1932

Abstract

Sea-level rise (SLR) is influencing coastal groundwater by both elevating the water table and shifting salinity profiles landward, making the subsurface increasingly corrosive. Low-lying coastal municipalities worldwide (potentially 1,546, according to preliminary analysis) are vulnerable to an array of impacts spurred by these phenomena, which can occur decades before SLR-induced surface inundation. Damage is accumulating across a variety of infrastructure networks that extend partially and fully beneath the ground surface. Because the resulting damage is largely concealed and imperceptible, it is largely overlooked as part of infrastructure management and planning. Here, we provide an overview of SLR-influenced coastal groundwater and related processes that have the potential to damage societally critical infrastructure and mobilize urban contamination. In an effort to promote research efforts that can inform effective adaptation and management, we discuss various impacts to critical infrastructure and propose actions based on literature focused specifically on SLR-influenced coastal groundwater.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-020923-120737
2024-01-17
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-020923-120737.html?itemId=/content/journals/10.1146/annurev-marine-020923-120737&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelhafez MA, Ellingwood B, Mahmoud H. 2022. Hidden costs to building foundations due to sea level rise in a changing climate. Sci. Rep. 12:14020
    [Google Scholar]
  2. Abueladas A-RA, Niemi TM, Al-Zoubi A, Tibor G, Kanari M, Ben-Avraham Z. 2021. Liquefaction susceptibility maps for the Aqaba-Elat region with projections of future hazards with sea-level rise. Q. J. Eng. Geol. Hydrogeol. 54:2qjegh2020-039
    [Google Scholar]
  3. Abuodha PAO, Woodroffe CD. 2010. Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from southeast Australia. J. Coast. Conserv. 14:3189205
    [Google Scholar]
  4. Arkell B, Darch G. 2006. Impact of climate change on London's transport network. Proc. Inst. Civil Eng. Munic. Eng. 159:23137
    [Google Scholar]
  5. Azevedo de Almeida B, Mostafavi A. 2016. Resilience of infrastructure systems to sea-level rise in coastal areas: impacts, adaptation measures, and implementation challenges. Sustainability 8:111115
    [Google Scholar]
  6. Bamber JL, Oppenheimer M, Kopp RE, Aspinall WP, Cooke RM. 2019. Ice sheet contributions to future sea-level rise from structured expert judgment. PNAS 116:2311195200
    [Google Scholar]
  7. Befus KM, Barnard PL, Hoover DJ, Finzi Hart JA, Voss CI. 2020. Increasing threat of coastal groundwater hazards from sea-level rise in California. Nat. Clim. Change 10:1094652
    [Google Scholar]
  8. Berry L, Arockiasamy M, Bloetscher F, Kaisar E, Rodriguez-Seda J et al. 2012. Development of a methodology for the assessment of sea level rise impacts on Florida's transportation modes and infrastructure: synthesis of studies, methodologies, technologies, and data sources used for predicting sea level rise, timing, and affected areas in Florida Rep. Fla. Atl. Univ. Boca Raton, FL:
  9. Bjerklie DM, Mullaney JR, Stone JR, Skinner BJ, Ramlow MA. 2012. Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut Open-File Rep. 2012-1025 US Geol. Surv. Reston, VA:
  10. Buchanan MK, Kopp RE, Oppenheimer M, Tebaldi C. 2016. Allowances for evolving coastal flood risk under uncertain local sea-level rise. Clim. Change 137:3–434762
    [Google Scholar]
  11. Burgos A. 2022. A sinkhole in Kakaako is proving a bear to fix—and a big headache for businesses. HawaiiNewsNow Dec. 1. https://www.hawaiinewsnow.com/2022/12/02/businesses-residents-feel-impact-cooke-street-closure
    [Google Scholar]
  12. Chaudhary MTA. 2012. Implications of rising groundwater level on structural integrity of underground structures—investigations and retrofit of a large building complex. Struct. Surv. 30:211129
    [Google Scholar]
  13. Chen C, Pei S, Jiao J. 2003. Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeol. J. 11:227587
    [Google Scholar]
