The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aarkrog A, Baxter MS, Bettencourt AO, Bojanowski R, Bologa A. et al. 1997. A comparison of doses from 137Cs and 210Po in marine food: a major international study. J. Environ. Radioact. 3469–90
  2. Alam L, Mohamed CAR. 2011. Natural radionuclide of 210Po in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia. Environ. Health 10:43 [Google Scholar]
  3. Aliyu AS, Ramli AT. 2015. The world's high background natural radiation areas (HBNRAs) revisited: a broad overview of the dosimetric, epidemiological and radiobiological issues. Radiat. Meas. 7351–59
  4. Ambe D, Kaeriyama H, Shigenobu Y, Fujimoto K, Ono T. et al. 2014. Five-minute resolved spatial distribution of radiocesium in sea sediment derived from the Fukushima Dai-Ichi nuclear power plant. J. Environ. Radioact. 138:264–75 [Google Scholar]
  5. Aoyama M, Fukasawa M, Hirose K, Hamajima Y, Kawano T. et al. 2011. Cross equator transport of 137Cs from North Pacific Ocean to South Pacific Ocean (BEAGLE2003 cruises). Prog. Oceanogr. 897–16
  6. Aoyama M, Hamajima Y, Hult M, Uematsu M, Oka E. et al. 2016. 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-Ichi Nuclear Power Plant accident, Japan. Part one: surface pathway and vertical distributions. J. Oceanogr. 72:53–65 [Google Scholar]
  7. Aoyama M, Hirose K. 1995. The temporal and spatial variation of 137Cs concentration in the Western North Pacific and its marginal seas during the period from 1979 to 1988. J. Environ. Radioact. 2957–74
  8. Aoyama M, Hirose K. 2004. Artificial radionuclides database in the Pacific Ocean: HAM database. Sci. World J. 4:200–15 [Google Scholar]
  9. Aoyama M, Hirose K, Nemoto K, Takatsuki Y, Tsumune D. 2008. Water masses labeled with global fallout 137Cs formed by subduction in the North Pacific. Geophys. Res. Lett. 35L01604
  10. Bailly du Bois P, Laguionie P, Boust D, Korsakissok I, Didier D, Fiévet B. 2012. Estimation of marine source-term following Fukushima Dai-Ichi accident. J. Environ. Radioact. 114:2–9 [Google Scholar]
  11. Balonov MI, Anspaugh LR, Bouville A, Likhtarev IA. 2007. Contribution of internal exposures to the radiological consequences of the Chernobyl accident. Radiat. Prot. Dosim. 127:491–96 [Google Scholar]
  12. Behrens E, Schwarzkopf FU, Lübbecke JF, Böning CW. 2012. Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima. Environ. Res. Lett. 7:034004 [Google Scholar]
  13. Belharet M, Estournel C, Charmasson S. 2016. Ecosystem model-based approach for modeling the dynamics of 137Cs transfer to marine plankton populations: application to the Western North Pacific Ocean after the Fukushima nuclear power plant accident. Biogeosciences 13:499–516 [Google Scholar]
  14. Black E, Buesseler KO. 2014. Spatial variability and the fate of cesium in coastal sediments near Fukushima, Japan. Biogeosciences 11:7235–71 [Google Scholar]
  15. Bond NA, Cronin MF, Freeland H, Mantua N. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42:3414–20 [Google Scholar]
  16. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE. et al. 2003. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. PNAS 10013761–66
  17. Bu WT, Zheng J, Aono T, Tagami K, Uchida S. et al. 2013. Vertical distributions of plutonium isotopes in marine sediment cores off the Fukushima coast after the Fukushima Dai-ichi nuclear power plant accident. Biogeosciences 10:2497–511 [Google Scholar]
  18. Buesseler KO. 2012. Fishing for answers off Fukushima. Science 338:480–82 [Google Scholar]
  19. Buesseler KO. 2014. Fukushima and ocean radioactivity. Oceanography 27:192–105 [Google Scholar]
  20. Buesseler KO, Aoyama M, Fukasawa M. 2011. Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol. 45:9931–35 [Google Scholar]
  21. Buesseler KO, German CR, Honda MC, Otosaka S, Black EE. et al. 2015. Tracking the fate of particle associated Fukushima Daiichi cesium in the ocean off Japan. Environ. Sci. Technol. 499807–16
