1932

Abstract

Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060656
2017-01-03
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/9/1/annurev-marine-010816-060656.html?itemId=/content/journals/10.1146/annurev-marine-010816-060656&mimeType=html&fmt=ahah

Literature Cited

  1. Ahlgren NA, Harwood CS, Schaefer AL, Giraud E, Greenberg EP. 2011. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. PNAS 108:7183–88 [Google Scholar]
  2. Alldredge AL, Cohen Y. 1987. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235:689–91 [Google Scholar]
  3. Azam F, Long RA. 2001. Sea snow microcosms. Nature 414:495–98 [Google Scholar]
  4. Badri DV, Weir TL, van der Lelie D, Vivanco JM. 2009. Rhizosphere chemical dialogues: plant-microbe interactions. Curr. Opin. Biotechnol. 20:642–50 [Google Scholar]
  5. Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T. 2011. Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J. Bacteriol 193:6576–85 [Google Scholar]
  6. Boyer M, Wisniewski-Dyé F. 2009. Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol. Ecol. 70:1–19 [Google Scholar]
  7. Brown B, Bythell J. 2005. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296:291–309 [Google Scholar]
  8. Bruno JF, Selig ER, Casey KS, Page CA, Willis BL. et al. 2007. Thermal stress and coral cover as drivers of coral disease outbreaks. PLOS Biol 5:e124 [Google Scholar]
  9. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–29 [Google Scholar]
  10. Carnes EC, Lopez DAM, Donegan NP, Cheung A, Gresham H. et al. 2010. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat. Chem. Biol. 6:41–45 [Google Scholar]
  11. Case RJ, Labbate M, Kjelleberg S. 2008. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–49 [Google Scholar]
  12. Certner RH, Vollmer SV. 2015. Evidence for autoinduction and quorum sensing in white band disease-causing microbes on Acropora cervicornis. Sci. Rep. 5:11134 [Google Scholar]
  13. Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M. et al. 2000. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ. Microbiol. 2:530–41 [Google Scholar]
  14. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I. et al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–49 [Google Scholar]
  15. Cicirelli EM, Williamson H, Tait K, Fuqua C. 2008. Acylated homoserine lactone signaling in marine bacterial systems. Chemical Communication Among Bacteria SC Winans, BL Bassler 251–72 Washington, DC: ASM Press [Google Scholar]
  16. Cirulis JT, Scott JA, Ross GM. 2013. Management of oxidative stress by microalgae. Can. J. Physiol. Pharmacol. 91:15–21 [Google Scholar]
  17. Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB. 2010. Probing prokaryotic social behaviors with bacterial “lobster traps.”. mBio 1:e00202–10 [Google Scholar]
  18. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711–45 [Google Scholar]
  19. Cude WN, Buchan A. 2013. Acyl-homoserine lactone-based quorum sensing in the Roseobacter clade: complex cell-to-cell communication controls multiple physiologies. Front. Microbiol. 4:336 [Google Scholar]
  20. Cude WN, Prevatte CW, Hadden MK, May AL, Smith RT. et al. 2015. Phaeobacter sp. strain Y4I utilizes two separate cell-to-cell communication systems to regulate production of the antimicrobial indigoidine. Appl. Environ. Microbiol. 81:1417–25 [Google Scholar]
  21. Das S, Mangwani N. 2015. Ocean acidification and marine microorganisms: responses and consequences. Oceanologia 57:349–61 [Google Scholar]
  22. Decho AW, Frey RL, Ferry JL. 2011. Chemical challenges to bacterial AHL signaling in the environment. Chem. Rev. 111:86–99 [Google Scholar]
  23. Decho AW, Visscher PT, Tomohiro JF, He KL, Przekop KM. et al. 2009. Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. Environ. Microbiol. 11:409–20 [Google Scholar]
  24. Defoirdt T, Boon N, Bossier P, Verstraete W. 2004. Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240:69–88 [Google Scholar]
  25. DeLong EF, Franks DG, Alldredge AL. 1993. Phylogenetic diversity of aggregate-attached versus free-living marine bacterial assemblages. Limnol. Oceanogr. 38:924–34 [Google Scholar]
  26. Dickschat JS. 2010. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27:343–69 [Google Scholar]
  27. Doberva M, Sanchez-Ferandin S, Toulza E, Lebaron P, Lami R. 2015. Diversity of quorum sensing autoinducer synthases in the Global Ocean Sampling metagenomic database. Aquat. Microb. Ecol. 74:107–19 [Google Scholar]
  28. Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ. 2010. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ. Microbiol. Rep. 2:739–44 [Google Scholar]
