Deep-sea fishes inhabit ∼75% of the biosphere and are a critical part of deep-sea food webs. Diet analysis and more recent trophic biomarker approaches, such as stable isotopes and fatty-acid profiles, have enabled the description of feeding guilds and an increased recognition of the vertical connectivity in food webs in a whole-water-column sense, including benthic-pelagic coupling. Ecosystem modeling requires data on feeding rates; the available estimates indicate that deep-sea fishes have lower per-individual feeding rates than coastal and epipelagic fishes, but the overall predation impact may be high. A limited number of studies have measured the vertical flux of carbon by mesopelagic fishes, which appears to be substantial. Anthropogenic activities are altering deep-sea ecosystems and their services, which are mediated by trophic interactions. We also summarize outstanding data gaps.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson M. 2005a. Food habits of some deep-sea fish off South Africa's west coast and Agulhas Bank. 1. The grenadiers (Teleostei: Macrouridae). Afr. J. Mar. Sci. 27:409–25 [Google Scholar]
  2. Anderson M. 2005b. Food habits of some deep-sea fish off South Africa's west coast and Agulhas Bank. 2. Eels and spiny eels. Afr. J. Mar. Sci. 27:557–66 [Google Scholar]
  3. Angel MV. 1997. What is the deep sea?. Deep-Sea Fishes DJ Randall, AP Farrell 1–41 San Diego, CA: Academic [Google Scholar]
  4. Angel MV, Baker AC. 1982. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 21–30
  5. Arai MN, Welch DW, Dunsmuir AL, Jacobs MC, Ladouceur AR. 2003. Digestion of pelagic Ctenophora and Cnidaria by fish. Can. J. Fish. Aquat. Sci. 60825–29
  6. Bailey DM, Collins MA, Gordon JDM, Zuur AF, Priede IG. 2009. Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries?. Proc. R. Soc. B 276:1965–69 [Google Scholar]
  7. Baird RR, Hopkins TL. 1981. Trophodynamics of the fish Valenciennellus tripunctulatus. III. Energetics, resources and feeding strategy. Mar. Ecol. Prog. Ser 5:21–28 [Google Scholar]
  8. Balanov AA, Gorbatenko KM, Efimkin A. 1995. Foraging dynamics of mesopelagic fishes in the Bering Sea during summer and autumn. J. Ichthyol. 3565–77
  9. Barnes C, Maxwell D, Reuman DC, Jennings S. 2010. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91222–32
  10. Barry JP, Buck KR, Lovera C, Brewer PG, Seibel BA. et al. 2013. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration. Deep-Sea Res. I 92249–60
  11. Bergmann M, Dannheim J, Bauerfeind E, Klages M. 2009. Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep-Sea Res. I 56408–24
  12. Bergstad OA, Clark L, Hansen , Cousins N. 2012. Distribution, population biology, and trophic ecology of the deepwater demersal fish Halosauropsis macrochir (Pisces: Halosauridae) on the Mid-Atlantic Ridge. PLOS ONE 7e31493
  13. Bergstad OA, Gjelsvik G, Schander C, Høines ÅS. 2010. Feeding ecology of Coryphaenoides rupestris from the Mid-Atlantic Ridge. PLOS ONE 5e10453
  14. Bernal A, Olivar MP, Fernández de Puelles ML. 2013. Feeding patterns of Lampanyctus pusillus (Pisces: Myctophidae) throughout its ontogenetic development. Mar. Biol. 160:81–95 [Google Scholar]
  15. Bernal A, Olivar MP, Maynou F, de Puelles MLF. 2015. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Prog. Oceanogr. 135:1–17 [Google Scholar]
  16. Billett DSM, Bett BJ, Jacobs CL, Rouse IP, Wigham BD. 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnol. Oceanogr. 512077–83
  17. Bjelland O, Bergstad OA, Skjaeraasen JE, Meland K. 2000. Trophic ecology of deep-water fishes associated with the continental slope of the eastern Norwegian Sea. Sarsia 85101–17
  18. Blaber SJM, Bulman CM. 1987. Diets of fishes of the upper continental slope of eastern Tasmania: content, calorific values, dietary overlap and trophic relationships. Mar. Biol. 95345–56
  19. Blum JD, Popp BN, Drazen JC, Choy CA, Johnson MW. 2013. Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6879–84
  20. Boerger CM, Lattin GL, Moore SL, Moore CJ. 2010. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 602275–78
  21. Boyle MD, Ebert DA, Cailliet GM. 2012. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web. J. Fish Biol. 801485–507
  22. Britton JC, Morton B. 1994. Marine carrion and scavengers. Oceanography and Marine Biology: An Annual Review 32 AD Ansell, RN Gibson, M Barnes 369–434 London: UCL Press [Google Scholar]
  23. Bromley PJ. 1994. The role of gastric evacuation experiments in quantifying the feeding rates of predatory fish. Rev. Fish Biol. Fish. 436–66