  22. Buesseler KO, Jayne SR, Fisher NS, Rypina II, Baumann H. et al. 2012. Fukushima-derived radionuclides in the ocean and biota off Japan. PNAS 109:5984–88 [Google Scholar]
  23. Buesseler KO, Livingston HD, Honjo S, Hay BJ, Konuk T, Kempe S. 1990. Scavenging and particle deposition in the southwestern black sea—evidence from Chernobyl radiotracers. Deep-Sea Res. A 37413–30
  24. Buesseler KO, Livingston HD, Honjo S, Hay BJ, Manganini SJ. et al. 1987. Chernobyl radionuclides in a Black Sea sediment trap. Nature 329:825–28 [Google Scholar]
  25. Calmet D, Charmassson S, Gontier G, Meisnez A, Boudouresque C-F. 1991. Chernobyl radionuclides in the Mediterranean seagrass Posidonia oceanica, 1986–1987. J. Environ. Radioact. 13157–73
  26. Cancer Netw 1999. Total-body irradiation for bone marrow transplantation. Oncology July 1. http://www.cancernetwork.com/review-article/total-body-irradiation-bone-marrow-transplantation
  27. Carlson L, Holm E. 1992. Radioactivity in Fucus vesiculosus from the Baltic Sea following the Chernobyl accident. J. Environ. Radioact. 15:231–48 [Google Scholar]
  28. Casacuberta N, Masqué P, Garcia-Orellana J, Garcia-Tenorio R, Buesseler KO. 2013. 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-Ichi nuclear accident. Biogeosciences 102039–67
  29. Castrillejo M, Casacuberta N, Breier CF, Pike SM, Masqué P, Buesseler KO. 2015. Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-Ichi nuclear accident. Environ. Sci. Technol. 50173–80
  30. Charette MA, Breier CF, Henderson PB, Pike SM, Rypina II. et al. 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima nuclear power plant accident. Biogeosciences 10:2159–67 [Google Scholar]
  31. Chartin C, Evrard O, Onda Y, Patin J, Lefèvre I. et al. 2013. Tracking the early dispersion of contaminated sediment along rivers draining the Fukushima radioactive pollution plume. Anthropocene 123–34
  32. Chester A, Starosta K, Andreoiu C, Ashley R, Barton A. et al. 2013. Monitoring rainwater and seaweed reveals the presence of 131I in southwest and central British Columbia, Canada following the Fukushima nuclear accident in Japan. J. Environ. Radioact. 124:205–13 [Google Scholar]
  33. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H. 2011. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol. 48:1129–34 [Google Scholar]
  34. Eckerman K, Harrison J, Menzel H, Clement C. 2013. ICRP publication 119: compendium of dose coefficients based on ICRP publication 60. Ann. ICRP 42:e1–130 [Google Scholar]
  35. Estournel C, Bosc E, Bocquet M, Ulses C, Marsaleix P. et al. 2012. Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. J. Geophys. Res. 117:C11014 [Google Scholar]
  36. Evangeliou N, Balkanski Y, Cozic A, Møller AP. 2014. How “lucky” we are that the Fukushima disaster occurred in early spring: predictions on the contamination levels from various fission products released from the accident and updates on the risk assessment for solid and thyroid cancers. Sci. Total Environ. 500:155–72 [Google Scholar]
  37. Evrard O, Laceby JP, Lepage H, Onda Y, Cerdan O, Ayrault S. 2015. Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima nuclear power plant accident: a review. J. Environ. Radioact. 148:92–110 [Google Scholar]
  38. FAJ (Fish. Agency Jpn.) 2015. Report on the monitoring of radionuclides in fishery products (summary) Rep., Fish. Agency Jpn., Tokyo. http://www.mofa.go.jp/files/000100400.pdf
  39. FAO (Food Agric. Organ. UN), WHO (World Health Organ.) 1994. Codex Alimentarius Rome: FAO
  40. Fisher NS, Beaugelin-Seiller K, Hinton TG, Baumann Z, Madigan DJ, Garnier-Laplace J. 2013. Evaluation of radiation doses and associated risk from the Fukushima nuclear accident to marine biota and human consumers of seafood. PNAS 110:10670–75 [Google Scholar]
  41. Fowler SW, Buat-Menard P, Yokoyama Y, Ballestra S, Holm E, Nguyen HV. 1987. Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity. Nature 32956–58
  42. Fowler SW, Fisher NS. 2004. Radionuclides in the biosphere. Marine Radioactivity HD Livingston 167–203 Oxford, UK: Elsevier [Google Scholar]
