google Scholar]
  38. Jacobson AR, Mikaloff Fletcher SE, Gruber N, Sarmiento JL, Gloor M. 2007. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob. Biogeochem. Cycles 21:GB1019 [Google Scholar]
  39. Johnson KS, Jannasch HW, Coletti LJ, Elrod VA, Martz TR. et al. 2016. Deep-sea DuraFET: a pressure tolerant pH sensor designed for global sensor networks. Anal. Chem. 88:3249–56 [Google Scholar]
  40. Kay JE, Deser C, Phillips A, Mai A, Hannay C. et al. 2015. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96:1333–49 [Google Scholar]
  41. Khatiwala S, Primeau F, Hall T. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–49 [Google Scholar]
  42. Khatiwala S, Tanhua T, Mikaloff Fletcher SE, Gerber M, Doney SC. et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–91 [Google Scholar]
  43. Landschützer P, Gruber N, Bakker DCE, Schuster U. 2014. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28:927–49 [Google Scholar]
  44. Landschützer P, Gruber N, Bakker DCE, Schuster U, Nakaoka S. et al. 2013. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10:7793–815 [Google Scholar]
  45. Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DC. et al. 2015. The reinvigoration of the Southern Ocean carbon sink. Science 349:1221–24 [Google Scholar]
  46. Laruelle GG, Lauerwald R, Pfeil B, Regnier P. 2014. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Glob. Biogeochem. Cycles 28:1199–214 [Google Scholar]
  47. Lauvset SK, Key RM, Olsen A, van Heuven S. Velo A et al. 2016. A new global interior ocean mapped climatology: the 1°×1° GLODAP version 2.. Earth Syst. Sci. Data 8:325–40 [Google Scholar]
  48. Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P. et al. 2015. Global carbon budget 2014. Earth Syst. Sci. Data 7:47–85 [Google Scholar]
  49. Le Quéré C, Orr JC, Monfray P, Aumont O, Madec G. 2000. Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Glob. Biogeochem. Cycles 14:1247–65 [Google Scholar]
  50. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L. et al. 2009. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2:831–36 [Google Scholar]
  51. Le Quéré C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R. et al. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–38 [Google Scholar]
  52. Le Quéré C, Takahashi T, Buitenhuis ET, Rödenbeck C, Sutherland SC. 2010. Impact of climate change and variability on the global oceanic sink of CO2. Glob. Biogeochem. Cycles 24:GB4007 [Google Scholar]
  53. Lenton A, Matear RJ. 2007. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Glob. Biogeochem. Cycles 21:GB2016 [Google Scholar]
  54. Lenton A, Tilbrook B, Law R, Bakker D, Doney SC. et al. 2013. Sea-air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosci. Discuss. 10:285–333 [Google Scholar]
  55. Long MC, Lindsay K, Peacock S, Moore JK, Doney SC. 2013. Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Clim. 26:6775–800 [Google Scholar]
  56. Lovenduski NS, Fay AR, McKinley GA. 2015. Observing multidecadal trends in Southern Ocean CO2 uptake: What can we learn from an ocean model. Glob. Biogeochem. Cycles 29:416–26 [Google Scholar]
  57. Lovenduski NS, Gruber N, Doney SC. 2008. Towards a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22:GB3016 [Google Scholar]
  58. Lovenduski NS, Gruber N, Doney SC, Lima ID. 2007. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Glob. Biogeochem. Cycles 21:GB2026 [Google Scholar]
  59. Lovenduski NS, Long MC, Gent PR, Lindsay K. 2013. Multi-decadal trends in the advection and mixing of natural carbon in the Southern Ocean. Geophys. Res. Lett. 40:139–42 [Google Scholar]
  60. Lovenduski NS, McKinley GA, Fay AR, Lindsay K, Long MC. 2016. Partitioning uncertainty in ocean carbon uptake projections: internal variability, emission scenario, and model structure. Glob. Biogeochem. Cycles 30:1276–82 [Google Scholar]
  61. Lozier MS. 2012. Overturning in the North Atlantic. Annu. Rev. Mar. Sci. 4:291–315 [Google Scholar]
  62. Lozier MS, Dave AC, Palter JB, Gerber LM, Barber RT. 2011. On the relationship between stratification and primary productivity in the North Atlantic. Geophys. Res. Lett. 38:L18609 [Google Scholar]
  63. Martz TR, Daly KL, Byrne RH, Stillman JH, Turk D. 2015. Technology for ocean acidification research: needs and availability. Oceanography 28:240–47 [Google Scholar]
  64. McKinley GA, Carlson CA, Andrews A, Brown DJ, Romero-Lankao P, Shrestha G. 2015. Managing the carbon cycle requires strong science. Eos Nov. 25. http://eos.org/opinions/managing-the-carbon-cycle-requires-strong-science [Google Scholar]
  65. McKinley GA, Fay AR, Takahashi T, Metzl N. 2011. Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat. Geosci. 4:606–10 [Google Scholar]
  66. McKinley GA, Pilcher DJ, Fay AR, Lindsay K, Long MC, Lovenduski NS. 2016. Timescales for detection of trends in the ocean carbon sink. Nature 530:469–72 [Google Scholar]
  67. McKinley GA, Rödenbeck C, Gloor M, Houweling S, Heimann M. 2004. Pacific dominance to global air-sea CO2 flux variability: a novel atmospheric inversion agrees with ocean models. Geophys. Res. Let. 31:GL22308 [Google Scholar]
  68. McKinley GA, Takahashi T, Buitenhuis E, Chai F, Christian JR. et al. 2006. North Pacific carbon cycle response to climate variability on seasonal to decadal timescales. J. Geophys. Res. 111:C07S06 [Google Scholar]
  69. McNutt MK, Abdalati W, Caldeira K, Doney SC, Falkowski PG. et al. 2015. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration Washington, DC: Natl. Res. Counc.
