1932

Abstract

Surface drifting buoys, or drifters, are used in oceanographic and climate research, oil spill tracking, weather forecasting, search and rescue operations, calibration and validation of velocities from high-frequency radar and from altimeters, iceberg tracking, and support of offshore drilling operations. In this review, we present a brief history of drifters, from the message in a bottle to the latest satellite-tracked, multisensor drifters. We discuss the different types of drifters currently used for research and operations as well as drifter designs in development. We conclude with a discussion of the various properties that can be observed with drifters, with heavy emphasis on a critical process that cannot adequately be observed by any other instrument: dispersion in the upper ocean, driven by turbulence at scales from waves through the submesoscale to the large-scale geostrophic eddies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060641
2017-01-03
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/marine/9/1/annurev-marine-010816-060641.html?itemId=/content/journals/10.1146/annurev-marine-010816-060641&mimeType=html&fmt=ahah

Literature Cited

  1. AOML (Atl. Oceanogr. Meteorol. Lab.) 2016. Drifter bibliography research papers. Updated Apr. http://www.aoml.noaa.gov/phod/dac/gdp_biblio.php [Google Scholar]
  2. Aref H. 1984. Stirring by chaotic advection. J. Fluid Mech. 192:115–73 [Google Scholar]
  3. AVISO (Arch. Valid. Interpret. Satell. Oceanogr. Data) 2016. One thousand drifters and one future satellite in the Gulf of Mexico. Image of the Month, Apr. http://www.aviso.altimetry.fr/en/news/idm/2016/apr-2016-one-thousand-drifters-and-one-future-satellite-in-the-gulf-of-mexico.html [Google Scholar]
  4. Babiano A, Basdevant C, Leroy P, Sadourny R. 1990. Relative dispersion in 2-dimensional turbulence. J. Fluid Mech. 214:535–57 [Google Scholar]
  5. Bauer S, Swenson MS, Griffa A, Mariano AJ, Owens K. 1998. Eddy–mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean. 1. Methodology. J. Geophys. Res. 103:30855–71 [Google Scholar]
  6. Belcher SE, Grant ALM, Hanley KE, Fox-Kemper B, Van Roekel L. et al. 2012. A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39:L18605 [Google Scholar]
  7. Bennett AF. 1984. Relative dispersion—local and nonlocal dynamics. J. Atmos. Sci. 41:1881–86 [Google Scholar]
  8. Beron-Vera FJ, LaCasce JH. 2016. Statistics of simulated and observed pair separation in the Gulf of Mexico. J. Phys. Oceanogr. 46:2183–99 [Google Scholar]
  9. Berta M, Griffa A, Magaldi M, Özgökmen TM, Poje AC. et al. 2015. Improved surface velocity and trajectory estimates in the Gulf of Mexico from blended satellite altimetry and drifter data. J. Atmos. Ocean. Technol. 32:1880–901 [Google Scholar]
  10. Berti S, Santos FAD, Lacorata G, Vulpiani A. 2011. Lagrangian drifter dispersion in the Southwestern Atlantic Ocean. J. Phys. Oceanogr. 41:1659–72 [Google Scholar]
  11. Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. J. Phys. Oceanogr. 37:2228–50 [Google Scholar]
  12. Boffetta G, Sokolov I. 2002. Relative dispersion in fully developed turbulence: the Richardson's Law and intermittency corrections. Phys. Rev. Lett. 88:094501 [Google Scholar]
  13. Brown J. 2008. Lagrangian field observations of rip currents Master's Thesis Univ. Delaware Newark: [Google Scholar]
  14. Capet X, McWilliams J, Molemaker M, Shchepetkin A. 2008. Mesoscale to submesoscale transition in the California Current System: I. Flow structure, eddy flux and observational tests. J. Phys. Oceanogr. 38:29–43 [Google Scholar]
  15. Centurioni LR. 2010. Observations of large-amplitude nonlinear internal waves from a drifting array: instruments and methods. J. Atmos. Ocean. Technol. 27:1711–31 [Google Scholar]
