1932

Abstract

My career spanned the revolution in understanding of the large-scale fluid ocean, as modern electronics produced vast new capabilities. I started in the days of almost purely mechanical instruments operated by seagoing scientists, ones not so different from those used more than a century earlier. Elegant theories existed of hypothetical steady-state oceans. Today, we understand that the ocean is a highly turbulent fluid, interacting over global scales, and it is now studied by large teams using spacecraft and diverse sets of self-contained in situ instrumentation. Mine was an accidental career: I was lucky to be in the right place at the right time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-021320-125821
2021-01-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-021320-125821.html?itemId=/content/journals/10.1146/annurev-marine-021320-125821&mimeType=html&fmt=ahah

Literature Cited

  1. Briscoe MG. 1975. Preliminary results from trimoored Internal Wave Experiment (IWEX). J. Geophys. Res. Oceans 80:3872–84
    [Google Scholar]
  2. Crease J. 1962. Velocity measurements in the deep water of the western North Atlantic, summary. J. Geophys. Res. 12:143–50
    [Google Scholar]
  3. Davis RE. 1978. Estimating velocity from hydrographic data. J. Geophys. Res. 83:5507–9
    [Google Scholar]
  4. Davis RE, Sherman JT, Dufour J 2001. Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Ocean. Technol. 18:982–93
    [Google Scholar]
  5. Defant A. 1961. Physical Oceanography New York: Pergamon
    [Google Scholar]
  6. Fukumori I, Heimbach P, Ponte RM, Wunsch C 2018. A dynamically consistent, multivariable ocean climatology. Bull. Am. Meteorol. Soc. 99:2107–27
    [Google Scholar]
  7. Garrett C, Munk W. 1972. Space-time scales of internal waves. Geophys. Fluid Dyn. 3:225–64
    [Google Scholar]
  8. Garrett C, Wunsch C. 2020. Walter Heinrich Munk: 19 October 1917–8 February 2019. Biogr. Mem. Fellows R. Soc. 69:393424
    [Google Scholar]
  9. Gill AE. 1982. Atmosphere-Ocean Dynamics New York: Academic
    [Google Scholar]
  10. Groves GW. 1955. Day to day variation of sea level PhD Thesis, Scripps Inst. Oceanogr La Jolla, CA:
    [Google Scholar]
  11. Hendry R, Wunsch C. 1973. High Reynolds number flow past an equatorial island. J. Fluid Mech. 58:97–114
    [Google Scholar]
  12. Hidaka K. 1940. Absolute evaluation of ocean currents in dynamic calculations. Proc. Imp. Acad. Tokyo 16:391–93
    [Google Scholar]
  13. Howe BM, Miksis-Olds J, Rehm E, Sagen H, Worcester PF, Haralabus G 2019. Observing the oceans acoustically. Front. Mar. Sci. 6:426
    [Google Scholar]
  14. Huybers P, Wunsch C. 2010. Paleophysical oceanography with an emphasis on transport rates. Annu. Rev. Mar. Sci. 2:1–34
    [Google Scholar]
  15. Lanczos C. 1961. Linear Differential Operators Princeton, NJ: Van Nostrand
    [Google Scholar]
  16. Leetmaa A, Niiler P, Stommel H 1977. Does the Sverdrup relation account for the Mid-Atlantic circulation. ? J. Mar. Res. 35:1–10
    [Google Scholar]
  17. Martin S, Simmons WF, Wunsch C 1972. The excitation of resonant triads by single internal waves. J. Fluid Mech. 53:17–44
    [Google Scholar]
  18. MODE Group 1978. The Mid-Ocean Dynamics Experiment. Deep-Sea Res 25:859–910
    [Google Scholar]
  19. Munk W, Worcester P, Wunsch C 1995. Ocean Acoustic Tomography Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  20. Munk W, Wunsch C. 1982. Observing the ocean in the 1990s. Philos. Trans. R. Soc. A 307:439–64
    [Google Scholar]
  21. Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1976–2009
    [Google Scholar]
  22. Pedlosky J. 1979. Geophysical Fluid Dynamics New York: Springer
    [Google Scholar]
  23. Phillips OM. 1970. On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res 17:435–43
    [Google Scholar]