  43. Fujimoto K, Miki S, Kaeriyama H, Shigenobu Y, Takagi K. et al. 2015. Use of otolith for detecting strontium-90 in fish from the harbor of Fukushima Dai-Ichi nuclear power plant. Environ. Sci. Technol. 497294–301
  44. Fukushima Prefect 2016a. Fukushima revitalization Fukushima Prefect. Gov., Fukushima, Jpn. http://www.pref.fukushima.lg.jp/site/portal-english/list385.html
  45. Fukushima Prefect 2016b. Steps for revitalization in Fukushima 17th ed. (July 27, 2016), Engl. Lang. Version, Fukushima Prefect. Gov., Fukushima, Jpn. http://www.pref.fukushima.lg.jp.e.od.hp.transer.com/site/portal/ayumik-1.html
  46. Garnier-Laplace J, Beaugelin-Seiller K, Hinton TG. 2011. Fukushima wildlife dose reconstruction signals ecological consequences. Environ. Sci. Technol. 45:5077–78 [Google Scholar]
  47. Garnier-Laplace J, Gilbin R. 2006. Derivation of predicted no-effect-dose-rate values for ecosystems (and their sub-organisational levels) exposed to radioactive substances ERICA Deliv. D5, Eur. Comm., 6th Framew., Contract No. FI6R-CT-2003-508847
  48. Guilderson TP, Tumey SJ, Brown TA, Buesseler KO. 2014. The 129-iodine content of subtropical Pacific waters: impact of Fukushima and other anthropogenic 129-iodine sources. Biogeosciences 114839–52
  49. Hamada N, Ogino H, Fujimichi Y. 2012. Safety regulations of food and water implemented in the first year following the Fukushima nuclear accident. J. Radiat. Res. 53641–71
  50. Harada KH, Fujii Y, Adachi A, Tsukidate A, Asai F, Koizumi A. 2013. Dietary intake of radiocesium in adult residents in Fukushima Prefecture and neighboring regions after the Fukushima nuclear power plant accident: 24-h food-duplicate survey in December 2011. Environ. Sci. Technol. 47:2520–26 [Google Scholar]
  51. Harmelin-Vivien M, Bodiguel X, Charmasson S, Loizeau V, Mellon-Duval C. et al. 2012. Differential biomagnification of PCB, PBDE, Hg and radiocesium in the food web of the European hake from the NW Mediterranean. Mar. Pollut. Bull. 64:974–83 [Google Scholar]
  52. Hayata I, Kanda R, Minamihisamatsu M, Furukawa A, Sasaki MS. 2001. Cytogenetical dose estimation for 3 severely exposed patients in the JCO criticality accident in Tokai-mura. J. Radiat. Res. 42:Suppl.S149–55 [Google Scholar]
  53. Heldal HE, Føyn L, Varskog P. 2003. Bioaccumulation of 137Cs in pelagic food webs in the Norwegian and Barents Seas. J. Environ. Radioact. 65:177–85 [Google Scholar]
  54. Honda MC, Kawakami H. 2014. Sinking velocity of particulate radiocesium in the northwestern North Pacific. Geophys. Res. Lett. 41:3959–65 [Google Scholar]
  55. Honda MC, Kawakami H, Watanabe S, Saino T. 2013. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the northwestern Pacific Ocean. Biogeosciences 10:3525–34 [Google Scholar]
  56. Horiguchi T, Yoshii H, Mizuno S, Shiraishi H. 2016. Decline in intertidal biota after the 2011 great east Japan earthquake and tsunami and the Fukushima nuclear disaster: field observations. Sci. Rep. 6:20416 [Google Scholar]
  57. Huh C-A, Hsu S-C, Lin C-Y. 2012. Fukushima-derived fission nuclides monitored around Taiwan: free tropospheric versus boundary layer transport. Earth Planet. Sci. Lett. 319–20:9–14 [Google Scholar]
  58. IAEA (Int. At. Energy Agency) 2004. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment Vienna: IAEA
  59. IAEA (Int. At. Energy Agency) 2015a. The Fukushima Daiichi Accident Tech 5 Post-Accident Recovery Vienna: IAEA
  60. IAEA (Int. At. Energy Agency) 2015b. MARiS - Marine Information System. Database, updated July 15. http://maris.iaea.org
  61. ICRP (Int. Comm. Radiol. Prot.) 2007. ICRP publication 103: the 2007 recommendations of the International Commission on Radiological Protection. Ann. ICRP 37:2–41–332 [Google Scholar]
  62. Inomata Y, Aoyama M, Tsubono T, Tsumune D, Hirose K. 2016. Spatial and temporal distributions of 134Cs and 137Cs derived from the TEPCO Fukushima Daiichi nuclear power plant accident in the North Pacific Ocean by using optimal interpolation analysis. Environ. Sci. Process. Impacts 18:126–36 [Google Scholar]