  16. Centurioni LR, Horányi A, Cardinali C, Charpentier E, Lumpkin R. 2016. A global ocean observing system for measuring sea level atmospheric pressure: effects and impacts on numerical weather prediction. Bull. Am. Meteorol. Soc. In press doi: 10.1175/BAMS-D-15-00080.1 [Google Scholar]
  17. Centurioni LR, Hörmann V, Chao Y, Reverdin G, Font J, Lee D-K. 2015. Sea surface salinity observations with Lagrangian drifters in the tropical North Atlantic during SPURS: circulation, fluxes, and comparisons with remotely sensed salinity from Aquarius. Oceanography 28:196–105 [Google Scholar]
  18. Chavanne C, Klein P. 2010. Can oceanic submesoscale processes be observed with satellite altimetry?. Geophy. Res. Lett. 37:L22602 [Google Scholar]
  19. Crone T, Tolstoy M. 2010. Magnitude of the 2010 Gulf of Mexico oil leak. Science 330:634 [Google Scholar]
  20. Curcic M, Chen S, Özgökmen TM. 2016. Hurricane induced ocean waves and Stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico. Geophys. Res. Lett. 43:2773–81 [Google Scholar]
  21. D'Asaro EA. 2001. Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr. 31:3530–37 [Google Scholar]
  22. D'Asaro EA, Black PG, Centurioni LR, Chang YT, Chen SS. et al. 2013. Impact of typhoons on the ocean in the Pacific. Bull. Am. Meteorol. Soc. 95:1405–18 [Google Scholar]
  23. D'Asaro EA, Thomson J, Shcherbina AY, Harcourt RR, Cronin MF. et al. 2014. Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett. 41:102–7 [Google Scholar]
  24. Davis RE. 1985. Drifter observations of coastal surface currents during CODE: the method and descriptive view. J. Geophys. Res. 90:4741–55 [Google Scholar]
  25. Davis RE, Dufour JE, Parks GJ, Perkins MR. 1982. Two inexpensive current-following drifters Ref. 82–28 Scripps Inst. Oceanogr. La Jolla, CA: [Google Scholar]
  26. d'Ovidio F, Fernández V, Hernández-García E, López C. 2004. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31:L17203 [Google Scholar]
  27. Ducet N, Le Traon PY, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. 105:19477 [Google Scholar]
  28. Elipot S, Gille ST. 2009. Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data. J. Geophys. Res. Oceans 114:C06003 [Google Scholar]
  29. Elipot S, Lumpkin R. 2008. Spectral description of oceanic near-surface variability. Geophys. Res. Lett. 35:L05605 [Google Scholar]
  30. Elipot S, Lumpkin R, Perez RC, Lilly JM, Early JJ, Sykulski AM. 2016. A global surface drifter data set at hourly resolution. J. Geophys. Res. Oceans. 1212937–66 [Google Scholar]
  31. Emery WJ, Baldwin DJ, Schlussel P, Reynolds RW. 2001. Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements. J. Geophys. Res. 106:2387–405 [Google Scholar]
  32. Fox-Kemper B, Ferrari R, Hallberg RW. 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38:1145–65 [Google Scholar]
  33. Garrett JF. 1980. The availability of the FGGE drifting buoy system data set. Deep-Sea Res. A 27:1083–86 [Google Scholar]
  34. GHRSST (Group High Resolut. Sea Surf. Temp.) 2011. DBCP-GHRSST - pilot project to upgrade elements of the global drifting buoy fleet to allow the reporting of higher resolution SST and position http://www.ghrsst.org/ghrsst/tags-and-wgs/stval-wg/dbcp-ghrsst-pilot-project [Google Scholar]
  35. Haller G, Poje A. 1998. Finite time transport in aperiodic flows. Phys. D 119:352–80 [Google Scholar]
  36. Haller G, Yuan G. 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147:352–70 [Google Scholar]
  37. Haza AC, Griffa A, Martin P, Molcard A, Özgökmen TM. et al. 2007. Model-based directed drifter launches in the Adriatic Sea: results from the DART Experiment. Geophys. Res. Lett. 34:L10605 [Google Scholar]