  24. Buckley TW, Tyler GE, Smith DM, Livingston PA. 1999. Food habits of some commercially important groundfish off the coasts of California, Oregon, Washington, and British Columbia NOAA Tech. Memo. NMFS-AFSC-102, Natl. Ocean. Atmos. Adm., US Dep. Commer., Springfield, VA
  25. Bulman CM, Koslow JA. 1992. Diet and food consumption of a deep-sea fish, orange roughy Hoplostethus atlanticus (Pisces: Trachichthyidae), off southeastern Australia. Mar. Ecol. Prog. Ser. 82115–29
  26. Campbell RA, Haedrich RL, Munroe TA. 1980. Parasitism and ecological relationships among deep-sea benthic fishes. Mar. Biol. 57301–13
  27. Carrasson M, Cartes JE. 2002. Trophic relationships in a Mediterranean deep-sea fish community: partition of food resources, dietary overlap and connections within the benthic boundary layer. Mar. Ecol. Prog. Ser. 241:41–55 [Google Scholar]
  28. Carrasson M, Matallanas J. 1998. Feeding habits of Alepocephalus rostratus (Pisces: Alepocephalidae) in the western Mediterranean Sea. J. Mar. Biol. Assoc. UK 781295–306
  29. Carrasson M, Matallanas J. 2001. Feeding ecology of the Mediterranean spiderfish, Bathypterois mediterraneus (Pisces: Chlorophthalmidae), on the western Mediterranean slope. Fish. Bull 99266–74
  30. Carrasson M, Matallanas J. 2002a. Feeding habits of Cataetyx alleni (Pisces: Bythitidae) in the deep western Mediterranean. Sci. Mar. 66417–21
  31. Carrasson M, Matallanas J. 2002b. Feeding strategies of Polyacanthonotus rissoanus (Pisces: Notacanthidae) in the deep western Mediterranean. J. Mar. Biol. Assoc. UK 82665–71
  32. Carrasson M, Matallanas J, Casadevall M. 1997. Feeding strategies of deep-water morids on the western Mediterranean slope. Deep-Sea Res. I 441685–99
  33. Carrasson M, Stefanescu C, Cartes JE. 1992. Diets and bathymetric distributions of two bathyal sharks of the Catalan deep sea (western Mediterranean). Mar. Ecol. Prog. Ser. 8221–30
  34. Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H. et al. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7740–50
  35. Childress JJ, Taylor SM, Cailliet GM, Price MH. 1980. Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off southern California. Mar. Biol. 6127–40
  36. Choy CA, Davison PC, Drazen JC, Flynn A, Gier EJ. et al. 2012. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses. PLOS ONE 7e50133
  37. Choy CA, Drazen JC. 2013. Plastic for dinner? Frequent debris ingestion by large pelagic fishes from the central North Pacific subtropical gyre. Mar. Ecol. Prog. Ser. 485155–63
  38. Choy CA, Popp BN, Hannides CCS, Drazen JC. 2015. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60:1156–71 [Google Scholar]
  39. Choy CA, Popp BN, Kaneko JJ, Drazen JC. 2009. The influence of depth on mercury levels in pelagic fishes and their prey. PNAS 106:13865–69 [Google Scholar]
  40. Choy CA, Portner E, Iwane M, Drazen JC. 2013. Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar. Ecol. Prog. Ser. 492169–84
  41. Choy CA, Wabnitz CCC, Weijerman M, Woodworth-Jefcoats PA, Polovina JJ. 2016. Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol. Prog. Ser. 5499–25
  42. Churchill DA, Heithaus MR, Grubbs RD. 2015a. Effects of lipid and urea extraction on δ15N values of deep-sea sharks and hagfish: Can mathematical correction factors be generated?. Deep-Sea Res. II 115103–8
  43. Churchill DA, Heithaus MR, Vaudo JJ, Grubbs RD, Gastrich K, Castro JI. 2015b. Trophic interactions of common elasmobranchs in deep-sea communities of the Gulf of Mexico revealed through stable isotope and stomach content analysis. Deep-Sea Res. II 115:92–102 [Google Scholar]
  44. Clark MR, Vinnichenko VI, Gordon JDM, Beck-Bulat GZ, Kukharev NN, Kakora AF. 2007. Large-scale distant-water trawl fisheries on seamounts. Seamounts: Ecology, Fisheries and Conservation TJ Pitcher, T Morato, PJB Hart, MR Clark, N Haggan, RS Santos 361–99 Oxford, UK: Blackwell [Google Scholar]
  45. Clarke TA. 1978. Diel feeding patterns of 16 species of mesopelagic fishes from Hawaiian waters. Fish. Bull. 76:495–513 [Google Scholar]
  46. Clarke TA. 1982. Feeding habits of stomiatoid fishes from Hawaiian waters. Fish. Bull. 80287–304
  47. Collins MA, Bailey DM, Ruxton GD, Priede IG. 2005. Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc. R. Soc. B 2722051–57
  48. Conley WJ, Hopkins TL. 2004. Feeding ecology of lanternfish (Pisces: Myctophidae) larvae: prey preferences as a reflection of morphology. Bull. Mar. Sci. 75361–79
  49. Cook AB, Sutton TT, Galbraith JK, Vecchione M. 2013. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep-Sea Res. II 98279–91
  50. Crabtree RE, Carter J, Musick JA. 1991. The comparative feeding ecology of temperate and tropical deep-sea fishes from the western North Atlantic. Deep-Sea Res. A 38:1277–98 [Google Scholar]