  29. Dobretsov S, Teplitski M, Paul V. 2009. Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–27 [Google Scholar]
  30. Dong YH, Zhang LH. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43:9 [Google Scholar]
  31. Dulla G, Lindow SE. 2008. Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. PNAS 105:3082–87 [Google Scholar]
  32. Dunn AK, Stabb EV. 2007. Beyond quorum sensing: the complexities of prokaryotic parliamentary procedures. Anal. Bioanal. Chem. 387:391 [Google Scholar]
  33. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–49 [Google Scholar]
  34. Feely RA, Doney SC, Cooley SR. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:436–47 [Google Scholar]
  35. Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD. et al. 2011. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLOS ONE 6:e27387 [Google Scholar]
  36. Fuqua C, Parsek MR, Greenberg EP. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439–68 [Google Scholar]
  37. Gantner S, Schmid M, Durr C, Schuhegger R, Steidle A. et al. 2006. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 56:188–94 [Google Scholar]
  38. Gardères J, Taupin L, Saïdin JB, Dufour A, Le Pennec G. 2012. N-Acyl homoserine lactone production by bacteria within the sponge Suberites domuncula (Olivi, 1792) (Porifera, Demospongiae). Mar. Biol. 159:1685–92 [Google Scholar]
  39. Gardiner M, Fernandes ND, Nowakowski D, Raftery M, Kjelleberg S. et al. 2015. VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11. Front. Microbiol. 6:1130 [Google Scholar]
  40. Gelencsér Z, Choudhary KS, Coutinho BG, Hudaiberdiev S, Galbáts B. et al. 2012. Classifying the topology of AHL-driven quorum sensing circuits in proteobacterial genomes. Sensors 12:5432–44 [Google Scholar]
  41. Gil-Agudelo D, Smith G, Weil E. 2006. The white band disease type II pathogen in Puerto Rico. Rev. Biol. Trop. 54:59–67 [Google Scholar]
  42. Giovannoni SJ, Rappé MS. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes. Microbial Ecology of the Oceans DL Kirchman 47–84 New York: Wiley-Liss [Google Scholar]
  43. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R. et al. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178:6618–22 [Google Scholar]
  44. Golberg K, Eltzov E, Shnit-Orland M, Marks RS, Kushmaro A. 2011. Characterization of quorum sensing signals in coral-associated bacteria. Microb. Ecol. 61:783–92 [Google Scholar]
  45. Golberg K, Pavlov V, Marks RS, Kushmaro A. 2013. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–82 [Google Scholar]
  46. Gram L, Grossart H, Schlingloff A, Kiorboe T. 2002. Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 68:4111 [Google Scholar]
  47. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95 [Google Scholar]
  48. Hasegawa H, Chatterjee A, Cui Y, Chatterjee AK. 2005. Elevated temperature enhances virulence of Erwinia carotovora subsp. carotovora strain EC153 to plants and stimulates production of the quorum sensing signal, N-acyl homoserine lactone, and extracellular proteins. Appl. Environ. Microbiol. 71:4655–63 [Google Scholar]
  49. Henke JM, Bassler BL. 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186:6902–14 [Google Scholar]
  50. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU. 2007. Does efficiency sensing unify diffusion and quorum sensing. Nat. Rev. Microbiol. 5:230–39 [Google Scholar]
  51. Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL. 2007. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–86 [Google Scholar]
  52. Hmelo LR, Mincer TJ, Van Mooy BA. 2011. Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments. Environ. Microbiol. Rep 3:682–88 [Google Scholar]
  53. Hmelo LR, Van Mooy BAS. 2009. Kinetic constraints on acylated homoserine lactone-based quorum sensing in marine environments. Aquat. Microb. Ecol. 54:127–33 [Google Scholar]
  54. Hmelo LR, Van Mooy BAS, Mincer TJ. 2012. Characterization of bacterial epibionts on the cyanobacterium Trichodesmium. Aquat. Microb. Ecol. 67:1–14 [Google Scholar]
  55. Horswill AR, Stoodley P, Stewart PS, Parsek MR. 2007. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal. Bioanal. Chem. 387:371–80 [Google Scholar]
  56. Huang Y-L, Dobretsov S, Ki J-S, Yang L-H, Qian P-Y. 2007. Presence of acyl-homoserine lactone in subtidal biofilm and the implication in larval behavioral response in the polychaete Hydroides elegans. Microb. Ecol. 54:384–92 [Google Scholar]
  57. Huang Y-L, Ki J-S, Case RJ, Qian P-Y. 2008. Diversity and acyl-homoserine lactone production among subtidal biofilm-forming bacteria. Aquat. Microb. Ecol. 52:185 [Google Scholar]