  63. Inoue M, Kofuji H, Hamajima Y, Nagao S, Yoshida K, Yamamoto M. 2012. 134Cs and 137Cs activities in coastal seawater along northern Sanriku and Tsugaru Strait, northeastern Japan, after Fukushima Dai-Ichi nuclear power plant accident. J. Environ. Radioact. 111:116–19 [Google Scholar]
  64. Ito T, Otosaka S, Kawamura H. 2007. Estimation of total amounts of anthropogenic radionuclides in the Japan Sea. J. Nucl. Sci. Technol. 44:912–22 [Google Scholar]
  65. Iwata K, Tagami K, Uchida S. 2013. Ecological half-lives of radiocesium in 16 species in marine biota after the TEPCO's Fukushima Daiichi nuclear power plant accident. Environ. Sci. Technol. 47:7696–703 [Google Scholar]
  66. Johansen MP, Ruedig E, Tagami K, Uchida S, Higley K, Beresford NA. 2014. Radiological dose rates to marine fish from the Fukushima Daiichi accident: the first three years across the North Pacific. Environ. Sci. Technol. 49:1277–85 [Google Scholar]
  67. Kaeriyama H, Ambe D, Shigenobu Y, Fujimoto K, Ono T. et al. 2014. 134Cs and 137Cs in Seawater around Japan after the Fukushima Daiichi nuclear power plant accident. Umi Kenkyu 23:127–46 [Google Scholar]
  68. Kanda J. 2013. Continuing 137Cs release to the sea from the Fukushima Dai-Ichi nuclear power plant through 2012. Biogeosciences 10:6107–13 [Google Scholar]
  69. Kasamatsu F. 1997. Natural variation of radionuclide 137Cs concentration in marine organisms with special reference to the effect of food habits and trophic level. Mar. Ecol. Prog. Ser. 160:109–20 [Google Scholar]
  70. Katata G, Chino M, Kobayashi T, Terada H, Ota M. et al. 2015. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi nuclear power station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys. 15:1029–70 [Google Scholar]
  71. Katata G, Ota M, Terada H, Chino M, Nagai H. 2012. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi nuclear power plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact. 109:103–13 [Google Scholar]
  72. Kawamura H, Kobayashi T, Furuno A, In T, Ishikawa Y. et al. 2011. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J. Nucl. Sci. Technol. 48:1349–56 [Google Scholar]
  73. Kempe S, Nies H. 1986. Chernobyl nuclide record from a North Sea sediment trap. Nature 329:828–31 [Google Scholar]
  74. Kim Y, Cho S, Kang H-D, Kim W, Lee H-R. et al. 2006. Radiocesium reaction with illite and organic matter in marine sediment. Mar. Pollut. Bull. 52:659–65 [Google Scholar]
  75. Kobayashi T, Nagai H, Chino M, Kawamura H. 2013. Source term estimation of atmospheric release due to the Fukushima Dai-Ichi nuclear power plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol. 50:255–64 [Google Scholar]
  76. Kryshev I. 1995. Radioactive contamination of aquatic ecosystems following the Chernobyl accident. J. Environ. Radioact. 27:207–19 [Google Scholar]
  77. Kryshev I, Kryshev A, Sazykina T. 2012. Dynamics of radiation exposure to marine biota in the area of the Fukushima NPP in March-May 2011. J. Environ. Radioact. 114:157–61 [Google Scholar]
  78. Kryshev I, Sazykina T. 2011. Evaluation of the irradiation dose rate for marine biota in the region of the destroyed Fukushima reactor (Japan) in March-May 2011. At. Energy 111:55–60 [Google Scholar]
  79. Kumamoto Y, Aoyama M, Hamajima Y, Aono T, Kouketsu S. et al. 2014. Southward spreading of the Fukushima-derived radiocesium across the Kuroshio extension in the North Pacific. Sci. Rep. 4:4276 [Google Scholar]
  80. Kusakabe M, Ku TL, Harada K, Taguchi K, Tsunogai S. 1988. Chernobyl radioactivity found in mid-water sediment interceptors in the N. Pacific and Bering Sea. Geophys. Res. Lett. 15:44–47 [Google Scholar]
  81. Kusakabe M, Oikawa S, Takata H, Misonoo J. 2013. Spatiotemporal distributions of Fukushima-derived radionuclides in nearby marine surface sediments. Biogeosciences 10:5019–30 [Google Scholar]