  51. Crabtree RE, Sulak KJ. 1986. A contribution to the life history and distribution of Atlantic species of the deep-sea fish genus Conocara (Alepocephalidae). Deep-Sea Res. A 33:1183–201 [Google Scholar]
  52. Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46: AJ Southward, PA Tyler, CM Young, LA Fuiman 225–340 San Diego, CA: Academic [Google Scholar]
  53. Davison PC, Asch RG. 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 432173–80
  54. Davison PC, Checkley DM Jr., Koslow JA, Barlow J. 2013. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116:14–30 [Google Scholar]
  55. Davison PC, Lara-Lopez A, Koslow JA. 2015. Mesopelagic fish biomass in the southern California Current ecosystem. Deep-Sea Res. II 112129–42
  56. Drazen JC. 2002. Energy budgets and feeding rates of Coryphaenoides acrolepis and C. armatus. Mar. Biol 140677–86
  57. Drazen JC, Bailey DM, Ruhl H, Smith KL Jr. 2012. The role of carrion supply in the abundance of deep-water fish off California. PLOS ONE 7e49332
  58. Drazen JC, Buckley TW, Hoff GR. 2001. The feeding habits of slope dwelling macrourid fishes in the eastern North Pacific. Deep-Sea Res. I 48909–35
  59. Drazen JC, Haedrich RL. 2012. A continuum of life histories in deep-sea demersal fishes. Deep-Sea Res. I 6134–42
  60. Drazen JC, Phleger CF, Guest MA, Nichols PD. 2009. Lipid compositions and diet inferences in abyssal macrourids of the eastern North Pacific. Mar. Ecol. Prog. Ser. 3871–14
  61. Drazen JC, Popp BN, Choy CA, Clemente T, De Forest LG, Smith KL Jr. 2008. Bypassing the abyssal benthic food web: macrourid diet in the eastern North Pacific inferred from stomach content and stable isotopes analyses. Limnol. Oceanogr. 532644–54
  62. Drazen JC, Seibel BA. 2007. Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnol. Oceanogr. 522306–16
  63. Dunn MR, Griggs L, Forman J, Horn P. 2010. Feeding habits and niche separation among the deep-sea chimaeroid fishes Harriotta raleighana, Hydrolagus bemisi and Hydrolagus novaezealandiae. Mar. Ecol. Prog. Ser. 407209–25
  64. Ebeling AW, Cailliet GM. 1974. Mouth size predator strategy of midwaters fishes. Deep-Sea Res. Oceanogr. Abstr. 21959–68
  65. Ebert DA, Bizzarro JJ. 2007. Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei). Environ. Biol. Fishes 80221–37
  66. Fanelli E, Cartes JE. 2010. Temporal variations in the feeding habits and trophic levels of three deep-sea demersal fishes from the western Mediterranean Sea, based on stomach contents and stable isotope analyses. Mar. Ecol. Prog. Ser. 402213–32
  67. Fanelli E, Cartes JE, Papiol V. 2011. Food web structure of deep-sea macrozooplankton and micronekton off the Catalan slope: insight from stable isotopes. J. Mar. Syst. 8779–89
  68. Fanelli E, Cartes JE, Papiol V, López-Pérez C. 2013. Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin (Western Mediterranean). Deep-Sea Res. I 7879–94
  69. Feagans-Bartow JN, Sutton TT. 2014. Ecology of the oceanic rim: pelagic eels as key ecosystem components. Mar. Ecol. Prog. Ser. 502257–66
  70. Feller RJ, Zagursky G, Day EA. 1985. Deep-sea food web analysis using cross-reacting antisera. Deep-Sea Res A 32485–97
  71. Ferry LA. 1997. Food habits of the two-line eelpout (Bothrocara brunneum: Zoarcidae) at two deep-sea sites in the eastern North Pacific. Deep-Sea Res. I 44521–31
  72. Flynn AJ, Kloser RJ. 2012. Cross-basin heterogeneity in lanternfish (family Myctophidae) assemblages and isotopic niches (δ13C and δ15N) in the southern Tasman Sea abyssal basin. Deep-Sea Res. I 69113–27
  73. Fock H, Matthiessen B, Zidowitz H, von Westernhagen H. 2002. Diel and habitat-dependent resource utilisation by deep-sea fishes at the Great Meteor seamount: niche overlap and support for the sound scattering layer interception hypothesis. Mar. Ecol. Prog. Ser. 244:219–33 [Google Scholar]
  74. Gartner JV, Crabtree RE, Sulak KJ. 1997. Feeding at depth. Deep-Sea Fishes DJ Randall, AP Farrell 115–93 San Diego, CA: Academic [Google Scholar]
  75. Gartner JV, Musick JA. 1989. Feeding habits of the deep-sea fish Scopelogadus beanii (Pisces: Melamphaidae), in the western North Atlantic. Deep-Sea Res. I 361457–68
  76. Gilly WF, Beman JM, Litvin SY, Robison BH. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci. 5393–420
  77. Gjosaeter J, Kawaguchi K. 1980. A review of the world resources of mesopelagic fish Fish. Tech. Paper 193, Food Agric. Organ. UN, Rome
  78. Gordon JDM, Mauchline J. 1996. The distribution and diet of the dominant, slope-dwelling eel, Synaphobranchus kaupi, of the Rockall Trough. J. Mar. Biol. Assoc. UK 76:493–503 [Google Scholar]