  38. Haza AC, Özgökmen TM, Griffa A, Garraffo Z, Piterbarg L. 2012. Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgrid-scale models. Ocean Model. 42:31–49 [Google Scholar]
  39. Haza AC, Özgökmen TM, Griffa A, Poje AC, Lelong P. 2014. How does drifter position uncertainty affect ocean dispersion estimates?. J. Ocean. Atmos. Technol. 31:2809–28 [Google Scholar]
  40. Haza AC, Özgökmen TM, Hogan P. 2016. Impact of submesoscales on surface material distribution in a Gulf of Mexico mesoscale eddy. Ocean Model. 10728–47 [Google Scholar]
  41. Haza AC, Poje A, Özgökmen TM, Martin P. 2008. Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Model. 22:48–65 [Google Scholar]
  42. Heavey S, Rucker P, Stephenson E. 2015. U.S. says BP to pay $20 billion in fines for 2010 oil spill. Reuters Oct. 5. http://www.reuters.com/article/us-bp-usa-idUSKCN0RZ14A20151005 [Google Scholar]
  43. Herbers THC, Jessen PF, Janssen TT, Colbert DB, MacMahan JH. 2012. Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Ocean. Technol. 29:944–59 [Google Scholar]
  44. Hormann V, Centurioni LR, Rainville L, Lee CM, Braasch LJ. 2014a. Response of upper ocean currents to Typhoon Fanapi. Geophys. Res. Lett. 41:3995–4003 [Google Scholar]
  45. Hormann V, Centurioni LR, Reverdin G. 2014b. Evaluation of drifter salinities in the subtropical North Atlantic. J. Atmos. Ocean. Technol. 32:185–92 [Google Scholar]
  46. Hormann V, Lumpkin R, Foltz G. 2012. Interannual north equatorial countercurrent variability and its relation to tropical Atlantic climate modes. J. Geophys. Res. 117:C04035 [Google Scholar]
  47. Huntley H, Lipphardt BL Jr, Jacobs GA, Kirwan AD Jr. 2015. Clusters, deformation, and dilation: diagnostics for material accumulation regions. J. Geophys. Res. Oceans 120:6622–36 [Google Scholar]
  48. IOC (Intergov. Oceanogr. Comm.), WMO (World Meterol. Organ.) 1988. Guide to drifting data buoys Man. Guides 20, UNESCO (UN Educ. Sci. Cult. Organ.) Paris: [Google Scholar]
  49. Jacobs GA, Huntley HS, Kirwan JAD, Lipphardt BL Jr, Campbell T. et al. 2015. Ocean processes underlying surface clustering. J. Geophys. Res. Oceans 121:180–97 [Google Scholar]
  50. Jernelöv A, Lindén O. 1981. IXTOC I: a case study of the world's largest oil spill. Ambio 10:299–306 [Google Scholar]
  51. Johnson GC. 2001. The Pacific Ocean subtropical cell surface limb. Geophys. Res. Lett. 28:1771–74 [Google Scholar]
  52. Kaplan D, Largier J, Botsford L. 2005. HF radar observations of surface circulation off Bodega Bay (northern California, USA). J. Geophys. Res. 110:C10020 [Google Scholar]
  53. Kennedy JJ, Smith RO, Rayner NA. 2012. Using AATSR data to assess the quality of in situ sea-surface temperature observations for climate studies. Remote Sens. Environ. 116:79–92 [Google Scholar]
  54. Kent EC, Challenor PG. 2006. Toward estimating climatic trends in SST. Part II: random errors. J. Atmos. Ocean. Technol. 23:476–86 [Google Scholar]
  55. Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 1:351–75 [Google Scholar]
  56. Kolmogorov A. 1941. Dissipation of energy in locally isotropic turbulence. Proc. Math. Phys. Sci. 434:15–17 [Google Scholar]
  57. Koszalka I, LaCasce JH, Andersson M, Orvik KA, Mauritzen C. 2011. Surface circulation in the Nordic Seas from clustered drifters. Deep-Sea Res. I 58:468–85 [Google Scholar]
  58. Koszalka I, LaCasce JH, Orvik KA. 2009. Relative dispersion statistics in the Nordic Seas. J. Mar. Res. 67:411–33 [Google Scholar]
  59. Kukulka T, Plueddemann AJ, Trowbridge JH, Sullivan PP. 2010. Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: a case study. J. Phys. Oceanogr. 40:2381–400 [Google Scholar]
  60. LaCasce JH. 2008. Statistics from Lagrangian observations. Prog. Oceanogr. 77:1–29 [Google Scholar]
  61. LaCasce JH, Bower A. 2000. Relative dispersion in the subsurface North Atlantic. J. Mar. Res. 58:863–94 [Google Scholar]