  82. Landis JD, Hamm NT, Renshaw CE, Dade WB, Magilligan FJ, Gartner JD. 2012. Surficial redistribution of fallout 131iodine in a small temperate catchment. PNAS 109:4064–69 [Google Scholar]
  83. Lawton CA. 1998. Total body irradiation for bone marrow transplantation. Int. J. Radiat. Oncol. Biol. Phys. 42:Suppl. 1104 [Google Scholar]
  84. Little MP, Wakeford R, Bouville A, Simon SL. 2016. Measurement of Fukushima-related radioactive contamination in aquatic species. PNAS 113:3720–21 [Google Scholar]
  85. Livingston H, Anderson R. 1983. Large particle transport of plutonium and other fallout radionuclides to the deep ocean. Nature 303:228–31 [Google Scholar]
  86. Lujanienė G, Byčenkienė S, Povinec P, Gera M. 2012. Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modelling approaches. J. Environ. Radioact. 11471–80
  87. Maderich V, Jung KT, Bezhenar R, de With G, Qiao F. et al. 2014. Dispersion and fate of 90Sr in the Northwestern Pacific and adjacent seas: global fallout and the Fukushima Dai-ichi accident. Sci. Total Environ.494–95261–71
  88. Madigan DJ, Baumann Z, Fisher NS. 2012. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. PNAS 109:9483–86 [Google Scholar]
  89. MAFF (Minist. Agric. For. Fish.) 2015. Results of the monitoring on radioactivity level in fisheries products http://www.jfa.maff.go.jp/e/inspection/index.html
  90. Masson O, Baeza A, Bieringer J, Brudecki K, Bucci S. et al. 2011. Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European networks. Environ. Sci. Technol. 457670–77
  91. Mathews T, Fisher NS. 2008. Trophic transfer of seven trace metals in a four-step marine food chain. Mar. Ecol. Prog. Ser. 367:23–33 [Google Scholar]
  92. Mathieu A, Korsakissok I, Quélo D, Groëll J, Tombette M. et al. 2012. Atmospheric dispersion and deposition of radionuclides from the Fukushima Daiichi Nuclear power plant accident. Elements 8195–200
  93. Mettler FA Jr, Bhargavan M, Faulkner K, Gilley DB, Gray JE. et al. 2009. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 253:520–31 [Google Scholar]
  94. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. 2008. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–63 [Google Scholar]
  95. Min B-I, Periáñez R, Kim I-G, Suh K-S. 2013. Marine dispersion assessment of 137Cs released from the Fukushima nuclear accident. Mar. Pollut. Bull. 72:22–33 [Google Scholar]
  96. Mitchell PI, Condren OM, Vintró LL, McMahon CA. 1999. Trends in plutonium, americium and radiocaesium accumulation and long-term bioavailability in the western Irish Sea mud basin. J. Environ. Radioact. 44223–51
  97. Miyazawa Y, Masumoto Y, Varlamov S, Miyama T, Takigawa M. et al. 2013. Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences 10:2349–63 [Google Scholar]
  98. Morino Y, Ohara T, Nishizawa M. 2011. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys. Res. Lett. 38L00G11
  99. Nagao S, Kanamori M, Ochiai S, Tomihara S, Fukushi K, Yamamoto M. 2013. Export of 134Cs and 137Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011. Biogeosciences 10:6215–23 [Google Scholar]
  100. Nagaoka M, Yokoyama H, Fujita H, Nakano M, Watanabe H, Sumiya S. 2015. Spatial distribution of radionuclides in seabed sediments off Ibaraki coast after the Fukushima Daiichi nuclear power plant accident. J. Radioanal. Nucl. Chem. 303:1305–8 [Google Scholar]
  101. Natl. Cancer Inst 2016. Surveillance, Epidemiology, and End Results Program. http://seer.cancer.gov
  102. Nesterenko AV, Nesterenko VB, Yablokov AV. 2010. Chernobyl's radioactive contamination of food and people. Ann. N.Y. Acad. Sci. 1181:289–302 [Google Scholar]
  103. Neville DR, Phillips AJ, Brodeur RD, Higley KA. 2014. Trace levels of Fukushima disaster radionuclides in East Pacific albacore. Environ. Sci. Technol. 48:4739–43 [Google Scholar]
  104. Nishihara K, Yamagishi I, Yasuda K, Ishimori K, Tanaka K. et al. 2012. Radionuclide release to stagnant water in Fukushima-1 nuclear power plant. Trans. At. Energy Soc. Jpn. 11:13–19 [Google Scholar]