  79. Haedrich RL. 1967. The stromateoid fishes: systematics and a classification. Bull. Mus. Comp. Zool. Harv. Coll. 13531–139
  80. Hannides CCS, Popp BN, Choy CA, Drazen JC. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 581931–46
  81. Heroux D, Magnan P. 1996. In situ determination of food daily ration in fish: review and field evaluation. Environ. Biol. Fishes 4661–74
  82. Herring PJ. 2002. The Biology of the Deep Ocean Oxford, UK: Oxford Univ. Press
  83. Hirch S, Christiansen B. 2010. The trophic blockage hypothesis is not supported by the diets of fishes on Seine Seamount. Mar. Ecol. 31107–20
  84. Hoff GR, Buckley TW, Drazen JC, Duncan KM. 2000. Biology and ecology of Nezumia liolepis and N. stelgidolepis from the west coast of North America. J. Fish Biol 57662–80
  85. Hoffman JC, Sutton TT. 2010. Lipid correction for carbon stable isotope analysis of deep-sea fishes. Deep-Sea Res. I 57956–64
  86. Hopkins TL, Baird RC. 1977. Aspects of the feeding ecology of oceanic midwater fishes. Oceanic Sound Scattering Prediction NR Andersen NR, BJ Zahuranec 325–60 New York: Plenum [Google Scholar]
  87. Hopkins TL, Baird RC. 1985. Aspects of the trophic ecology of the mesopelagic fish Lampanyctus alatus (Family Myctophidae) in the eastern Gulf of Mexico. Biol. Oceanogr 3285–313
  88. Hopkins TL, Gartner JV Jr. 1992. Resource-partitioning and predation impact of a low-latitude myctophid community. Mar. Biol. 114:185–97 [Google Scholar]
  89. Hopkins TL, Sutton TT, Lancraft TM. 1996. The trophic structure and predation impact of a low latitude midwater fish assemblage. Prog. Oceanogr. 38205–39
  90. Horn PL, Forman J, Dunn MR. 2010. Feeding habits of alfonsino Beryx splendens. J. Fish Biol 762382–400
  91. Hudson JM, Steinberg DK, Sutton TT, Graves JE, Latour RJ. 2014. Myctophid feeding ecology and carbon transport along the northern mid-Atlantic ridge. Deep-Sea Res. I 93104–16
  92. Huntley ME, Lopez MDG, Karl DM. 1991. Top predators in the Southern Ocean: a major leak in the biological carbon pump. Science 25364–66
  93. Iken K, Brey T, Wand U, Voight J, Junghans P. 2001. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog. Oceanogr. 50383–405
  94. Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G. et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 53271
  95. Jamieson A, Fujii T, Solan M, Matsumoto AK, Bagley PM, Priede IG. 2009. Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour. Proc. R. Soc. B 2761037–45
  96. Jones DOB, Yool A, Wei C-L, Henson SA, Ruhl HA. et al. 2014. Global reductions in seafloor biomass in response to climate change. Glob. Change Biol. 201861–72
  97. Jones MRL. 2008a. Biology and diet of Coryphaenoides subserrulatus and Etmopterus baxteri from the Puysegur region, southern New Zealand. N.Z. J. Mar. Freshw. Res 42333–37
  98. Jones MRL. 2008b. Dietary analysis of Coryphaenoides serrulatus, C. subserrulatus and several other species of macrourid fish (Pisces: Macrouridae) from northeastern Chatham Rise, New Zealand. N.Z. J. Mar. Freshw. Res 4273–84
  99. Jones MRL, Breen BB. 2013. Food and feeding relationships of three sympatric slickhead species (Pisces: Alepocephalidae) from northeastern Chatham Rise, New Zealand. Deep-Sea Res. I 79:1–9 [Google Scholar]
  100. Jones MRL, Breen BB. 2014. Role of scavenging in a synaphobranchid eel (Diastobranchus capensis, Barnard, 1923), from northeastern Chatham Rise, New Zealand. Deep-Sea Res. I 85118–23
  101. Kaartvedt S, Staby A, Aksnes DL. 2012. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 4561–6
  102. Kenaley CP. 2012. Exploring feeding behaviour in deep-sea dragonfishes (Teleostei: Stomiidae): jaw biomechanics and functional significance of a loosejaw. Biol. J. Linn. Soc. 106:224–40 [Google Scholar]
  103. King NJ, Bailey DM, Priede IG. 2007. Role of scavengers in marine ecosystems: introduction. Mar. Ecol. Prog. Ser. 350175–78
  104. Kinzer J, Schulz K. 1985. Vertical distribution and feeding patterns of midwater fish in the central equatorial Atlantic. Mar. Biol. 85313–22
  105. Kosenok SN, Chuchukalo VI, Savinykh VF. 2006. The characteristics of feeding of Diaphus theta (Myctophidae) in the northwestern part of the Pacific Ocean in the summer–autumn period. J. Ichthyol 46:606–12 [Google Scholar]
  106. Koslow JA. 1996. Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish. J. Fish Biol. 49:Suppl. A54–74 [Google Scholar]
  107. Koslow JA, Boehlert GW, Gordon JD, Haedrich RL, Lorance P, Parin N. 2000. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. Mar. Sci. 57548–57