  24. Robinson AR 1983. Eddies in Marine Science Berlin: Springer
    [Google Scholar]
  25. Roemmich D, Wunsch C. 1984. Apparent change in the climatic state of the deep North Atlantic Ocean. Nature 307:447–50
    [Google Scholar]
  26. Siedler G, Church J, Gould WJ 2001. Ocean Circulation and Climate: Observing and Modeling the Global Ocean San Diego, CA: Academic
    [Google Scholar]
  27. Siedler G, Griffies S, Gould WJ, Church J 2013. Ocean Circulation and Climate: A 21st Century Perspective Amsterdam: Academic. , 2nd ed..
    [Google Scholar]
  28. Sverdrup HU, Johnson MW, Fleming RH 1942. The Oceans, Their Physics, Chemistry, and General Biology New York: Prentice Hall
    [Google Scholar]
  29. White MA. 2018. Episode 72: Carl Wunsch. Forecast: Climate Conversations with Michael White May 16. https://forecastpod.org/2018/12/26/episode-72-carl-wunsch
    [Google Scholar]
  30. Wiggins RA. 1972. The general linear inverse problem: implication of surface waves and free oscillations for earth structure. Rev. Geophys. Space Phys. 10:251–85
    [Google Scholar]
  31. Worthington LV. 1976. On the North Atlantic Circulation Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  32. Wunsch C. 1968. On the propagation of internal waves up a slope. Deep-Sea Res 15:251–58
    [Google Scholar]
  33. Wunsch C. 1969. Progressive internal waves on slopes. J. Fluid Mech. 35:131–45
    [Google Scholar]
  34. Wunsch C. 1970. On oceanic boundary mixing. Deep-Sea Res 17:293–301
    [Google Scholar]
  35. Wunsch C. 1972. Temperature microstructure on the Bermuda slope, with application to the mean flow. Tellus 24:350–67
    [Google Scholar]
  36. Wunsch C. 1977a. Determining the general circulation of the oceans: a preliminary discussion. Science 196:871–75
    [Google Scholar]
  37. Wunsch C. 1977b. Response of an equatorial ocean to a periodic monsoon. J. Phys. Oceanogr. 7:497–511
    [Google Scholar]
  38. Wunsch C. 1980. Meridional heat-flux of the North Atlantic Ocean. PNAS 77:5043–47
    [Google Scholar]
  39. Wunsch C. 1997. Henry Melson Stommel: 27 September 1920–17 January 1992. Biogr. Mem. Fellows R. Soc. 43:493–502
    [Google Scholar]
  40. Wunsch C. 2006a. Abrupt climate change: an alternative view. Quat. Res. 65:191–203
    [Google Scholar]
  41. Wunsch C. 2006b. Towards the World Ocean Circulation Experiment and a bit of aftermath. Physical Oceanography: Developments Since 1950 M Jochum, R Murtugudde 181–201 New York: Springer
    [Google Scholar]
  42. Wunsch C. 2019. Walter Munk (1917–2019): a founder of modern oceanography. Nature 567:176
    [Google Scholar]
  43. Wunsch C, Dahlen J. 1970. Preliminary results of internal wave measurements in the main thermocline at Bermuda. J. Geophys. Res. 75:5889–908
    [Google Scholar]
  44. Wunsch C, Dahlen J. 1974. A moored temperature and pressure recorder. Deep-Sea Res 21:145–54
    [Google Scholar]
  45. Wunsch C, Ferrari R. 2018. 100 years of the ocean circulation. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial GM McFarquhar, RM Rauber 71–32 Boston: Am. Meteorol. Soc.
    [Google Scholar]
  46. Wunsch C, Gaposchkin EM. 1980. On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev. Geophys. Space Phys. 18:725–45
    [Google Scholar]
  47. Wunsch C, Gill AE. 1976. Observations of equatorially trapped waves in Pacific sea level variations. Deep-Sea Res 23:371–90
    [Google Scholar]
  48. Wunsch C, Haidvogel DB, Iskandarani M, Hughes R 1997. Dynamics of long-period tides. Prog. Oceanogr. 40:81–108
    [Google Scholar]
  49. Wunsch C, Roemmich D. 1985. Is the North Atlantic in Sverdrup balance. ? J. Phys. Oceanogr. 15:1876–80
    [Google Scholar]
/content/journals/10.1146/annurev-marine-021320-125821
Loading
/content/journals/10.1146/annurev-marine-021320-125821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error