  105. Ogino H, Hattori T. 2014. Calculation of background lifetime risk of cancer mortality in Japan. Jpn. J. Health Phys. 49:194–98 [Google Scholar]
  106. Ohtsuru A, Tanigawa K, Kumagai A, Niwa O, Takamura N. et al. 2015. Nuclear disasters and health: lessons learned, challenges, proposals. Lancet 386:489–97 [Google Scholar]
  107. Oikawa S, Watabe T, Takata H, Misonoo J, Kusakabe M. 2015. Plutonium isotopes and 241Am in surface sediments off the coast of the Japanese islands before and soon after the Fukushima Dai-Ichi nuclear power plant accident. J. Radioanal. Nucl. Chem. 303:1513–18 [Google Scholar]
  108. Okamura H, Ikeda S, Morita T, Eguchi S. 2016. Risk assessment of radioisotope contamination for aquatic living resources in and around Japan. PNAS 113:3838–43 [Google Scholar]
  109. Ono T, Ambe D, Kaeriyama H, Shigenobu Y, Fujimoto K. et al. 2015. Concentration of 134Cs + 137Cs bonded to the organic fraction of sediments offshore Fukushima, Japan. Geochem. J. 49:219–27 [Google Scholar]
  110. Otake M. 1996. Threshold for radiation-related severe mental retardation in prenatally exposed A-bomb survivors: a re-analysis. Int. J. Radiat. Biol. 70:755–63 [Google Scholar]
  111. Otosaka S, Kato Y. 2014. Radiocesium derived from the Fukushima Daiichi nuclear power plant accident in seabed sediments: initial deposition and inventories. Environ. Sci. Process. Impacts 16:978–90 [Google Scholar]
  112. Otosaka S, Kobayashi T. 2013. Sedimentation and remobilization of radiocesium in the coastal area of Ibaraki, 70 km south of the Fukushima Dai-Ichi nuclear power plant. Environ. Monit. Assess. 185:5419–33 [Google Scholar]
  113. Otosaka S, Nakanishi T, Suzuki T, Satoh Y, Narita H. 2014. Vertical and lateral transport of particulate radiocesium off Fukushima. Environ. Sci. Technol. 48:12595–602 [Google Scholar]
  114. Pentreath R, Allington D. 1988. Dose to man from the consumption of marine seafoods: a comparison of the naturally-occurring 210Po with artificially-produced radionuclides. Proceedings of the Seventh International Congress of the International Radiation Protection Association1582–85 Washington, DC: Int. Radiat. Prot. Assoc.
  115. Periáñez R, Suh K-S, Byung-Il M, Casacuberta N, Masqué P. 2013. Numerical modeling of the releases of 90Sr from Fukushima to the ocean: an evaluation of the source term. Environ. Sci. Technol. 47:12305–13 [Google Scholar]
  116. Poole AJ, Denoon DC, Woodhead DS. 1997. The distribution and retention of 137Cs in the subtidal sediments of the Irish Sea. Radioprotection 32:263–70 [Google Scholar]
  117. Pouil S, Warnau M, Oberhänsli F, Teyssié J-L, Metian M. 2015. Trophic transfer of 110mAg in the turbot Scophthalmus maximus through natural prey and compounded feed. J. Environ. Radioact. 150:189–94 [Google Scholar]
  118. Povinec PP, Hirose K. 2015. Fukushima radionuclides in the NW Pacific, and assessment of doses for Japanese and world population from ingestion of seafood. Sci. Rep. 5:9016 [Google Scholar]
  119. Povinec PP, Hirose K, Aoyama M. 2012. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact. Environ. Sci. Technol. 46:10356–63 [Google Scholar]
  120. Pratama MA, Yoneda M, Shimada Y, Matsui Y, Yamashiki Y. 2015. Future projection of radiocesium flux to the ocean from the largest river impacted by Fukushima Daiichi nuclear power plant. Sci. Rep. 5:8408 [Google Scholar]
  121. Pröhl G, Mück K, Likhtarev I, Kovgan L, Golikov V. 2002. Reconstruction of the ingestion doses received by the population evacuated from the settlements in the 30-km zone around the Chernobyl reactor. Health Phys. 82:173–81 [Google Scholar]
  122. Rossi V, Van Sebille E, Sen Gupta A, Garçon V, England MH. 2013. Multi-decadal projections of surface and interior pathways of the Fukushima cesium-137 radioactive plume. Deep-Sea Res. I 80:37–46 [Google Scholar]
  123. Rossi V, Van Sebille E, Sen Gupta A, Garçon V, England MH. 2014. Corrigendum to “Multi-decadal projections of surface and interior pathways of the Fukushima cesium-137 radioactive plume” [Deep-Sea Research I 80 (2013) 37–46]. Deep-Sea Res. I 82:72 [Google Scholar]