  108. Koslow JA, Davison P, Lara-Lopez A, Ohman MD. 2014. Epipelagic and mesopelagic fishes in the southern California Current System: ecological interactions and oceanographic influences on their abundance. J. Mar. Syst. 13820–28
  109. Koslow JA, Kloser RJ, Williams A. 1997. Pelagic biomass and community structure over the mid-continental slope off southeastern Australia based upon acoustic and midwater trawl sampling. Mar. Ecol. Prog. Ser. 14621–35
  110. Lampitt RS, Merrett NR, Thurston MH. 1983. Inter-relations of necrophagous amphipods, a fish predator, and tidal currents in the deep sea. Mar. Biol. 7473–78
  111. Laxson CJ, Condon NE, Drazen JC, Yancey PH. 2011. Decreasing urea:trimethylamine N-oxide ratios with depth in chondrichthyes: a physiological depth limit?. Physiol. Biochem. Zool. 84494–505
  112. Lee CC, Chen HW, Shao KT, Hsu CC. 2008. Feeding ecology of three congeneric grenadiers in waters of northeastern Taiwan. Grenadiers of the World Oceans: Biology, Stock Assessment, and Fisheries AM Orlov, T Iwamoto 185–201 Bethesda, MD: Am. Fish. Soc. [Google Scholar]
  113. Linley TD, Gerringer ME, Yancey PH, Drazen JC, Weinstock CL, Jamieson AJ. 2016. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep-Sea Res. I 114:99–110 [Google Scholar]
  114. Livingston PA, Goiney BJ. 1984. Bibliography on daily food ration of fishes NOAA Tech. Memo. NMFS F/NWC-63, Natl. Ocean. Atmos. Adm., US Dep. Commer., Springfield, VA
  115. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE. et al. 2013. World Ocean Atlas 2013 1 Temperature S Levitus, Tech. Ed. A Mishonov. NOAA Atlas NESDIS 73 Washington, DC: Natl. Ocean. Atmos. Adm.
  116. Loh T-L, Pawlik JR. 2014. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. PNAS 111:4151–56 [Google Scholar]
  117. MacAvoy SE, Carney RS, Fisher CR, Macko SA. 2002. Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 225:65–78 [Google Scholar]
  118. Macpherson E. 1985. Daily ration and feeding periodicity of some fishes off the coast of Namibia. Mar. Ecol. Prog. Ser. 26:253–60 [Google Scholar]
  119. Madurell T, Cartes JE. 2005a. Temporal changes in feeding habits and daily rations of Hoplostethus mediterraneus in the bathyal Ionian Sea (eastern Mediterranean). Mar. Biol. 146:951–62 [Google Scholar]
  120. Madurell T, Cartes JE. 2005b. Trophodynamics of a deep-sea demersal fish assemblage from the bathyal eastern Ionian Sea (Mediterranean Sea). Deep-Sea Res. I 522049
  121. Madurell T, Cartes JE. 2006. Trophic relationships and food consumption of slope dwelling macrourids from the bathyal Ionian Sea (eastern Mediterranean). Mar. Biol. 1481325
  122. Marshall NB. 1965. Systematic and biological studies of the macrourid fishes (Anacanthini-Teleostii). Deep-Sea Res. Oceanogr. Abstr. 12299–322 [Google Scholar]
  123. Martin B, Christiansen B. 1997. Diets and standing stocks of benthopelagic fishes at two bathymetrically different midoceanic localities in the Northeast Atlantic. Deep-Sea Res. I 44541–58
  124. Martini FH. 1998. The ecology of hagfishes. The Biology of Hagfishes JM Jørgensen, JP Lomholt, RE Weber, H Malte 57–77 London: Chapman & Hall [Google Scholar]
  125. Mauchline J, Gordon JDM. 1980. The food and feeding of the deep-sea morid fish Lepidion eques (Gunther, 1887) in the Rockall Trough. J. Mar. Biol. Assoc. UK 601053–59
  126. Mauchline J, Gordon JDM. 1983a. Diets of clupeoid, stomiatoid and salmonoid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 7767–78
  127. Mauchline J, Gordon JDM. 1983b. Diets of the sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 75269–78
  128. Mauchline J, Gordon JDM. 1984. Feeding and bathymetric distribution of the gadoid and morid fish of the Rockall Trough. J. Mar. Biol. Assoc. UK 64657–65
  129. Mauchline J, Gordon JDM. 1986. Foraging strategies of deep-sea fish. Mar. Ecol. Prog. Ser. 27:227–38 [Google Scholar]
  130. Mauchline J, Gordon JDM. 1991. Oceanic pelagic prey of benthopelagic fish in the benthic boundary layer of a marginal oceanic region. Mar. Ecol. Prog. Ser. 74109–15
  131. Mayor DJ, Sharples CJ, Webster L, Walsham P, Lacaze J-P, Cousins NJ. 2013. Tissue and size-related changes in the fatty acid and stable isotope signatures of the deep sea grenadier fish Coryphaenoides armatus from the Charlie-Gibbs Fracture Zone region of the Mid-Atlantic Ridge. Deep-Sea Res. II 98421–30
  132. Miller TW, Brodeur RD, Rau GH. 2008. Carbon stable isotopes reveal relative contribution of shelf-slope production to the northern California Current pelagic community. Limnol. Oceanogr. 531493–503
  133. Mintenbeck K, Jacob U, Knust R, Arntz WE, Brey T. 2007. Depth-dependence in stable isotope ratio δ15N of benthic POM consumers: the role of particle dynamics and organism trophic guild. Deep-Sea Res. I 541015–23