  70. Metzl N. 2009. Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007). Deep-Sea Res. II 56:607–19 [Google Scholar]
  71. Metzl N, Corbière A, Reverdin G, Lenton A, Takahashi T. et al. 2010. Recent acceleration of the sea surface fCO2 growth rate in the North Atlantic subpolar gyre (. 1993–2008 ) revealed by winter observations. Glob. Biogeochem. Cycles 24:GB4004 [Google Scholar]
  72. Midorikawa T, Nemoto K, Kamiya H, Ishii M, Inoue HY. 2005. Persistently strong oceanic CO2 sink in the western subtropical North Pacific. Geophys. Res. Lett. 32:L05612 [Google Scholar]
  73. Mikaloff Fletcher SE, Gruber N, Jacobson AJ, Doney SC, Dutkiewicz S. et al. 2006. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20:GB2002 [Google Scholar]
  74. Munro DR, Lovenduski NS, Takahashi T, Stephens BB, Newberger T, Sweeney C. 2015. Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophys. Res. Lett. 42:7623–30 [Google Scholar]
  75. Olsen A, Key RM, van Heuven S, Lauvset SK, Velo A. et al. 2016. The Global Ocean Data Analysis Project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8:297–323 [Google Scholar]
  76. Park GH, Wanninkhof R, Doney SC, Takahashi T, Lee K. et al. 2010. Variability of global net sea-air CO2 fluxes over the last three decades using empirical relationships. Tellus B 62:352–68 [Google Scholar]
  77. Pfeil B, Olsen A, Bakker DCE, Hankin S, Koyuk H. et al. 2013. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 5:125–43 [Google Scholar]
  78. Randerson JT, Lindsay K, Munoz E, Fu W, Moore JK. et al. 2015. Multicentury changes in ocean and land contributions to the climate-carbon feedback. Glob. Biogeochem. Cycles 29:744–59 [Google Scholar]
  79. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N. et al. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6:597–607 [Google Scholar]
  80. Resplandy L, Séférian R, Bopp L. 2015. Natural variability of CO2 and O2 fluxes: What can we learn from centuries-long climate models simulations. J. Geophys. Res. Oceans 120:384–404 [Google Scholar]
  81. Rödenbeck C, Bakker DC, Gruber N, Iida Y, Jacobson AR. et al. 2015. Data-based estimates of the ocean carbon sink variability—first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences 12:7251–78 [Google Scholar]
  82. Roy T, Bopp L, Gehlen M, Schneider B, Cadule P. et al. 2011. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multimodel linear feedback analysis. J. Clim. 24:2300–18 [Google Scholar]
  83. Sabine CL, Feely R, Gruber N, Key R, Lee K. et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71 [Google Scholar]
  84. Sabine CL, Tanhua T. 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annu. Rev. Mar. Sci. 2:175–98 [Google Scholar]
  85. Sarmiento JL, Gruber N. 2006. Carbon cycle, CO2, and climate. Ocean Biogeochemical Dynamics392–457 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  86. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC. et al. 2004. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18:GB3003 [Google Scholar]
  87. Schuster U, McKinley GA, Bates N, Chevallier F, Doney SC. et al. 2013. An assessment of the Atlantic and Arctic sea-air CO2 fluxes, 1990–2009. Biogeosciences 10:607–27 [Google Scholar]
  88. Schuster U, Watson AJ. 2007. A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res. Oceans 112:C11006 [Google Scholar]
  89. Schuster U, Watson AJ, Bates NR, Corbière A, Gonzalez-Davila M. et al. 2009. Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-Sea Res. II 56:620–29 [Google Scholar]
  90. Siegel DA, Buesseler KO, Behrenfeld MJ, Benitez-Nelson CR, Boss E. et al. 2016. Prediction of the export and fate of global ocean net primary production: the EXPORTS science plan. Front. Mar. Sci. 3:22 [Google Scholar]
  91. Siegel DA, Buesseler KO, Doney SC, Sailley SF, Behrenfeld MJ, Boyd PW. 2014. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28:181–96 [Google Scholar]
  92. Sprintall J, Chereskin TK, Sweeney C. 2012. High-resolution underway upper ocean and surface atmospheric observations in Drake Passage: synergistic measurements for climate science. Oceanography 25:370–81 [Google Scholar]
  93. Sutton AJ, Feely RA, Sabine CL, McPhaden MJ, Takahashi T. et al. 2014. Natural variability and anthropogenic change in equatorial Pacific surface ocean pCO2 and pH. Glob. Biogeochem. Cycles 28:131–45 [Google Scholar]