  58. Huang Y-L, Ki J-S, Lee OO, Qian P-Y. 2009. Evidence for the dynamics of acyl homoserine lactone and AHL-producing bacteria during subtidal biofilm formation. ISME J 3:296–304 [Google Scholar]
  59. Hynes AM, Chappell PD, Dyhrman ST, Doney SC, Webb EA. 2009. Cross-basin comparison of phosphorus stress and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 54:1438 [Google Scholar]
  60. IPCC (Intergov. Panel Clim. Change) 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ed. TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  61. Irie Y, Parsek MR. 2008. Quorum sensing and microbial biofilms. Curr. Top. Microbiol. Immunol. 322:67–84 [Google Scholar]
  62. Jatt AN, Tang KH, Liu JW, Zhang ZH, Zhang XH. 2015. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9. FEMS Microbiol. Ecol. 91:fiu0130 [Google Scholar]
  63. Jefferson KK. 2004. What drives bacteria to produce a biofilm. FEMS Microbiol. Lett. 236:163–73 [Google Scholar]
  64. Johnson WM, Kido Soule MC, Kujawinski EB. 2016. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME J 10:2304–16 [Google Scholar]
  65. Joint I, Tait K, Callow ME, Callow JA, Milton D. et al. 2002. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207 [Google Scholar]
  66. Joint I, Tait K, Wheeler G. 2007. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos. Trans. R. Soc. B 362:1223–33 [Google Scholar]
  67. Kaufmann GF, Sartorio R, Lee S-H, Rogers CJ, Meijler MM. et al. 2005. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. PNAS 102:309–14 [Google Scholar]
  68. Keller L, Surette MG. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:249–58 [Google Scholar]
  69. Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD. et al. 2012. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6:835–46 [Google Scholar]
  70. Kiørboe T. 2001. Formation and fate of marine snow: small-scale processes with large-scale implications. Sci. Mar. 65:57–71 [Google Scholar]
  71. Kjelleberg S, Steinberg P, Givskov MC, Gram L, Manefield M, de Nys R. 1997. Do marine natural products interfere with prokaryotic AHL regulatory systems?. Aquat. Microb. Ecol. 13:85–93 [Google Scholar]
  72. Koren O, Rosenberg E. 2006. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 72:5254–59 [Google Scholar]
  73. Krupke A, Hmelo L, Ossolinski JE, Mincer TJ, Van Mooy BA. 2016. Quorum sensing plays a complex role in regulating the enzyme hydrolysis activity of microbes associated with sinking particles in the ocean. Front. Mar. Sci. 3:55 [Google Scholar]
  74. Kwon EY, Primeau F, Sarmiento JL. 2009. The impact of remineralization depth on the air-sea carbon balance. Nat. Geosci. 2:630–35 [Google Scholar]
  75. Latour X, Diallo S, Chevalier S, Morin D, Smadja B. et al. 2007. Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum. Appl. Environ. Microbiol. 73:4078–81 [Google Scholar]
  76. Lazdunski AM, Ventre I, Sturgis JN. 2004. Regulatory circuits and communication in Gram-negative bacteria. Nat. Rev. Microbiol. 2:581–92 [Google Scholar]
  77. Lindemann A, Pessi G, Schaefer AL, Mattmann ME, Christensen QH. et al. 2011. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. PNAS 108:16765–70 [Google Scholar]
  78. Liu J, Weinbauer MG, Maier C, Dai M, Gattuso J-P. 2010. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 61:291–305 [Google Scholar]
  79. López A, Rico M, Santana-Casiano JM, González AG, González-Dávila M. 2015. Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ. Sci. Pollut. Res. Int. 22:14820–28 [Google Scholar]
  80. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P. et al. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–27 [Google Scholar]
  81. Matz C, Kjelleberg S. 2005. Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–7 [Google Scholar]
  82. Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M. 2016. Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME J 10:1204–16 [Google Scholar]
  83. Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99 [Google Scholar]
  84. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF. et al. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15:677–87 [Google Scholar]
  85. Milton DL. 2006. Quorum sensing in vibrios: complexity for diversification. Int. J. Med. Microbiol 29661–71 [Google Scholar]
  86. Mislan K, Stock CA, Dunne JP, Sarmiento JL. 2014. Group behavior among model bacteria influences particulate carbon remineralization depths. J. Mar. Res. 72:183–218 [Google Scholar]
  87. Mohamed NM, Cicirelli EM, Kan JJ, Chen F, Fuqua C, Hill RT. 2008. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ. Microbiol. 10:75–86 [Google Scholar]