  134. Modica L, Cartes JE, Carrassón M. 2014. Food consumption of five deep-sea fishes in the Balearic Basin (western Mediterranean Sea): Are there daily feeding rhythms in fishes living below 1000 m?. J. Fish Biol. 85:800–20 [Google Scholar]
  135. Moku M, Kawaguchi K, Watanabe H, Ohno A. 2000. Feeding habits of three dominant myctophid fishes, Diaphus theta, Stenobrachius Leucopsarus and S. nannochir, in the subarctic and transitional waters of the western North Pacific. Mar. Ecol. Prog. Ser. 207:129–40 [Google Scholar]
  136. Morato T, Clarke MR. 2007. Seamount fishes: ecology and life histories. Seamounts: Ecology, Fisheries and Conservation TJ Pitcher, T Morato, PJB Hart, MR Clark, N Haggan, RS Santos 170–88 Oxford, UK: Blackwell [Google Scholar]
  137. Morato T, Watson R, Pitcher TJ, Pauly D. 2006. Fishing down the deep. Fish Fish. 724–34
  138. Moser HG, Ahlstrom EH. 1996. Myctophidae: lanternfishes. The Early Stages of Fishes in the California Current Region HG Moser 387–475 CalCOFI Atlas 33 Lawrence, KS: Allen
  139. Navarro J, López L, Coll M, Barría C, Sáez-Liante R. 2014. Short- and long-term importance of small sharks in the diet of the rare deep-sea shark Dalatias licha. Mar. Biol. 161:1697–707 [Google Scholar]
  140. Norse EA, Brooke S, Cheung WWL, Clark MR, Ekeland I. et al. 2012. Sustainability of deep-sea fisheries. Mar. Policy 36307–20
  141. Olson RJ, Duffy LM, Kuhnert PM, Galván-Magaña F, Bocanegra-Castillo N, Alatorre-Ramírez V. 2014. Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 497157–78
  142. Pakhomov EA, Perissinotto R, McQuaid CD. 1996. Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar. Ecol. Prog. Ser. 134:1–14 [Google Scholar]
  143. Palma S. 1990. Feeding ecology of Cyclothone braueri Jesperseng and Taning, 1926 (Gonostomatidae), Ligurian Sea, western Mediterranean. J. Plankton Res. 12:519–34 [Google Scholar]
  144. Papiol V, Cartes JE, Fanelli E, Rumolo P. 2013. Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: relationship with available food sources. J. Sea Res. 7753–69
  145. Paquin MM, Buckley TW, Hibpshman RE, Canino MF. 2014. DNA-based identification methods of prey fish from stomach contents of 12 species of eastern North Pacific groundfish. Deep-Sea Res. I 85110–17
  146. Parekh P, Dutkiewicz S, Follows MJ, Ito T. 2006. Atmospheric carbon dioxide in a less dusty world. Geophys. Res. Lett. 33:L03610 [Google Scholar]
  147. Paxton JR. 1967. Biological notes on southern California lanternfishes (family Myctophidae). Calif. Fish Game 53214–17
  148. Pearcy WG, Ambler JW. 1974. Food habits of deep-sea fishes off the Oregon coast. Deep-Sea Res Oceanogr. Abstr. 21:745–59 [Google Scholar]
  149. Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18293–320
  150. Pethybridge H, Butler ECV, Cossa D, Daley R, Boudou A. 2012. Trophic structure and biomagnification of mercury in an assemblage of deepwater chondrichthyans from southeastern Australia. Mar. Ecol. Prog. Ser. 451163–74
  151. Pethybridge H, Daley RK, Nichols PD. 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Exp. Mar. Biol. Ecol. 409290–99
  152. Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK, Moranta J. 2001. Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar. Ecol. Prog. Ser. 220:13–23 [Google Scholar]
  153. Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83703–18
  154. Priede IG, Froese R, Bailey DM, Bergstad OA, Collins MA. et al. 2006. The absence of sharks from abyssal regions of the world's oceans. Proc. R. Soc. B 2731435–41
  155. Priede IG, Godbold JA, King NJ, Collins MA, Bailey DM, Gordon JDM. 2010. Deep-sea demersal fish species richness in the Porcupine Seabight, NE Atlantic Ocean: global and regional patterns. Mar. Ecol. 31247–60
  156. Purcell JE, Arai MN. 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 45127–44
  157. Pusch C, Hulley PA, Kock K-H. 2004. Community structure and feeding ecology of mesopelagic fishes in the slope waters of King George Island (South Shetland Islands, Antarctica). Deep-Sea Res. I 51:1685–708 [Google Scholar]
  158. Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR. et al. 2011. Man and the last great wilderness: human impact on the deep sea. PLOS ONE 6e22588
  159. Reid WDK, Sweeting CJ, Wigham BD, McGill RAR, Polunin NVC. 2013. High variability in spatial and temporal size-based trophodynamics of deep-sea fishes from the Mid-Atlantic Ridge elucidated by stable isotopes. Deep-Sea Res. II 98412–20
  160. Robinson C, Steinberg DK, Anderson TR, Aristegui J, Carlson CA. et al. 2010. Mesopelagic zone ecology and biogeochemistry—a synthesis. Deep-Sea Res. II 571504–18