  94. Swart NC, Fyfe JC, Saenko OA, Eby M. 2014. Wind-driven changes in the ocean carbon sink. Biogeosciences 11:6107–17 [Google Scholar]
  95. Takahashi T, Sutherland SC, Feely RA, Wanninkhof R. 2006. Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. J. Geophys. Res. Oceans 111:C07S05 [Google Scholar]
  96. Takahashi T, Sutherland SC, Kozyr A. 2014. Global Surface pCO2 (LDEO) Database V2013. ORNL/CDIAC-159, NDP-088, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., US Dep. Energy, Oak Ridge, TN. http://cdiac.ornl.gov/oceans/LDEO_Underway_Database
  97. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N. et al. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49:1601–22 [Google Scholar]
  98. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA. et al. 2009. Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II 56:554–77 [Google Scholar]
  99. Takahashi T, Sweeney C, Hales B, Chipman D, Newberger T. et al. 2012. The changing carbon cycle in the Southern Ocean. Oceanography 25:326–37 [Google Scholar]
  100. Talley LD, Feely RA, Sloyan BM, Wanninkhof R, Baringer MO. et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215 [Google Scholar]
  101. Thomas H, Friederike Prowe AE, Lima ID, Doney SC, Wanninkhof R. et al. 2008. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Glob. Biogeochem. Cycles 22:GB4027 [Google Scholar]
  102. Thompson DW, Wallace JM. 2000. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13:1000–16 [Google Scholar]
  103. Ting M, Kushnir Y, Seager R, Li C. 2009. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 22:1469–81 [Google Scholar]
  104. Ullman DJ, McKinley GA, Bennington V, Dutkiewicz S. 2009. Trends in the North Atlantic carbon sink:. 1992–2006 Glob. Biogeochem. Cycles 23:GB4011 [Google Scholar]
  105. Valsala V, Maksyutov S, Telszewski M, Nakaoka S, Nojiri Y. et al. 2012. Climate impacts on the structures of the North Pacific air-sea CO2 flux variability. Biogeosciences 9:477–92 [Google Scholar]
  106. Verdy A, Dutkiewicz S, Follows MJ, Marshall J, Czaja A. 2007. Carbon dioxide and oxygen fluxes in the Southern Ocean: mechanisms of interannual variability. Glob. Biogeochem. Cycles 21:GB2020 [Google Scholar]
  107. Volk T, Hoffert MI. 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present ET Sundquist, WS Broecker 99–110 Washington, DC: Am. Geophys. Union [Google Scholar]
  108. Wang S, Moore JK. 2012. Variability of primary production and air-sea CO2 flux in the Southern Ocean. Glob. Biogeochem. Cycles 26:GB1008 [Google Scholar]
  109. Wanninkhof R, Doney SC, Bullister JL, Levine NM, Warner M, Gruber N. 2010. Detecting anthropogenic CO2 changes in the interior Atlantic Ocean between 1989 and 2005. J. Geophys. Res. Oceans 115:C11028 [Google Scholar]
  110. Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R. et al. 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10:1983–2000 [Google Scholar]
  111. Watson AJ, Schuster U, Bakker DC, Bates NR, Corbière A. et al. 2009. Tracking the variable North Atlantic sink for atmospheric CO2. Science 326:1391–93 [Google Scholar]
  112. Waugh DW, Hall TM, McNeil BI, Key RM, Matear R. 2006. Anthropogenic CO2 in the oceans estimated using transit-time distributions. Tellus B 58:376–79 [Google Scholar]
  113. Westberry T, Behrenfeld MJ, Siegel DA, Boss E. 2008. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22:GB2024 [Google Scholar]
  114. Wetzel P, Winguth A, Maier-Reimer E. 2005. Sea-to-air CO2 flux from 1948 to 2003: a model study. Glob. Biogeochem. Cycles 19:GB2005 [Google Scholar]
  115. Williams RG, Follows MJ. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms Cambridge, UK: Cambridge Univ. Press
  116. Wong CS, Christian JR, Wong SKE, Page J, Xie L, Johannessen S. 2010. Carbon dioxide in surface seawater of the eastern North Pacific Ocean (Line P), 1973–2005. Deep-Sea Res. I 57:687–95 [Google Scholar]
  117. Xiu P, Chai F. 2014. Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Prog. Oceanogr. 122:30–53 [Google Scholar]
  118. Yasunaka S, Nojiri Y, Nakaoka SI, Ono T, Mukai H, Usui N. 2014. North Pacific dissolved inorganic carbon variations related to the Pacific Decadal Oscillation. Geophys. Res. Lett. 41:1005–11 [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060529
Loading
/content/journals/10.1146/annurev-marine-010816-060529
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error