  14. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S et al. 2013. Sea level change. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al. 1137216. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  15. Clim. Cent 2023. Coastal risk screening tool. Climate Central. https://coastal.climatecentral.org
    [Google Scholar]
  16. Cooper HM, Chen Q. 2013. Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: a case study in Kahului, Maui. Clim. Change 121:463547
    [Google Scholar]
  17. Cooper HM, Chen Q, Fletcher CH, Barbee MM. 2013. Assessing vulnerability due to sea-level rise in Maui, Hawai‘i using LiDAR remote sensing and GIS. Clim. Change 116:354763
    [Google Scholar]
  18. Cox AH, Dowling MJ, Loomis GW, Engelhart SE, Amador JA. 2020. Geospatial modeling suggests threats from stormy seas to Rhode Island's coastal septic systems. J. Sustain. Water Built Environ. 6:304020012
    [Google Scholar]
  19. Cox AH, Loomis GW, Amador JA. 2019. Preliminary evidence that rising groundwater tables threaten coastal septic systems. J. Sustain. Water Built Environ. 5:404019007
    [Google Scholar]
  20. Darwin C 1852. Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World, Under the Command of Capt. Fitz Roy, R.N. London: Murray
  21. DeConto RM, Pollard D, Alley RB, Velicogna I, Gasson E et al. 2021. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593:78578389
    [Google Scholar]
  22. Dep. Environ. Clim. Change N.S.W 2008. Building in a saline environment Rep. Dep. Environ. Clim. Change N.S.W. Sydney South, Aust.:
  23. du Commun J. 1828. On the cause of fresh water springs, fountains, etc. Am. J. Sci. Arts 14:17476
    [Google Scholar]
  24. Dupuit JE. 1863. Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des des alluvions dans les rivières à fond mobile Paris: Dunod
  25. EPA (Environ. Prot. Agency) 2002. Deteriorating buried infrastructure management challenges and strategies White Pap., EPA Washington, DC:
  26. EPA (Environ. Prot. Agency) 2004. Primer for municipal wastewater treatment Rep. EPA Washington, DC:
  27. Erkens G, van der Meulen MJ, Middelkoop H. 2016. Double trouble: subsidence and CO2 respiration due to 1,000 years of Dutch coastal peatlands cultivation. Hydrogeol. J. 24:355168
    [Google Scholar]
  28. Erskine AD. 1991. The effect of tidal fluctuation on a coastal aquifer in the UK. Groundwater 29:455662
    [Google Scholar]
  29. Felton D, van der Zander I. 2021. Risks of sea level rise and increased flooding on known chemical contamination in Hawaii Memo. Hawaii Dep. Health Honolulu:
  30. Ferris JG. 1952. Cyclic fluctuations of water level as a basis for determining aquifer transmissibility Rep. Ground Water Branch, Water Resour. Div., US Geol. Surv. Washington, DC:
  31. Fetter CW. 2001. Applied Hydrology Upper Saddle River, NJ: Prentice Hall. , 4th ed..
  32. Fischer EM, Sedláček J, Hawkins E, Knutti R. 2014. Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett. 41:23855462
    [Google Scholar]
  33. Flood JF, Cahoon LB. 2011. Risks to coastal wastewater collection systems from sea-level rise and climate change. J. Coast. Res. 27:465260
    [Google Scholar]
  34. Folkman S. 2018. Water main break rates in the USA and Canada: a comprehensive study. Rep. Utah State Univ. Logan, UT:
  35. Fung A, Babcock R. 2020. A flow-calibrated method to project groundwater infiltration into coastal sewers affected by sea level rise. Water 12:71934
    [Google Scholar]
  36. Gallien TW, Kalligeris N, Delisle M-PC, Tang B-X, Lucey JTD, Winters MA. 2018. Coastal flood modeling challenges in defended urban backshores. Geosciences 8:12450
    [Google Scholar]
  37. Gold AC, Brown CM, Thompson SP, Piehler MF. 2022. Inundation of stormwater infrastructure is common and increases risk of flooding in coastal urban areas along the US Atlantic coast. Earth's Future 10:3e2021EF002139
    [Google Scholar]
  38. Grant ARR, Wein AM, Befus KM, Hart JF, Frame MT et al. 2021. Changes in liquefaction severity in the San Francisco Bay Area with sea-level rise. Geo-Extreme 2021: Climatic Extremes and Earthquake Modeling CL Meehan, MA Pando, BA Leshchinsky, NH Jafari 30817. Reston, VA: Am. Soc. Civil Eng.