  161. Robison BH. 1984. Herbivory by the myctophid fish Ceratoscopelus warmingii. Mar. Biol 84:119–23 [Google Scholar]
  162. Robison BH. 2004. Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300253–72
  163. Rochman CM, Hoh E, Kurobe T, Teh SJ. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 31–7
  164. Romero-Romero S, Molina-Ramírez A, Höfer J, Acuña JL. 2016. Body size-based trophic structure of a deep marine ecosystem. Ecology 97171–81
  165. Rowe GT. 2013. Seasonality in deep-sea food webs—a tribute to the early works of Paul Tyler. Deep-Sea Res. II` 92:9–17 [Google Scholar]
  166. Ruxton GD, Bailey DM. 2005. Searching speeds and the energetic feasibility of an obligate whale-scavenging fish. Deep-Sea Res. I 521536
  167. Ruzicka JJ, Brodeur RD, Emmett RL, Steele JH, Zamon JE. et al. 2012. Interannual variability in the Northern California Current food web structure: changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish. Prog. Oceanogr. 102:19–41 [Google Scholar]
  168. Sabatés A, Bozzano A, Vallvey I. 2003. Feeding pattern and the visual light environment in myctophid fish larvae. J. Fish Biol. 631476–90
  169. Saldanha L, Almeida AJ, Andrade F, Guerreiro J. 1995. Observations on the diet of some slope dwelling fishes of southern Portugal. Int. Rev. Gesamten Hydrobiol. 80217–34
  170. Santos AR, Trueman C, Connolly P, Rogan E. 2013. Trophic ecology of black scabbardfish, Aphanopus carbo in the NE Atlantic—assessment through stomach content and stable isotope analyses. Deep-Sea Res. I 771–10
  171. Sassa C, Kawaguchi K. 2005. Larval feeding habits of Diaphus theta, Protomyctophum thompsoni, and Tarletonbeania taylori (Pisces: Myctophidae) in the transition region of the western North Pacific. Mar. Ecol. Prog. Ser 298261–76
  172. Schlining K, von Thun S, Kuhnz L, Schlining B, Lundsten L. et al. 2013. Debris in the deep: using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA. Deep-Sea Res. I 7996–105
  173. Schnell NK, Britz R, Johnson GD. 2010. New insights into the complex structure and ontogeny of the occipito-vertebral gap in barbeled dragonfishes (Stomiidae, Teleostei). J. Morphol. 2711006–22
  174. Sedberry GR, Musick JA. 1978. Feeding strategies of some demersal fishes of the continental slope and rise off the Mid-Atlantic coast of the USA. Mar. Biol. 44357–75
  175. Smith KL Jr., Laver MB. 1981. Respiration of the bathypelagic fish Cyclothone acclinidens. Mar. Biol. 61:261–66 [Google Scholar]
  176. Smith KL Jr., Ruhl HA, Bett BJ, Billett DSM, Lampitt RS, Kaufman RS. 2009. Climate, carbon cycling, and deep-ocean ecosystems. PNAS 106:19211–18 [Google Scholar]
  177. Smith KL Jr., Ruhl HA, Kahru M, Huffard CL, Sherman AD. 2013. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. PNAS 110:19838–41 [Google Scholar]
  178. Smith KL Jr., Sherman AD, Huffard CL, McGill PR, Henthorn R. et al. 2014. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: day to week resolution. Limnol. Oceanogr. 59745–57
  179. Solmundsson J. 2007. Trophic ecology of Greenland halibut (Reinhardtius hippoglossoides) on the Icelandic continental shelf and slope. Mar. Biol. Res. 3231–42
  180. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 47137–58
  181. Stockton WL, DeLaca TE. 1982. Food falls in the deep sea: occurrence, quality, and significance. Deep-Sea Res. A 29:157–69 [Google Scholar]
  182. Stonik VA, Kalinin VI, Avilov SA. 1999. Toxins from sea cucumbers (holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J. Nat. Toxins 8235–48
  183. Stowasser G, Pond D, Collins M. 2009. Using fatty acid analysis to elucidate the feeding habits of Southern Ocean mesopelagic fish. Mar. Biol. 156:2289–302 [Google Scholar]
  184. Sulak KJ, Wenner CA, Sedberry GR, Van Guelpen L. 1985. The life history and systematics of deep-sea lizard fishes, genus Bathysaurus (Synodontidae). Can. J. Zool. 63623–42
  185. Suntsov AV, Brodeur RD. 2008. Trophic ecology of three dominant myctophid species in the northern California Current region. Mar. Ecol. Prog. Ser. 37381–96
  186. Sutton TT. 2013. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish Biol. 831508–27
  187. Sutton TT, Hopkins TL. 1996. Species composition, abundance, and vertical distribution of the stomiid (Pisces: Stomiiformes) fish assemblage of the Gulf of Mexico. Bull. Mar. Sci. 59530–42
  188. Sutton TT, Hopkins TL, Lancraft TM. 1998. Trophic diversity of a midwater fish community. Pelagic Biogeography ICoPB II: Proceedings of the 2nd International Conference AC Pierrot-Bults, S van der Spoel 353–57 IOC Workshop Rep. 142 Paris: UN Educ. Sci. Cult. Organ.