  124. Rypina II, Jayne SR, Yoshida S, Macdonald AM, Buesseler K. 2014. Drifter-based estimate of the 5 year dispersal of Fukushima-derived radionuclides. J. Geophys. Res. 119:8177–93 [Google Scholar]
  125. Rypina II, Jayne SR, Yoshida S, Macdonald AM, Douglass E, Buesseler K. 2013. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison. Biogeosciences 10:4973–90 [Google Scholar]
  126. Saunier O, Mathieu A, Didier D, Tombette M, Quélo D. et al. 2013. An inverse modeling method to assess the source term of the Fukushima nuclear power plant accident using gamma dose rate observations. Atmos. Chem. Phys. 13:11403–21 [Google Scholar]
  127. Schauer D. 2009. Ionizing radiation exposure of the population of the United States Rep. 160, Natl. Counc. Radiat. Prot. Meas., Bethesda, MD
  128. Shigenobu Y, Fujimoto K, Ambe D, Kaeriyama H, Ono T. et al. 2014. Radiocesium contamination of greenlings (Hexagrammos Otakii) off the coast of Fukushima. Sci. Rep. 4:6851 [Google Scholar]
  129. Sholkovitz E, Mann D. 1984. The pore water chemistry of 239,240Pu and 137Cs in sediments of Buzzards Bay, Massachusetts. Geochim. Cosmochim. Acta 48:1107–14 [Google Scholar]
  130. Smith JN, Brown RM, Williams WJ, Robert M, Nelson R, Moran SB. 2015. Arrival of the Fukushima radioactivity plume in North American continental waters. PNAS 112:1310–15 [Google Scholar]
  131. Sohtome T, Wada T, Mizuno T, Nemoto Y, Igarashi S. et al. 2014. Radiological impact of TEPCO's Fukushima Dai-Ichi nuclear power plant accident on invertebrates in the coastal benthic food web. J. Environ. Radioact. 138:106–15 [Google Scholar]
  132. Standring WJ, Dowdall M, Strand P. 2009. Overview of dose assessment developments and the health of riverside residents close to the “Mayak” PA facilities, Russia. Int. J. Environ. Res. Public Health 6174–99
  133. Staunton S, Roubaud M. 1997. Adsorption of 137Cs on montmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid. Clays Clay Miner 45251–60
  134. Steinhauser G. 2014. Fukushima's forgotten radionuclides: a review of the understudied radioactive emissions. Environ. Sci. Technol. 48:4649–63 [Google Scholar]
  135. Steinhauser G, Brandl A, Johnson TE. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ. 470:800–17 [Google Scholar]
  136. Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart J. et al. 2012. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-Ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys. 12:2313–43 [Google Scholar]
  137. Tagami K, Uchida S. 2016. Consideration on the long ecological half-life component of 137Cs in demersal fish based on field observation results obtained after the Fukushima accident. Environ. Sci. Technol. 501804–11
  138. Tanaka K, Shimada A, Hoshi A, Yasuda M, Ozawa M, Kameo Y. 2014. Radiochemical analysis of rubble and trees collected from Fukushima Daiichi nuclear power station. J. Nucl. Sci. Technol. 51:1032–43 [Google Scholar]
  139. Tanigawa K, Hosoi Y, Hirohashi N, Iwasaki Y, Kamiya K. 2012. Loss of life after evacuation: lessons learned from the Fukushima accident. Lancet 379:889–91 [Google Scholar]
  140. Tateda Y, Tsumune D, Tsubono T. 2013. Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. J. Environ. Radioact. 124:1–12 [Google Scholar]
  141. Tateda Y, Tsumune D, Tsubono T, Aono T, Kanda J, Ishimaru T. 2015. Radiocesium biokinetics in olive flounder inhabiting the Fukushima accident-affected Pacific coastal waters of eastern Japan. J. Environ. Radioact. 147:130–41 [Google Scholar]
  142. TEPCO (Tokyo Electr. Power Co.) 2016. Analysis results of fish and shellfish (the ocean area within 20km radius of Fukushima Daiichi NPS) http://www.tepco.co.jp/en/nu/fukushima-np/f1/smp/index-e.html
  143. Terada H, Katata G, Chino M, Nagai H. 2012. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-Ichi nuclear power plant accident. Part I: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact. 112:141–54 [Google Scholar]