  62. LaCasce JH, Ohlmann C. 2003. Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res. 61:285–312 [Google Scholar]
  63. Lagerloef GSE, Mitchum GT, Lukas RB, Niiler PP. 1999. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res. 104:23313–26 [Google Scholar]
  64. Lebedev K, Yoshinari H, Maximenko NA, Hacker PW. 2007. YoMaHa'07: velocity data assessed from trajectories of Argo floats at parking level and at the sea surface Tech. Note 4(2), Int. Pac Res. Cent., Univ Hawaii, Honolulu: [Google Scholar]
  65. Ledwell JR, Montgomery ET, Polzin KL St, Laurent LC, Schmitt RW, Toole JM. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182 [Google Scholar]
  66. Ledwell JR, Watson AJ, Law C. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res. 103:21499–529 [Google Scholar]
  67. Leibovich S, Tandon A. 1993. Three-dimensional Langmuir circulation instability in a stratified layer. J. Geophys. Res. Oceans 98:16501–7 [Google Scholar]
  68. Lipa B, Whelan C, Rector B, Nyden B. 2009. HF radar bistatic measurement of surface current velocities: drifter comparisons and radar consistency checks. Remote Sens. 1:1190–211 [Google Scholar]
  69. Lippsett L. 2014. Message bottled in an email: a long-lost legacy of ocean research resurfaces. Oceanus Feb. 6. http://www.whoi.edu/oceanus/feature/bumpus [Google Scholar]
  70. Lumpkin R. 2003. Decomposition of surface drifter observations in the Atlantic Ocean. Geophys. Res. Lett. 30:1753 [Google Scholar]
  71. Lumpkin R, Centurioni L, Perez RC. 2016. Fulfilling observing system implementation requirements with the global drifter array. J. Atmos. Ocean. Technol. 33:685–95 [Google Scholar]
  72. Lumpkin R, Elipot S. 2010. Surface drifter pair spreading in the North Atlantic. J. Geophys. Res. Oceans 115:C12017 [Google Scholar]
  73. Lumpkin R, Flament P. 2013. On the extent and energetics of the Hawaiian Lee Countercurrent. Oceanography 26:158–65 [Google Scholar]
  74. Lumpkin R, Garzoli SL. 2011. Interannual to decadal variability in the southwestern Atlantic's surface circulation. J. Geophys. Res. Oceans 116:C01014 [Google Scholar]
  75. Lumpkin R, Grodsky S, Rio M-H, Centurioni L, Carton J, Lee D. 2013. Removing spurious low-frequency variability in surface drifter velocities. J. Atmos. Ocean. Technol. 30:353–60 [Google Scholar]
  76. Lumpkin R, Johnson G. 2013. Global ocean surface velocities from drifters: mean, variance, ENSO response, and seasonal cycle. J. Geophys. Res. Oceans 118:2992–3006 [Google Scholar]
  77. Lumpkin R, Maximenko N, Pazos M. 2012. Evaluating where and why drifters die. J. Atmos. Ocean. Technol. 29:300–8 [Google Scholar]
  78. Lumpkin R, Pazos M. 2007. Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics A Griffa, AD Kirwan, A Mariano, T Özgökmen, T Rossby 39–67 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  79. Mancho A, Hernández-García E, Small D, Wiggins S, Fernández V. 2008. Lagrangian transport through an ocean front in the northwestern Mediterranean Sea. J. Phys. Oceanogr. 38:1222–37 [Google Scholar]
  80. Maximenko N, Hafner J, Niiler P. 2012. Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar. Pollut. Bull. 65:51–62 [Google Scholar]
  81. Maximenko N, Lumpkin R, Centurioni L. 2014. Ocean surface circulation. Ocean Circulation and Climate: A 21st Century Perspective G Siedler, SM Griffies, J Gould, JA Church 283–300 Oxford, UK: Academic Press, 2nd ed.. [Google Scholar]
  82. McCarty JF. 2015. Toxic algae threatens Lake Erie drinking water, but Toledo has the new technology to cope. Cleveland Plain Dealer July 30. http://www.cleveland.com/metro/index.ssf/2015/07/toxic_algae_threatens_lake_eri.html [Google Scholar]