  189. Sutton TT, Porteiro FM, Heino M, Byrkjedal I, Langhelle G. et al. 2008. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system. Deep-Sea Res. II 55161–84
  190. Sweetman AK, Smith CR, Dale T, Jones DOB. 2014. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proc. R. Soc. B 281:20142210 [Google Scholar]
  191. Takagi K, Yatsu A, Itoh H, Moku M, Nishida H. 2009. Comparison of feeding habits of myctophid fishes and juvenile small epipelagic fishes in the western North Pacific. Mar. Biol. 156:641–59 [Google Scholar]
  192. Tamburri MN, Barry JP. 1999. Adaptations for scavenging by three diverse bathyal species, Eptatretus stouti, Neptunea amianta and Orchomene obtusus. Deep-Sea Res. I 462079–93
  193. Treberg JR, Speers-Roesch B. 2016. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?. J. Exp. Biol. 219:615–25 [Google Scholar]
  194. Trueman CN, Johnston G, O'Hea B, MacKenzie KM. 2014. Trophic interactions of fish communities at midwater depths enhance long-term carbon storage and benthic production on continental slopes. Proc. R. Soc. B 28120140669
  195. Valentim MFM, Caramaschi EP, Vianna M. 2008. Feeding ecology of monkfish Lophius gastrophysus in the south-western Atlantic Ocean. J. Mar. Biol. Assoc. UK 88205–12
  196. Valls M, Olivar MP, Fernández de Puelles ML, Molí B, Bernal A, Sweeting CJ. 2014a. Trophic structure of mesopelagic fishes in the western Mediterranean based on stable isotopes of carbon and nitrogen. J. Mar. Syst. 138:160–70 [Google Scholar]
  197. Valls M, Sweeting CJ, Olivar MP, Fernández de Puelles ML, Pasqual C. et al. 2014b. Structure and dynamics of food webs in the water column on shelf and slope grounds of the western Mediterranean. J. Mar. Syst. 138:171–81 [Google Scholar]
  198. Van Noord JE, Olson RJ, Redfern JV, Kaufmann RS. 2013. Diet and prey selectivity in three surface-migrating myctophids in the eastern tropical Pacific. Ichthyol. Res. 60287–90
  199. Vecchione M, Roper CF. 1991. Cephalopods observed from submersibles in the western North Atlantic. Bull. Mar. Sci. 49433–45
  200. Warrant EJ, Locket NA. 2004. Vision in the deep-sea. Biol. Rev. Camb. Philos. Soc. 79671–712
  201. Watanabe H, Kawaguchi K. 2003. Decadal change in the diets of the surface migratory myctophid fish Myctophum nitidulum in the Kuroshio region of the western North Pacific: predation on sardine larvae by myctophids. Fish. Sci. 69:716–21 [Google Scholar]
  202. Webb TJ, Berghe EV, O'Dor R. 2010. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLOS ONE 5e10223
  203. Wedding LM, Reiter SM, Smith CR, Gjerde KM, Kittinger JN. et al. 2015. Managing mining of the deep seabed. Science 349144–45
  204. Wei C-L, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T. et al. 2010. Global patterns and predictions of seafloor biomass using random forests. PLOS ONE 5e15323
  205. Williams A, Koslow JA, Terauds A, Haskard K. 2001. Feeding ecology of five fishes from the mid-slope micronekton community off southern Tasmania, Australia. Mar. Biol. 139:1177–92 [Google Scholar]
  206. Wilson RW, Millero FJ, Taylor JR, Walsh PJ, Christensen V. et al. 2009. Contribution of fish to the marine inorganic carbon cycle. Science 323:359–62 [Google Scholar]
  207. Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJ, Coppock R. et al. 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1140317
  208. Würzberg L, Peters J, Flores H, Brandt A. 2011. Demersal fishes from the Antarctic shelf and deep sea: a diet study based on fatty acid patterns and gut content analyses. Deep-Sea Res. II 582036–42
  209. Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson AJ. 2014. Are marine fish biochemically constrained from inhabiting the deepest ocean depths?. PNAS 1114461–65
  210. Yeh J, Drazen JC. 2011. Baited-camera observations of deep-sea megafaunal scavenger ecology on the California slope. Mar. Ecol. Prog. Ser. 424145–56
  211. Young JW, Hunt BPV, Cook TR, Llopiz JK, Hazen EL. et al. 2015. The trophodynamics of marine top predators: current knowledge, recent advances and challenges. Deep-Sea Res. II 113170–87
  212. Zapata-Hernandez G, Sellanes J, Thurber AR, Levin LA, Chazalon F, Linke P. 2014. New insights on the trophic ecology of bathyal communities from the methane seep area off Concepcion, Chile (36°S). Mar. Ecol. 351–21
  213. Zintzen V, Roberts CD, Anderson MJ, Stewart AL, Struthers CD, Harvey ES. 2011. Hagfish predatory behaviour and slime defence mechanism. Sci. Rep. 1131

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error