  144. Thorne MC. 2003. Background radiation: natural and man-made. J. Radiol. Prot. 23:29–42 [Google Scholar]
  145. Thornton B, Ohnishi S, Ura T, Odano N, Sasaki S. et al. 2013. Distribution of local 137Cs anomalies on the seafloor near the Fukushima Dai-Ichi nuclear power plant. Mar. Pollut. Bull. 74:344–50 [Google Scholar]
  146. Tsubono T, Misumi K, Tsumune D, Bryan FO, Hirose K, Aoyama M. 2016. Evaluation of radioactive cesium impact from atmospheric deposition and direct release fluxes into the North Pacific from the Fukushima Daiichi nuclear power plant. Deep-Sea Res. I. 115:10–21 [Google Scholar]
  147. Tsumune D, Tsubono T, Aoyama M, Hirose K. 2012. Distribution of oceanic 137Cs from the Fukushima Daiichi nuclear power plant simulated numerically by a regional ocean model. J. Environ. Radioact. 111:100–8 [Google Scholar]
  148. Tsumune D, Tsubono T, Aoyama M, Uematsu M, Misumi K. et al. 2013. One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Daiichi nuclear power plant accident. Biogeosciences 10:5601–17 [Google Scholar]
  149. UNSCEAR (UN Sci. Comm. Effects At. Radiat.) 2000. Sources and effects of ionizing radiation, Annex J: exposures and effects of the Chernobyl accident Rep., UN, New York
  150. UNSCEAR (UN Sci. Comm. Effects At. Radiat.) 2008. Sources and effects of ionizing radiation, Volume 1: UNSCEAR 2008 report to the general assembly with scientific annexes Rep. A/63/46, UN, New York
  151. UNSCEAR (UN Sci. Comm. Effects At. Radiat.) 2014. Sources, effects and risks of ionizing radiation, Volume 1: UNSCEAR 2013 report to the general assembly and scientific annex A Rep. A/68/46, UN, New York
  152. Vives i Batlle J, Aono T, Brown JE, Hosseini A, Garnier-Laplace J. et al. 2014. The impact of the Fukushima nuclear accident on marine biota: retrospective assessment of the first year and perspectives. Sci. Total Environ. 487:143–53 [Google Scholar]
  153. Wada T, Nemoto Y, Shimamura S, Fujita T, Mizuno T. et al. 2013. Effects of the nuclear disaster on marine products in Fukushima. J. Environ. Radioact. 124:246–54 [Google Scholar]
  154. WHO (World Health Organ.) 2013. Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami, based on a preliminary dose estimation Rep., WHO, Geneva
  155. Winiarek V, Bocquet M, Duhanyan N, Roustan Y, Saunier O, Mathieu A. 2014. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos. Environ. 82:268–79 [Google Scholar]
  156. Wu J, Zheng J, Dai M, Huh C-A, Chen W. et al. 2014. Isotopic composition and distribution of plutonium in northern South China Sea sediments revealed continuous release and transport of Pu from the Marshall Islands. Environ. Sci. Technol. 48:3136–44 [Google Scholar]
  157. Yamada M, Aono T, Hirano S. 1999. 239+240Pu and 137Cs concentrations in fish, cephalopods, crustaceans, shellfish, and algae collected around the Japanese coast in the early 1990s. Sci. Total Environ. 239131–42
  158. Yamashiki Y, Onda Y, Smith HG, Blake WH, Wakahara T. et al. 2014. Initial flux of sediment-associated radiocesium to the ocean from the largest river impacted by Fukushima Daiichi nuclear power plant. Sci. Rep. 4:3714 [Google Scholar]
  159. Yoshida S, Macdonald AM, Jayne SR, Rypina II, Buesseler KO. 2015. Observed eastward progression of the Fukushima 134Cs signal across the North Pacific. Geophys. Res. Lett. 42:7139–47 [Google Scholar]
  160. Zhao X, Wang W-X, Yu K, Lam PK. 2001. Biomagnification of radiocesium in a marine piscivorous fish. Mar. Ecol. Prog. Ser. 222:227–37 [Google Scholar]
  161. Zheng J, Aono T, Uchida S, Zhang J, Honda MC. 2012. Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Daiichi nuclear power plant accident. Geochem. J. 46:361–69 [Google Scholar]
  162. Zheng J, Tagami K, Uchida S. 2013. Release of plutonium isotopes into the environment from the Fukushima Daiichi nuclear power plant accident: what is known and what needs to be known. Environ. Sci. Technol. 47:9584–95 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error