  88. Munn CB. 2015. The role of vibrios in diseases of corals. Microbiol. Spectr. 3:VE–0006-2014 [Google Scholar]
  89. Nausch M. 1996. Microbial activities on Trichodesmium colonies. Mar. Ecol. Prog. Ser. 141:173–81 [Google Scholar]
  90. Nealson KH, Hastings JW. 2006. Quorum sensing on a global scale: massive numbers of bioluminescent bacteria make milky seas. Appl. Environ. Microbiol. 72:2295–97 [Google Scholar]
  91. Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313–22 [Google Scholar]
  92. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC. et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–86 [Google Scholar]
  93. Paerl HW, Bebout BM, Prufert LE. 1989. Bacterial associations with marine Oscillatoria sp. (Trichodesmium sp.) populations: ecophysiological implications. J. Phycol. 25:773–84 [Google Scholar]
  94. Patel HK, Suárez-Moreno ZR, Degrassi G, Subramoni S, González JF, Venturi V. 2013. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Front. Plant Sci. 4:447 [Google Scholar]
  95. Patzelt D, Wang H, Buchholz I, Rohde M, Grobe L. et al. 2013. You are what you talk: Quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J. 7:2274–86 [Google Scholar]
  96. Pereira CS, Thompson JA, Xavier KB. 2013. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 37:156–81 [Google Scholar]
  97. Ploug H, Grossart HP, Azam F, Jørgensen BB. 1999. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179:1–11 [Google Scholar]
  98. Rajput A, Kaur K, Kumar M. 2016. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes. Nucleic Acids Res 44:D634–39 [Google Scholar]
  99. Ransome E, Munn CB, Halliday N, Cámara M, Tait K. 2014. Diverse profiles of N-acyl-homoserine lactone molecules found in cnidarians. FEMS Microbiol. Ecol. 87:315–29 [Google Scholar]
  100. Rasmussen TB, Givskov M. 2006. Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904 [Google Scholar]
  101. Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P. et al. 2005. Ocean acidification due to increasing atmospheric carbon dioxide Policy Doc. 12/05, R. Soc., London [Google Scholar]
  102. Redfield RJ. 2002. Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol 10:365–70 [Google Scholar]
  103. Rezzonico F, Duffy B. 2008. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol 8:154 [Google Scholar]
  104. Rico M, López A, Santana-Casiano JM, González AG, González-Dávila M. 2013. Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol. Oceanogr. 58:144–52 [Google Scholar]
  105. Romero M, Martin-Cuadrado AB, Otero A. 2012. Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl. Environ. Microbiol. 78:6345–48 [Google Scholar]
  106. Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A. 2011. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol. Ecol. 75:205–17 [Google Scholar]
  107. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. 2007. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5:355–62 [Google Scholar]
  108. Ruby EG, Lee KH. 1998. The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64:805 [Google Scholar]
  109. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S. et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLOS Biol 5:e77 [Google Scholar]
  110. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ. et al. 2008. A new class of homoserine lactone quorum-sensing signals. Nature 454:595–99 [Google Scholar]
  111. Seyedsayamdost MR, Case R, Kolter R, Clardy J. 2011. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3:331–35 [Google Scholar]
  112. Sharon G, Rosenberg E. 2008. Bacterial growth on coral mucus. Curr. Microbiol. 56:481–88 [Google Scholar]
  113. Sharp KH, Ritchie KB. 2012. Multi-partner interactions in corals in the face of climate change. Biol. Bull. 223:66–77 [Google Scholar]
  114. Sheridan CC, Steinberg DK, Kling GW. 2002. The microbial and metazoan community associated with colonies of Trichodesmium spp.: a quantitative survey. J. Plankton Res. 24:913–22 [Google Scholar]
  115. Simon M, Grossart H, Schweitzer B, Ploug H. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28:175–211 [Google Scholar]
  116. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M. 2008. Quorum sensing antagonism from marine organisms. Mar. Biotechnol. 10:56–63 [Google Scholar]
  117. Smith DC, Simon M, Alldredge AL, Azam F. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–42 [Google Scholar]
  118. Smith DC, Steward GF, Long RA, Azam F. 1995. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res. I 42:75–97 [Google Scholar]
  119. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. 2008. Bacterial versus zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol. Oceanogr. 53:1327–38 [Google Scholar]