  83. McNally GJ, Luther DS, White WB. 1989. Subinertial frequency response of wind-driven currents in the mixed layer measured by drifting buoys in the midlatitude North Pacific. J. Phys. Oceanogr. 19:290–300 [Google Scholar]
  84. McNally GJ, Patzert WC, Kirwan JAD, Vastano AC. 1983. The near-surface circulation of the North Pacific using satellite tracked drifting buoys. J. Geophys. Res. 88:7634–40 [Google Scholar]
  85. McWilliams JC. 2008. Fluid dynamics at the margin of rotational control. Environ. Fluid Mech. 8:441–49 [Google Scholar]
  86. Mensa J, Griffa A, Garraffo Z, Özgökmen T, Haza A, Veneziani M. 2013. Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn 63:923–41 [Google Scholar]
  87. Mensa J, Özgökmen TM, Poje AC, Imberger J. 2015. Material transport in a convective mixed layer under weak wind forcing. Ocean Model 96:226–42 [Google Scholar]
  88. Mezíc I, Wiggins S. 1994. On the integrability and perturbation of three-dimensional fluid flows with symmetry. J. Nonlinear Sci. 4:157–94 [Google Scholar]
  89. Monin A, Yaglom A. 1965 (2007). Statistical Fluid Mechanics: Mechanics of Turbulence I Mineola, NY: Dover [Google Scholar]
  90. Niiler PP. 2001. The world ocean surface circulation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean G Siedler, J Church, J Gould 193–204 Oxford, UK: Academic Press [Google Scholar]
  91. Niiler PP. 2003. A brief history of drifter technology Presented at Auton. Lagrangian Platf. Sens. Workshop, Scripps Inst. Oceanogr. La Jolla, CA: Mar. 31–April 2 [Google Scholar]
  92. Niiler PP, Davis R, White H. 1987. Water-following characteristics of a mixed-layer drifter. Deep-Sea Res. A 34:1867–82 [Google Scholar]
  93. Niiler PP, Maximenko N, Panteleev GG, Yamagata T, Olson DB. 2003. Near-surface dynamical structure of the Kuroshio Extension. J. Geophys. Res. 108:3193 [Google Scholar]
  94. Niiler PP, Paduan JD. 1995. Wind-driven motions in the northeastern Pacific as measured by Lagrangian drifters. J. Phys. Oceanogr. 25:2819–30 [Google Scholar]
  95. Normile D. 2014. Lost at sea. Science 344:963–965 [Google Scholar]
  96. Ohlmann C, White P, Washburn L, Terrill E, Emery B, Otero M. 2007. Interpretation of coastal HF radar-derived surface currents with high-resolution drifter data. J. Atmos. Ocean. Technol. 24:666–80 [Google Scholar]
  97. Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr. 17:445–54 [Google Scholar]
  98. Olascoaga MJ, Beron-Vera FJ, Haller G, Trinanes J, Iskandarani M. et al. 2013. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett. 40:6171–75 [Google Scholar]
  99. Olascoaga MJ, Haller G. 2012. Forecasting sudden changes in environmental pollution patterns. PNAS 109:4738–43 [Google Scholar]
  100. Olascoaga MJ, Rypina II, Brown MG, Beron-Vera FJ, Koçak H. et al. 2006. Persistent transport barrier on the West Florida Shelf. Geophys. Res. Lett. 33:L22603 [Google Scholar]
  101. Ollitrault M, Gabillet C, de Verdière AC. 2005. Open ocean regimes of relative dispersion. J. Fluid Mech. 533:381–407 [Google Scholar]
  102. Ottino J. 1989. The Kinematics of Mixing: Stretching, Chaos and Transport Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  103. Özgökmen TM, Fischer PF. 2012. CFD application to oceanic mixed layer sampling with Lagrangian platforms. Int. J. Comput. Fluid Dyn. 26:337–48 [Google Scholar]
  104. Özgökmen TM, Poje A, Fischer P. 2012. On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Model. 56:16–30 [Google Scholar]
  105. Özgökmen TM, Poje A, Fischer P, Haza A. 2011. Large eddy simulations of mixed layer instabilities and sampling strategies. Ocean Model. 39:311–31 [Google Scholar]
  106. Paduan J, Rosenfeld L. 1996. Remotely sensed surface currents in Monterey Bay from shore based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res. 101:20669–86 [Google Scholar]