    [Google Scholar]
  39. Habel S, Fletcher CH. 2022. Development of a coastal groundwater monitoring network in Honolulu, Hawaii and initial observations Paper presented at the American Geophysical Union Fall Meeting Chicago, IL: Dec. 12–16
  40. Habel S, Fletcher CH, Anderson TR, Thompson PR. 2020. Sea-level rise induced multi-mechanism flooding and contribution to urban infrastructure failure. Sci. Rep. 10:3796
    [Google Scholar]
  41. Habel S, Fletcher CH, Rotzoll K, El-Kadi AI. 2017. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res.11412234
    [Google Scholar]
  42. Habel S, Fletcher CH, Rotzoll K, El-Kadi AI, Oki DS. 2019. Comparison of a simple hydrostatic and a data-intensive 3D numerical modeling method of simulating sea-level rise induced groundwater inundation for Honolulu, Hawai'i, USA. Environ. Res. Commun. 1:4041005
    [Google Scholar]
  43. Herzberg A. 1901. Die wasserversorgung einiger Nordseebader. J. Gasbeleucht. Verw. Beleuchtungsarten Wasserversorg. 44:84244
    [Google Scholar]
  44. Hooper E, Chapman L, Quinn A. 2014. Investigating the impact of precipitation on vehicle speeds on UK motorways. Meteorol. Appl. 21:2194201
    [Google Scholar]
  45. Housego R, Raubenheimer B, Elgar S, Cross S, Legner C, Ryan D. 2021. Coastal flooding generated by ocean wave-and surge-driven groundwater fluctuations on a sandy barrier island. J. Hydrol. 603:126920
    [Google Scholar]
  46. IPCC (Intergov. Panel Clim. Change) 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck, et al Cambridge, UK: Cambridge Univ. Press
  47. Jacob CE. 1940. On the flow of water in an elastic artesian aquifer. Eos Trans. AGU 21:257486
    [Google Scholar]
  48. Jacob CE. 1950. Flow of Groundwater in Engineering Hydraulics New York: Wiley & Sons
  49. Jiao J, Li H. 2004. Breathing of coastal vadose zone induced by sea level fluctuations. Geophys. Res. Lett. 31:1111502
    [Google Scholar]
  50. Jiao J, Post V. 2019. Coastal Hydrogeology Cambridge, UK: Cambridge Univ. Press
  51. Jiao J, Tang Z. 1999. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour. Res. 35:374751
    [Google Scholar]
  52. Jones DE Jr., Holtz WG. 1973. Expansive soils—the hidden disaster. Civil Eng. 43:84951
    [Google Scholar]
  53. Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Simmons CT. 2016. Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J. Hydrol. 535:23555
    [Google Scholar]
  54. Knott JF, Daniel JS, Jacobs JM, Kirshen P. 2018. Adaptation planning to mitigate coastal-road pavement damage from groundwater rise caused by sea-level rise. Transp. Res. Rec. 2672:21122
    [Google Scholar]
  55. Knott JF, Elshaer M, Daniel JS, Jacobs JM, Kirshen P. 2017. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639:1110
    [Google Scholar]
  56. Kulp SA, Strauss BH. 2021. CoastalDEM v2.1: a high-accuracy and -resolution global coastal elevation model trained on ICESat-2 satellite lidar Sci. Rep. Clim. Cent. Princeton, NJ: Available at http://www.climatecentral.org/coastaldem-v2.1
  57. Kuo CY. 1980. Proceedings of the National Symposium on Urban Stormwater Management in Coastal Areas, Virginia Tech, Blacksburg, Virginia, June 19–20, 1980 New York: Am. Soc. Civil Eng.