  120. Subramoni S, Venturi V. 2009. LuxR-family ‘solos’: bachelor sensors/regulators of signalling molecules. Microbiology 155:1377–85 [Google Scholar]
  121. Sweet M, Croquer A, Bythell JC. 2014. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis. Proc. R. Soc. B 281:20140094 [Google Scholar]
  122. Tait K, Havenhand J. 2013. Investigating a possible role for the bacterial signal molecules N‐acylhomoserine lactones in Balanus improvisus cyprid settlement. Mol. Ecol. 22:2588–602 [Google Scholar]
  123. Tait K, Hutchison Z, Thompson FL, Munn CB. 2010. Quorum sensing signal production and inhibition by coral-associated vibrios. Environ. Microbiol. Rep. 2:145–50 [Google Scholar]
  124. Tait K, Joint I, Daykin M, Milton D, Williams P, Camara M. 2005. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7:229–40 [Google Scholar]
  125. Taylor MW, Schupp PJ, Baillie HJ, Charlton TS, de Nys R. et al. 2004. Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Appl. Environ. Microbiol. 70:4387–89 [Google Scholar]
  126. Thiel V, Kunze B, Verma P, Wagner-Döbler I, Schulz S. 2009. New structural variants of homoserine lactones in bacteria. ChemBioChem 10:1861–68 [Google Scholar]
  127. Van Mooy BAS, Hmelo LR, Sofen LE, Campagna SR, May AL. et al. 2012. Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME J 6:422–29 [Google Scholar]
  128. Vega Thurber R, Willner‐Hall D, Rodriguez‐Mueller B, Desnues C, Edwards RA. et al. 2009. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11:2148–63 [Google Scholar]
  129. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. 2005. Making ‘sense’ of metabolism: autoinducer-2, LUXS and pathogenic bacteria. Nat. Rev. Microbiol. 3:383–96 [Google Scholar]
  130. Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD. et al. 1999. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65:3502–11 [Google Scholar]
  131. Wagner-Döbler I, Thiel V, Eberl L, Allgaier M, Bodor A. et al. 2005. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. ChemBioChem 6:2195–206 [Google Scholar]
  132. Wang Y-J, Leadbetter JR. 2005. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71:1291–99 [Google Scholar]
  133. Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319–46 [Google Scholar]
  134. Weinberger F, Beltran J, Correa JA, Lion U, Pohnert G. et al. 2007. Spore release in Acrochetium sp. (Rhodophyta) is bacterially controlled. J. Phycol 43235–41 [Google Scholar]
  135. Wheeler GL, Tait K, Taylor A, Brownlee C, Joint I. 2006. Acyl‐homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:608–18 [Google Scholar]
  136. Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M. 2004. Degradation and mineralization of coral mucus in reef environments. Mar. Ecol. Prog. Ser. 267:159–71 [Google Scholar]
  137. Wild C, Woyt H, Huettel M. 2005. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar. Ecol. Prog. Ser. 287:87–98 [Google Scholar]
  138. Winans SC. 2011. A new family of quorum sensing pheromones synthesized using S‐adenosylmethionine and acyl‐CoAs. Mol. Microbiol. 79:1403–6 [Google Scholar]
  139. Witt V, Wild C, Anthony KRN, Diaz-Pulido G, Uthicke S. 2011. Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environ. Microbiol. 13:2976–89 [Google Scholar]
  140. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR. et al. 2002. N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun 70:5635–46 [Google Scholar]
  141. Zan J, Choi O, Meharena H, Uhlson CL, Churchill MEA. et al. 2015. A solo luxI-type gene directs acylhomoserine lactone synthesis and contributes to motility control in the marine sponge symbiont Ruegeria sp. KLH11. Microbiology 161:50–56 [Google Scholar]
  142. Zan J, Cicirelli EM, Mohamed NM, Sibhatu H, Kroll S. et al. 2012. A complex LuxR–LuxI type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. Mol. Microbiol. 85:916–33 [Google Scholar]
  143. Zan J, Fuqua C, Hill RT. 2011. Diversity and functional analysis of luxS genes in vibrios from marine sponges Mycale laxissima and Ircinia strobilina. ISME J. 5:1505–16 [Google Scholar]
  144. Zan J, Liu Y, Fuqua C, Hill RT. 2014. Acyl-homoserine lactone quorum sensing in the Roseobacter clade. Int. J. Mol. Sci. 15:654–69 [Google Scholar]
  145. Zimmer BL, May AL, Bhedi CD, Dearth SP, Prevatte CW. et al. 2014. Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer. PLOS ONE 9:e108541 [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060656
Loading
/content/journals/10.1146/annurev-marine-010816-060656
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error