  107. Park JJ, Kim K, Crawford WR. 2004. Inertial currents estimated from surface trajectories of Argo floats. Geophys. Res. Lett. 31:L13307 [Google Scholar]
  108. Park JJ, Kim K, King B. 2005. Global statistics of inertial motion. Geophys. Res. Lett. 32:L14612 [Google Scholar]
  109. Pazan SE, Niiler PP. 2001. Recovery of near-surface velocity from undrogued drifters. J. Atmos. Ocean. Technol. 18:476–89 [Google Scholar]
  110. Pinsky C. 2013. Sending out an S.O.S.. New York, July 14. http://nymag.com/news/intelligencer/topic/solo-message-in-a-bottle-2013-7 [Google Scholar]
  111. Poje AC, Haller G. 1999. Geometry of cross-stream mixing in a double-gyre ocean model. J. Phys. Oceanogr. 29:1649–65 [Google Scholar]
  112. Poje AC, Haza A, Özgökmen TM, Magaldi M, Garraffo Z. 2010. Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Model. 31:36–50 [Google Scholar]
  113. Poje AC, Özgökmen TM, Lipphardt BL Jr, Haus BK, Ryan EH. et al. 2014. Submesoscale dispersion in the vicinity of the Deepwater Horizon oil spill. PNAS 111:12693–98 [Google Scholar]
  114. Pratt L, Rypina I, Özgökmen TM, Wang P, Childs H, Bebieva Y. 2013. Chaotic advection in a steady, three-dimensional, Ekman-driven eddy. J. Fluid Mech. 738:087401 [Google Scholar]
  115. Provenzale A. 1999. Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech. 31:55–93 [Google Scholar]
  116. Ralph EA, Niiler PP. 1999. Wind-driven currents in the tropical Pacific. J. Phys. Oceanogr. 29:2121–29 [Google Scholar]
  117. Richardson LF. 1926. Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110:709–37 [Google Scholar]
  118. Richardson LF, Stommel H. 1948. Note on eddy diffusion in the sea. J. Meteorol. 5:238–40 [Google Scholar]
  119. Rio MH, Hernandez F. 2003. High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J. Geophys. Res. Oceans 108:3283 [Google Scholar]
  120. Rypina II, Jayne S, Yoshida S, Macdonald A, Buesseler K. 2014a. Drifter-based estimate of the 5 year dispersal of Fukushima-derived radionuclides. J. Geophys. Res. 119:8177–93 [Google Scholar]
  121. Rypina II, Kirincich AR, Limeburner R, Udovydchenkov IA. 2014b. Eulerian and Lagrangian correspondence of high-frequency radar and surface drifter data: effects of radar resolution and flow components. J. Atmos. Ocean. Technol. 31:945–66 [Google Scholar]
  122. Rypina II, Pratt L, Wang P, Özgökmen TM, Mezic I. 2015. Resonance phenomena in 3D time-dependent volume-preserving flows with symmetries. Chaos 25:143–83 [Google Scholar]
  123. Sanford T, Kelly K, Farmer D. 2011. Sensing the ocean. Phys. Today 64:24–28 [Google Scholar]
  124. Sasaki H, Klein P, Qiu B, Sasai Y. 2014. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun. 5:5636 [Google Scholar]
  125. Schmidt WE, Woodward BT, Millikan KS, Guza RT, Raubenheimer B, Elgar S. 2003. A GPS-tracked surf zone drifter. J. Atmos. Ocean. Technol. 20:1069–75 [Google Scholar]
  126. Schroeder K, Chiggiato J, Haza AC, Griffa A, Özgökmen TM. et al. 2012. Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett. 39:L11608 [Google Scholar]
  127. Schroeder K, Haza AC, Griffa A, Özgökmen TM, Poulain P. et al. 2011. Relative dispersion in the Liguro-Provençal basin: from sub-mesoscale to mesoscale. Deep-Sea Res. I 58:861–82 [Google Scholar]
  128. Shay L, Cook T, An P. 2003. Submesoscale coastal ocean flows detected by very high frequency radar and autonomous underwater vehicles. J. Atmos. Ocean. Technol. 20:1583–600 [Google Scholar]
  129. Shay L, Martinez-Pedraja J, Cook T, Haus B. 2007. High-frequency radar mapping of surface currents using WERA. J. Atmos. Ocean. Technol. 24:484–503 [Google Scholar]
  130. Shcherbina AY, D'Asaro EA, Lee CM, Klymak JM, Molemaker MJ, McWilliams JC. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett. 40:4706–11 [Google Scholar]