  58. Lassiter A. 2021. Rising seas, changing salt lines, and drinking water salinization. Curr. Opin. Environ. Sustain. 50:20814
    [Google Scholar]
  59. Leung RWK, Li DCH, Pickles AR. 2007. Heaving of airfield pavement in Hong Kong International Airport Paper presented at the FAA Worldwide Airport Technology Transfer Conference Atlantic City, NJ: Apr. 16–18
  60. Liu T, Su X, Prigiobbe V. 2018. Groundwater-sewer interaction in urban coastal areas. Water 10:121774
    [Google Scholar]
  61. Lumb P. 1976. Land reclamation in Hong Kong Paper presented at the Residential Workshop on Materials and Methods for Low Coast Road, Rail, and Reclamation Works Leura, Aust., Sept:610
  62. Luo CY, Shen SL, Han J, Ye GL, Horpibulsuk S. 2015. Hydrogeochemical environment of aquifer groundwater in Shanghai and potential hazards to underground infrastructures. Nat. Hazards 78:175374
    [Google Scholar]
  63. Lusk MG. 2022. Public health threats of diminished treatment of onsite sewage. Lancet Planet. Health 6:9e7078
    [Google Scholar]
  64. Lusk MG, Toor GS, Yang YY, Mechtensimer S, De M, Obreza TA. 2017. A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Crit. Rev. Environ. Sci. Technol. 47:7455541
    [Google Scholar]
  65. Masterson JP, Fienen MN, Thieler ER, Gesch DB, Gutierrez BT, Plant NG. 2014. Effects of sea-level rise on barrier island groundwater system dynamics—ecohydrological implications. Ecohydrology 7:3106471
    [Google Scholar]
  66. May CL, Mohan AT, Hoang O, Mak M, Badet Y. 2020. The response of the shallow groundwater layer and contaminants to sea level rise Rep. Silvestrum Clim. Assoc. Sausalito, CA:
  67. May CL, Mohan AT, Plane E, Ramirez-Lopez D, Mak M et al. 2022. Shallow groundwater response to sea-level rise: Alameda, Marin, San Francisco, and San Mateo Counties Rep. Pathw. Clim. Inst. and San Franc. Estuary Inst. San Francisco, CA:
  68. McCobb TD, Weiskel PK. 2003. Long-term hydrologic monitoring protocol for coastal ecosystems Open-File Rep. 02-497 US Geol. Surv. Northborough, MA:
  69. McKenzie T, Habel S, Dulai H. 2021. Sea-level rise drives wastewater leakage to coastal waters and storm drains. Limnol. Oceanogr. Lett. 6:315463
    [Google Scholar]
  70. Medeiros-Junior RA 2018. Impact of climate change on the service life of concrete structures. Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures F Pacheco-Torgal, RE Melchers, X Shi, N De Belie, K Van Tittelboom, A Sáez 4368. Amsterdam: Elsevier
    [Google Scholar]
  71. Merritt ML. 2004. Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida Water-Resour. Investig. Rep. 02-4267 US Geol. Surv. Tallahassee, FL:
  72. Mezzacapo M. 2019. A multi-state regulation and policy survey of onsite wastewater treatment system upgrade programs Spec. Rep. SR-2020-02 Water Resour. Res. Cent., Univ. Hawai‘i Mnoa Honolulu, HI:
  73. Michael HA, Russoniello CJ, Byron LA. 2013. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. Water Resour. Res. 49:4222840
    [Google Scholar]
  74. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW et al. 2008. Stationarity is dead: whither water management?. Science 319:586357374
    [Google Scholar]
  75. Miranda T, Hill T, Lockett R, Schnelle M, Bustamante H. 2019. Salt water ingress in coastal wastewater catchments: a novel methodology for assessing salt water ingress. Water e-J. 4:216
    [Google Scholar]
  76. Morgan LK, Werner AD. 2015. A national inventory of seawater intrusion vulnerability for Australia. J. Hydrol. Reg. Stud. 4:68698
    [Google Scholar]
  77. Natl. Acad. Sci. Med. Eng 2019. Framing the Challenge of Urban Flooding in the United States Washington, DC: Natl. Acad. Press
  78. Nerem RS, Chambers D, Choe C, Mitchum GT. 2010. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geodesy 33:1 Suppl. 143546
    [Google Scholar]
  79. Nerem RS, Frederikse T, Hamlington BD. 2022. Extrapolating empirical models of satellite-observed global mean sea level to estimate future sea level change. Earth's Future 10:4e2021EF002290
    [Google Scholar]
  80. NOAA (Natl. Ocean. Atmos. Adm.) 2022. A NOAA capability for coastal flooding and services at climate timescales to reduce risk and improve resilience Rep. NOAA Washington, DC:
  81. NOAA (Natl. Ocean. Atmos. Adm.) 2023. Sea level rise viewer. NOAA. https://coast.noaa.gov/slr
    [Google Scholar]
  82. Nuttle WK, Portnoy JW. 1992. Effect of rising sea level on runoff and groundwater discharge to coastal ecosystems. Estuar. Coast. Shelf Sci. 34:220312
    [Google Scholar]
  83. Osman O, Ahmad F, Aina OD. 2017. Chemical fingerprinting of saline water intrusion into sewage lines. Water Sci. Technol. 76:8204450
    [Google Scholar]
  84. Oude Essink GHP 1996. Impact of Sea Level Rise on Groundwater Flow Regimes: A Sensitivity Analysis for the Netherlands Delft, Neth: Delft Univ. Press
  85. Oude Essink GHP, van Baaren ES, de Louw PGB 2010. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour. Res. 46:W00F04
    [Google Scholar]
  86. Parkinson RW. 2021. Speculation on the role of sea-level rise in the tragic collapse of the Surfside condominium (Miami Beach, Florida U.S.A.) was a bellwether moment for coastal zone management practitioners. Ocean Coast. Manag. 215:105968
    [Google Scholar]
  87. Pierre-Louis K. 2021. How rising groundwater caused by climate change could devastate coastal communities. MIT Technology Review Dec. 13. https://www.technologyreview.com/2021/12/13/1041309/climate-change-rising-groundwater-flooding
    [Google Scholar]
  88. Plane E, Hill K, May C. 2019. A rapid assessment method to identify potential groundwater flooding hotspots as sea levels rise in coastal cities. Water 11:112228
    [Google Scholar]
  89. Quell M. 2020. Blowing in the wind: why the Netherlands is sinking. Undark Jan. 15. https://undark.org/2020/01/15/windmills-netherlands-sinking
    [Google Scholar]
  90. Quilter PW, van Ballegooy S, Russ M. 2015. The effect of sea level rise on liquefaction vulnerability Paper presented at the 6th International Conference on Earthquake Geotechnical Engineering Christchurch, N.Z.: Nov. 1–4
  91. Rahimi R, Tavakol-Davani H, Graves C, Gomez A, Valipour MF. 2020. Compound inundation impacts of coastal climate change: sea-level rise, groundwater rise, and coastal precipitation. Water 12:102776
    [Google Scholar]
  92. Reddy Bathi J, Das HS, Edberg M, Hayes BE, Montgomery Rice V. 2016. Vulnerability of coastal communities from storm surge and flood disasters. Int. J. Environ. Res. Public Health 13:2239
    [Google Scholar]
  93. Renken RA, Dixon J, Koehmstedt J, Ishman S, Lietz AC et al. 2005. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900–2000 Circ. 1275 US Geol. Surv. Reston, VA:
  94. Risken JL, Fraser JG, Rutter H, Gadsby M. 2015. Implications of sea level rise on liquefaction vulnerability in Christchurch Paper presented at the 6th International Conference on Earthquake Geotechnical Engineering Christchurch, N.Z.: Nov. 1–4
  95. Romero ED. 2023. State regulators scrutinize climate plan for controversial Richmond housing development. KQED Jan. 12. https://www.kqed.org/science/1981077/state-regulators-scrutinize-climate-plan-for-controversial-richmond-housing-development
    [Google Scholar]
  96. Roshani A. 2014. Road infrastructure vulnerability to groundwater table variation due to sea level rise MS Thesis Qld. Univ. Technol. Brisbane, Aust.:
  97. Rotzoll K, Fletcher CH. 2012. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3:547781
    [Google Scholar]
  98. Rozell DJ. 2021. Overestimating coastal urban resilience: the groundwater problem. Cities 118:103369
    [Google Scholar]
  99. Sadler JM, Goodall JL, Behl M, Bowes BD, Morsy MM. 2020. Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise. J. Hydrol. 583:124571
    [Google Scholar]
  100. Saha M, Eckelman MJ. 2014. Urban scale mapping of concrete degradation from projected climate change. Urban Clim. 9:10114
    [Google Scholar]
  101. Schiavina M, Freire S, MacManus K. 2022. GHS-POP R2022A - GHS population grid multitemporal (1975–2030) Dataset, Joint Res. Cent., Eur. Comm. Brussels, Belg: https://doi.org/10.2905/D6D86A90-4351-4508-99C1-CB074B022C4A
  102. Schiavina M, Moreno-Monroy A, Maffenini L, Veneri P. 2019. GHS-FUA R2019A - GHS functional urban areas, derived from GHS-UCDB R2019A (2015) Dataset, Joint Res. Cent., Eur. Comm. Brussels, Belg: https://doi.org/10.2905/347F0337-F2DA-4592-87B3-E25975EC2C95