  131. Skyllingstad E, Denbo D. 1995. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res. Oceans 100:8501–22 [Google Scholar]
  132. Sotillo MG, Garcia-Ladona E, Orfila A, Rodríguez-Rubio P, Maraver JC. et al. 2016. The MEDESS-GIB database: tracking the Atlantic water inflow. Earth Syst. Sci. Data 8:141–49 [Google Scholar]
  133. Staletovich J. 2016. FPL nuclear plant canals leaking into Biscayne Bay, study confirms. Miami Herald Mar. 7. http://www.miamiherald.com/news/local/environment/article64667452.html [Google Scholar]
  134. Steward R, Joy J. 1974. HF radio measurements of surface currents. Deep-Sea Res Oceanogr. Abstr. 21:1039–49 [Google Scholar]
  135. Stommel H. 1949. Horizontal diffusion due to oceanic turbulence. J. Mar. Res. 8:199–225 [Google Scholar]
  136. Sturges W, Niiler PP, Weisberg RH. 2001. Northeastern Gulf of Mexico inner shelf circulation study OCS Rep. MMS 2001-103, Miner. Manag. Serv., US Dep. Interior Herndon, VA: [Google Scholar]
  137. Sundermeyer MA, Skyllingstad E, Ledwell JR, Concannon B, Terray EA. 2014. Observations and numerical simulations of large-eddy circulation in the ocean surface mixed layer. Geophys. Res. Lett. 41:7584–90 [Google Scholar]
  138. Sundermeyer MA, Terrya EA, Ledwell JR, Cunningham AG, LaRocque PE. et al. 2007. Three-dimensional mapping of fluorescent dye using a scanning, depth-resolving airborne radar. J. Atmos. Ocean. Technol. 24:1050–65 [Google Scholar]
  139. Sybrandy AL, Niiler PP. 1992. WOCE/TOGA Lagrangian drifter construction manual WOCE Rep. 63, SIO Ref. 91/6, Scripps Inst. Oceanogr. La Jolla, CA: [Google Scholar]
  140. Taylor G. 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20:196–212 [Google Scholar]
  141. Taylor JR, Ferrari R. 2010. Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr. 40:1222–42 [Google Scholar]
  142. Thomas L, Tandon A, Mahadevan A. 2008. Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime MW Hecht, H Hasume 17–38 Washington, DC: Am. Geophys. Union [Google Scholar]
  143. US Coast Guard. 2013. U.S. Coast Guard addendum to the United States National Search and Rescue Supplement (NSS) to the International Aeronautical and Maritime Search and Rescue Manual (IAMSAR). Command. Instr. M16130.2F, US Coast Guard, US Dep. Homel. Secur. Washington, DC: [Google Scholar]
  144. Van Roekel LP, Fox-Kemper B, Sullivan PP, Hamlington PE, Haney SR. 2012. The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res. Oceans 117:C05001 [Google Scholar]
  145. Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD. et al. 2015. A global inventory of small floating plastic debris. Environ. Res. Lett. 10:124006 [Google Scholar]
  146. WCRP (World Clim. Res. Programme) 1988. World Ocean Circulation Experiment Surface Velocity Programme Planning Committee report of the first meeting: SVP-1 and TOGA pan-Pacific surface current study WCRP-26 (WMO/TD-No. 323), World Meteorol. Organ. Wormley, UK: [Google Scholar]
  147. Wunsch C, Stammer D. 1998. Satellite altimetry, the marine geoid, and the oceanic general circulation. Annu. Rev. Earth Planet. Sci. 26:219–53 [Google Scholar]
  148. Zhang H-M, Reynolds RW, Lumpkin R, Molinari R, Arzayus K. et al. 2009. An Integrated Global Ocean Observing System for sea surface temperature using satellites and in situ data: research to operations. Bull. Am. Meteorol. Soc. 90:31–38 [Google Scholar]
  149. Zhong Y, Bracco A, Villareal T. 2012. Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy field. Limnol. Oceanogr. Fluid Environ. 2:12–27 [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060641
Loading
/content/journals/10.1146/annurev-marine-010816-060641
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error