  103. Shamsudduha M, Joseph G, Haque SS, Khan MR, Zahid A, Ahmed KMU. 2020. Multi-hazard groundwater risks to water supply from shallow depths: challenges to achieving the sustainable development goals in Bangladesh. Expo. Health 12:465770
    [Google Scholar]
  104. Small C, Cohen J. 2004. Continental physiography, climate, and the global distribution of human population. Curr. Anthropol. 45:226977
    [Google Scholar]
  105. Sukop MC, Rogers M, Guannel G, Infanti JM, Hagemann K. 2018. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA. Sci. Total Environ. 616–17:166888
    [Google Scholar]
  106. Sweet WV, Dusek G, Obeysekera J, Marra JJ. 2018. Patterns and projections of high tide flooding along the US coastline Tech. Rep. NOS CO-OPS 086 Natl. Ocean. Atmos. Adm. Washington, DC:
  107. Sweet WV, Hamlington BD, Kopp RE, Weaver CP, Barnard PL et al. 2022. Global and regional sea level rise scenarios for the United States: updated mean projections and extreme water level probabilities along US coastlines Rep. Natl. Ocean. Atmos. Adm. Washington, DC:
  108. Sweet WV, Park J. 2014. From the extreme to the mean: acceleration and tipping points of coastal inundation from sea level rise. Earth's Future 2:12579600
    [Google Scholar]
  109. Tansel B, Zhang K. 2022. Effects of saltwater intrusion and sea level rise on aging and corrosion rates of iron pipes in water distribution and wastewater collection systems in coastal areas. J. Environ. Manag. 315:115153
    [Google Scholar]
  110. Titus JG, Kuo CY, Gibbs MJ, LaRoche TB, Webb MK, Waddell JO. 1987. Greenhouse effect, sea level rise, and coastal drainage systems. J. Water Resour. Plan Manag. 113:221627
    [Google Scholar]
  111. Trenberth KE. 2011. Changes in precipitation with climate change. Clim. Res. 47:1–212338
    [Google Scholar]
  112. Turner IL, Coats BP, Acworth RI. 1997. Tides, waves and the super-elevation of groundwater at the coast. J. Coast. Res. 13:14660
    [Google Scholar]
  113. UN-Habitat (UN Hum. Settl. Programme), WHO (World Health Organ.) 2021. Progress on wastewater treatment: global status and acceleration needs for SDG indicator 6.3.1 Rep. UN-Habitat and WHO Geneva:
  114. Uuemaa E, Ahi S, Montibeller B, Muru M, Kmoch A. 2020. Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 12:213482
    [Google Scholar]
  115. Vorosmarty CJ, Green P, Salisbury J, Lammers RB. 2000. Global water resources: vulnerability from climate change and population growth. Science 289:547728488
    [Google Scholar]
  116. Whittier RB, El-Kadi A. 2014. Human health and environmental risk ranking of on-site sewage disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Rep. Safe Drink. Water Branch, Hawai‘i Dep. Health Honolulu, HI:
  117. Wu G, Guan Y, Zhan X. 2008. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater. Water Sci. Technol. 58:235158
    [Google Scholar]
  118. Wu P, Wei M, D'Hondt S 2022. Subsidence in coastal cities throughout the world observed by InSAR. Geophys. Res. Lett. 49:7e2022GL098477
    [Google Scholar]
  119. Xiao H, Wang D, Hagen SC, Medeiros SC, Hall CR. 2016. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA). Hydrogeol. J. 24:71791806
    [Google Scholar]
  120. Xu Y-S, Ma L, Du Y-J, Shen S-L. 2012. Analysis of urbanisation-induced land subsidence in Shanghai. Nat. Hazards 63:2125567
    [Google Scholar]
  121. Yan S, Yu S, Wu Y, Pan D, She D, Ji J 2015. Seasonal variations in groundwater level and salinity in coastal plain of eastern China influenced by climate. J. Chem. 2015:905190
    [Google Scholar]
  122. Young S, Juhl A, O'Mullan GD. 2013. Antibiotic-resistant bacteria in the Hudson River Estuary linked to wet weather sewage contamination. J. Water Health 11:2297310
    [Google Scholar]
  123. Zaini F, Hussin K, Jamalludin NA, Zakaria SRA. 2015. The principle of depth for underground land development: a review. J. Teknol. 75:107178
    [Google Scholar]
  124. Zhao Z, Yin H, Xu Z, Peng J, Yu Z. 2020. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model. Water Res. 175:115689
    [Google Scholar]
/content/journals/10.1146/annurev-marine-020923-120737
Loading
/content/journals/10.1146/annurev-marine-020923-120737
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error